• Login
  • Help Guide
View Item 
  •   JOOUST IR Home
  • Journal Articles
  • School of Biological, Physical, Mathematics & Actuarial Sciences
  • View Item
  •   JOOUST IR Home
  • Journal Articles
  • School of Biological, Physical, Mathematics & Actuarial Sciences
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantification of ecosystem carbon exchange characteristics in a dominant subtropical evergreen forest ecosystem

Thumbnail
View/Open
Abstract (218.4Kb)
Publication Date
2012
Author
Li, Yue-Lin
Zhou, Guo-Yi
Zhang, De-Qiang
Wenigmann, Katherine Owen
Ochuodho, Dennis O.
Tenhunen, John
Zhang, Qian-Mei
Type
Article
Metadata
Show full item record
Abstract/Overview

CO2 fluxes were measured continuously for three years (2003–2005) using the eddy covariance technique for the canopy layer with a height of 27 m above the ground in a dominant subtropical evergreen forest in Dinghushan, South China. By applying gapfilling methods, we quantified the different components of the carbon fluxes (net ecosystem exchange (NEE)), gross primary production (GPP) and ecosystem respiration (Reco) in order to assess the effects of meteorological variables on these fluxes and the atmospherecanopy interactions on the forest carbon cycle. Our results showed that monthly average daily maximum net CO2 exchange of the whole ecosystem varied from −3.79 to −14.24 μmol m−2 s−1 and was linearly related to photosynthetic active radiation. The Dinghushan forest acted as a net carbon sink of −488 g C m−2 y−1, with a GPP of 1448 g Cm−2 y−1, and a Reco of 961 g C m−2 y−1. Using a carboxylase-based model, we compared the predicted fluxes of CO2 with measurements. GPP was modelled as 1443 g C m−2 y−1, and the model inversion results helped to explain ca. 90% of temporal variability of the measured ecosystem fluxes. Contribution of CO2 fluxes in the subtropical forest in the dry season (October-March) was 62.2% of the annual total from the whole forest ecosystem. On average, 43.3% of the net annual carbon sink occurred between October and December, indicating that this time period is an important stage for uptake of CO2 by the forest ecosystem from the atmosphere. Carbon uptake in the evergreen forest ecosystem is an indicator of the interaction of between the atmosphere and the canopy, especially in terms of driving climate factors such as temperature and rainfall events. We found that the Dinghushan evergreen forest is acting as a carbon sink almost year-round. The study can improve the evaluation of the net carbon uptake of tropical monsoon evergreen forest ecosystem in south China region under climate change conditions.

Subject/Keywords
Dinghushan; eddy covariance; gap filling; CO2 fluxes; net ecosystem exchange
Publisher
Korean Meteorological Society and Springer Netherlands
ISSN
1976-7951; 1976-7633
Permalink
http://ir.jooust.ac.ke:8080/xmlui/handle/123456789/2717
Collections
  • School of Biological, Physical, Mathematics & Actuarial Sciences [254]

Browse

All of JOOUST IRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Contact Us

Copyright © 2023-4 Jaramogi Oginga Odinga University of Science and Technology (JOOUST)
P.O. Box 210 - 40601
Bondo – Kenya

Useful Links

  • Report a problem with the content
  • Accessibility Policy
  • Deaccession/Takedown Policy

TwitterFacebookYouTubeInstagram

  • University Policies
  • Access to Information
  • JOOUST Quality Statement