• Login
  • Help Guide
View Item 
  •   JOOUST IR Home
  • Journal Articles
  • School of Informatics & Innovative Systems
  • View Item
  •   JOOUST IR Home
  • Journal Articles
  • School of Informatics & Innovative Systems
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

congestion aware packet routing for delay sensitive cloud communications

Thumbnail
View/Open
Nyangaresi_Congestion aware packet routing for delay sensitive cloud communications.pdf (1.146Mb)
Publication Date
2017-07
Author
Nyangaresi, Vincent O.
Abeka, Silvance O.
Ogara, Solomon O.
Type
Article
Metadata
Show full item record
Abstract/Overview

In the recent years, many organizations have turned to cloud technology to support their information technology services. The cloud servers are therefore increasingly holding huge and sensitive information belonging to diverse groups of individuals and companies. Additionally, some organizations employ the cloud to provide them with online backup services. One of the most outstanding requirements for cloud customers is availability – the customers must be able to access their information and other resources stored in the cloud any time and from anywhere on the globe. This means that there should be efficient network design such that any delays are averted. The connection between the customer and the cloud can therefore be regarded as delay senstive. Network congestions often lead to delays and packet losses. Transmission control protocol employs four congestion control algorithms – slow start, congestion avoidance, fast retransmit and fast recovery, all of which fail to meet the requirements of delay intolerance. Transmission control protocol pacing has been suggested as a possible solution to delays and packet dropping in computer networks. However, the conventional pacing is static in nature, meaning that constant pauses are introduced between packet transmissions to prevent bursty transmissions which can lead to delays at the receiver buffers. This paper therefore presents a congestion aware packet routing where the delay period is hinged on the prevailing network conditions. This dynamic pacing algorithm was designed and implemented in Spyder using Python programming language. It employed probe signals to gather network intelligence such as the applicable round trip times of the network. Thereafter, this network intelligence was employed to tailor the paces to these network conditions. The results obtained showed that this algorithm introduced longer paces when more packets are transmitted and shorter paces when few packets are transmitted. In so doing, this new algorithm gives enough time for large packets to be delivered and smaller paces when few packets are sent. The analysis was done in terms of bandwidth utilization efficiency, round trip times and congestion window size adjustments. The congestion window – time graphs and throughput – time graphs showed that the developed dynamic pacing algorithm adjusted quickly to network congestions hence ensuring that the network is efficiently utilized by averting delays. Index Terms – Cloud Computing, Congestion, Network Delays, Algorithm, TCP Pacing

Subject/Keywords
Cloud Computing; Congestion; Network Delays; Algorithm; TCP Pacing
Further Details

DOI: 10.22247/ijcna/2017/49121

Publisher
International Journal of Computer Networks and Applications
ISSN
23950455
Series
Volume 4, Issue 4, July – August;
Permalink
DOI: 10.22247/ijcna/2017/49121
http://ir.jooust.ac.ke:8080/xmlui/handle/123456789/1628
Collections
  • School of Informatics & Innovative Systems [119]

Browse

All of JOOUST IRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Contact Us

Copyright © 2023-4 Jaramogi Oginga Odinga University of Science and Technology (JOOUST)
P.O. Box 210 - 40601
Bondo – Kenya

Useful Links

  • Report a problem with the content
  • Accessibility Policy
  • Deaccession/Takedown Policy

TwitterFacebookYouTubeInstagram

  • University Policies
  • Access to Information
  • JOOUST Quality Statement