• Login
  • Help Guide
View Item 
  •   JOOUST IR Home
  • Journal Articles
  • School of Biological, Physical, Mathematics & Actuarial Sciences
  • View Item
  •   JOOUST IR Home
  • Journal Articles
  • School of Biological, Physical, Mathematics & Actuarial Sciences
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Treatment of tea industry wastewater using a combined adsorption and advanced oxidation process

Thumbnail
View/Open
Main article (274.5Kb)
Publication Date
2014
Author
Ochuodho, Dennis O.
Kumar, Anil
Onyango, Maurice S.
Aoyi, Ochieng
Type
Article
Metadata
Show full item record
Abstract/Overview

Tea, produced from the evergreen plant, Camellia Sinensis, is the most widely consumed beverage in the world after water. Although tea processing has now diversified into various speciality end products such as instant, white, oolong, iced, flavoured, and various blends, the most abundantly produced tea product in the world is fermented black tea. Black tea production is essentially a “dry” process, as no water is used at any of the production process steps. However liquid waste is generated due to the use of water for cleaning process equipment and factory premises. The waste exits the factory as coloured liquid effluent that must be treated before being discharged into rivers, lakes and other fresh water bodies. This paper presents findings of a study carried out to evaluate the performance of a combined adsorption and advanced oxidation process in removing colour from tea industry wastewater. The variables explored were the effects of sorbent mass, oxidant dosage, solution pH, agitation rate and temperature, on the decolouration of tea industry effluent. The results indicate that the combined adsorption and advanced oxidation is most effective at pH 3 wherein the effluent colour was reduced from 478 Pt-Co colour units to 8 Pt-Co colour units. The latter meets the NEMA recommended limit for discharge of colored effluents

Subject/Keywords
Tea industry effluent; Water pollution; Colour removal; Adsorption; Advanced oxidation
Publisher
International Conference on Sustainable Research and Innovation
ISSN
2079-6226
Permalink
http://ir.jooust.ac.ke:8080/xmlui/handle/123456789/2750
Collections
  • School of Biological, Physical, Mathematics & Actuarial Sciences [254]

Browse

All of JOOUST IRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Contact Us

Copyright © 2023-4 Jaramogi Oginga Odinga University of Science and Technology (JOOUST)
P.O. Box 210 - 40601
Bondo – Kenya

Useful Links

  • Report a problem with the content
  • Accessibility Policy
  • Deaccession/Takedown Policy

TwitterFacebookYouTubeInstagram

  • University Policies
  • Access to Information
  • JOOUST Quality Statement