• Login
  • Help Guide
View Item 
  •   JOOUST IR Home
  • Journal Articles
  • School of Biological, Physical, Mathematics & Actuarial Sciences
  • View Item
  •   JOOUST IR Home
  • Journal Articles
  • School of Biological, Physical, Mathematics & Actuarial Sciences
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reconstructing Global Earth Observation Based Vegetation Index Records with Stochastic Partial Differential Equations Approach

Thumbnail
View/Open
Okuto_Reconstructing Global Earth Observation Based Vegetation Index Records with Stochastic Partial Differential Equations Approach.pdf (1.217Mb)
Publication Date
2018
Author
Okuto, E
Omolo, B
Ongati, O
Type
Article
Metadata
Show full item record
Abstract/Overview

Long-term Earth observation based vegetation index records have been used extensively by researchers to assess vegetation response to global climate variability and change. However, the records exhibit multiple temporal gaps due to spectral and radiometric inconsistencies that inhibit accurate assessment of land surface vegetation dynamics. Here, we propose a new reconstruction procedure that approximates Bayesian time series model by using integrated nested Laplace approximations (INLA) to overcome Bayesian computational limitations. The technique was tested on the vegetation index and phenology (VIP) Lab enhanced vegetation index-two (VIP-EVI2) version 3 15-day 5 km resolution record. VIP EVI2 is a reconstructed record with inverse distance weighting function and linear interpolation (IDW EVI2). VIP-EVI2 is derived from red and near-infrared (NIR) top of canopy (TOC) reflectance, detected by the Advanced Very High Resolution Radiometer (AVHRR). The INLA-EVI2 was compared globally and locally with an adaptive Savitzky-Golay (SG-EVI2) filter. The global evaluation was done by descriptive analysis, goodness-of-fit by Kolmogorov-Smirnov (K-S) test, annual trend analysis by Thiel Sen (T-S) slope. The local comparison was done by evaluating the ability of IDW-EVI2, SG-EVI2, and INLA-EVI2 to estimate in situ Leaf Area Index (LAI) measurements taken over several years and for major field crops across the globe. Locally, INLA-EVI2 estimated the in situ data more correctly than SG-EVI2 as indicated by R2 and RMSE. Globally, the INLA-EVI2 recorded a better goodness-of-fit, more stable and consistent trends than SG-EVI2. Based on these findings, if computational resources are unlimited, the INLA approach provides a viable alternative to standard reconstruction procedures.

Subject/Keywords
Advanced very high resolution radiometer (AVHRR)
Publisher
Academia
ISSN
2456-1452
Permalink
http://ir.jooust.ac.ke:8080/xmlui/handle/123456789/9521
Collections
  • School of Biological, Physical, Mathematics & Actuarial Sciences [254]

Browse

All of JOOUST IRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Contact Us

Copyright © 2023-4 Jaramogi Oginga Odinga University of Science and Technology (JOOUST)
P.O. Box 210 - 40601
Bondo – Kenya

Useful Links

  • Report a problem with the content
  • Accessibility Policy
  • Deaccession/Takedown Policy

TwitterFacebookYouTubeInstagram

  • University Policies
  • Access to Information
  • JOOUST Quality Statement