

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF ENGINEERING AND TECHNOLOGY

UNIVERSITY EXAMINATIONS FOR THE DEGREE IN SCIENCE IN RENEWABLE ENERGY TECHNOLOGY AND MANAGMENT

THIRD YEAR RESIT EXAMINATIONS 2020/21 ACADEMIC YEAR

CENTRE: MAIN CAMPUS

COURSE CODE: TET 3325

COURSE TITLE: HYDROPOWER TECHNOLOGY II

EXAM VENUE:

STREAM: BSc REN TECH & MGT

DATE: ../11/2020 EXAM

SESSION:

DURATION: 2 HOURS

Instructions

- 1. Answer question 1 (Compulsory) and ANY other two questions
- 2. Candidates are advised not to write on question paper
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room

QUESTION ONE (Compulsory) (30 Marks)

a)	Jus	tify how hydropower is one of the renewable energy sources.	(4Marks)		
b)	i) V	Vhat are velocity triangles?	(2 Marks)		
	ii) [ii) Demonstratively explain (with the help of diagrams), velocity triangles for a Pelton Turbine (4			
	Ma	rks)			
c)	Dis	cuss four types of turbine efficiencies.	(4 Marks).		
d)	Def	fine cavitation and explain four methods of avoiding cavitation.	(6 Marks).		
e)) The diagram Fig Q 2.1 below shows a hydropower systems design.				
	i.	Name the hydropower system shown.	(2 marks)		
	ii.	Name the labels 1, 2, 3 and 4	(4 marks)		
	iii.	What is the suitable term that represent the difference between A and B , as			

shown in the diagram Fiq Q 2.1? (2 marks)

Fiq Q 2.1

f) How is the water hammer in the penstock of a hydropower plant managed? (2marks)

QUESTION TWO (20 Marks)

a)	Describe four factors governing selection of suitable type of turbine.	(4 Marks).
L۵	Define the following terms:	(A Martia)

- b) Define the following terms: (4 Marks). i) Penstock
 - ii) Tunnel
- c) Using a diagram explain the working mechanism of a Gas turbine. (4 Marks)
- d) A Francis turbine works under a head of 120 m. The outer diameter rand width is 2 m and 0.16 m. The inner diameter and width are 1.2 m and 0.27 m. The flow velocity at inlet is 8.1 m/s. The whirl velocity at outlet is zero. The outlet blade angle is 16°. Assume ηH = 90%. Determine, power, speed and blade angle at inlet, and guide blade angle.

QUESTION THREE (20 Marks)

- a) The diagrams **Fig Q 3.a** below, shows the problem that results from a poor design consideration.
 - i. Name the cause of the damage that can be seen in the two different runners shown below.
 - ii. How can this problem be solved?

Fig Q 3. a

- b) i) From the sketch Fig 3. b below, name the kind of turbine it is.
 - ii) Name the parts labeled 1, 2,3,4 and 5.

(2marks) (5 marks)

(1+2 Marks)

Fig 3.b

iii) Explain its principle of operation. (4 marks)
 c) The jet velocity in a Pelton turbine is 65 m/s. The peripheral velocity of the runner is 25 m/s. The jet is deflected by 160° by the bucket. Determine the power developed and hydraulic efficiency of the turbine for a flow rate of 0.9 m3/s. The blade friction coefficient is 0.9. (6 Marks)

QUESTION FOUR (20 Marks)

- a) i)What are the approximate heads ranges for Pelton, Kaplan and Francis (3marks)
 ii) Show expressions for calculating Dimensional and non-dimensional Speed. (4 Marks)
 iii)What are the conditions for maximum efficiency for Pelton turbine? (3 marks)
- b) Explain the function of draft tube in the case of reaction turbines (4 Marks)
- c. A suitable power potential at a remote location along River Yala, was estimated as 4 MW. The head available was 35 m. The speed chosen is 300 rpm.
 - i) Determine the dimensional and non-dimensional specific speeds.
 - ii) If the speed ratio is 0.8 and the flow ratio is 0.35 determine the diameter of the runner.

(6 marks)

QUESTION FIVE (20 Marks)

a)	Explain what is meant by specific speed of a turbine.	(2 Marks)
b)	Describe the principle operation of the following types of hydropower plants.	
	i. Pumped Storage Hydropower.	(2 marks)
	ii. Run-off Hydropower.	(2marks)
	iii. Conventional Hydropower.	(2 marks)
c)	Considering economic, social and environmental impacts, compare the Hydropower	
	with Thermal Turbines Technologies	(6 Marks)
d)	i) The hydropower system designs are divided into two. Name them.	(2 Marks)
	ii) The Fig 5.d. bellow, represent which type of hydropower design?	(2 Marks)
	iii) What is the name of the turbine in Fig O 5.d , below?	(2 Marks)

