• Login
  • Help Guide
View Item 
  •   JOOUST IR Home
  • Journal Articles
  • School of Health Sciences
  • View Item
  •   JOOUST IR Home
  • Journal Articles
  • School of Health Sciences
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Laboratory tests of oviposition by the African malaria mosquito, Anopheles gambiae, on dark soil as influenced by presence or absence of vegetation

Thumbnail
View/Open
Amimo_Laboratory tests of oviposition.pdf (1.014Mb)
Publication Date
2006-10-12
Author
Huang, Juan
Walker, Edward D
Otienoburu, Philip E
Amimo, Fred A.
Vulule, John
Miller, James R
Type
Article
Metadata
Show full item record
Abstract/Overview

Background Physical objects like vegetation can influence oviposition by mosquitoes on soil or water substrates. Anopheles gambiae s. l. is generally thought to utilize puddles over bare soil as its prime larval habitat and to avoid standing water populated with vegetation. In Kisian, Kenya near Kisumu, water often pools in grassy drainage areas both during and after periods of infrequent rains, when typical puddle habitats become scarce because of drying. This raised the question of whether An. gambiae has the behavioural flexibility to switch ovipositional sites when puddles over bare soil are unavailable. Methods To test whether presence and height of grasses influenced oviposition, wild-caught gravid An. gambiae s. l. were offered paired choices between wet, bare soil and wet soil populated with mixed grasses or grasses of differing height. No-choice tests were also conducted by giving females either grassy soil or bare soil. Results In choice tests, females laid four times more eggs on bare, wet soil than soil populated with grasses. However in no-choice tests, egg output was not significantly different whether grasses were present or not. Females laid significantly more eggs on soil populated with short grass than with medium, or tall grass. Conclusion This work shows An. gambiae s. l. has the capacity to oviposit into grassy aquatic habitats when typical puddles over bare soil are unavailable. This knowledge will need to be considered in the design and implementation of programmes aimed at reducing malaria transmission by suppression of An. gambiae s. l. immatures.

Subject/Keywords
Bare Soil; Ovipositional Site; Gravid Female; Tall Grass; Cynodon Dactylon
Publisher
BMC
Permalink
https://doi.org/10.1186/1475-2875-5-88
http://ir.jooust.ac.ke:8080/xmlui/handle/123456789/2669
Collections
  • School of Health Sciences [193]

Browse

All of JOOUST IRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Contact Us

Copyright © 2023-4 Jaramogi Oginga Odinga University of Science and Technology (JOOUST)
P.O. Box 210 - 40601
Bondo – Kenya

Useful Links

  • Report a problem with the content
  • Accessibility Policy
  • Deaccession/Takedown Policy

TwitterFacebookYouTubeInstagram

  • University Policies
  • Access to Information
  • JOOUST Quality Statement