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INSTRUCTIONS 

 

1. This examination paper contains FIVE questions.  

2. Answer any THREE questions. 

 



QUESTION ONE (20 marks) 
a) State and prove 

i. H o lder’s inequality for  p k  spaces (4 marks) 

ii. Minkowski inequality for  p k  spaces (5 marks) 

b) Show that the metric spaces   ,p

pk  are complete for 1 p  (8 marks) 

c) In case 2p  , show that  p k , i.e.  2 k has inner product  function compatible with its norm     

(3 marks) 

 

QUESTION TWO (20 marks) 
a) Let  ,X  be a compatible metric space and    : , ,f X X  be a contradiction mapping. show 

that f has a unique fixed point. If  the mapping    : , ,f X X  , where  ,X  is a complete 

metric space , is such that 
pf  (i.e. f  composed with itself p times) where p is some positive integer 

2 , is a contradiction mapping, show that f has exactly one fixed point (10 marks) 

b) Let A, B be nonvoid subsets of a metric space  ,X   

i. If A is compact, show that there exists an 0x A such that    0dist. x , ,B A B  (the 

distance between A and B) 

ii. If A and B are both compact, show that there exists an 0x A  and 0y B  such that 

   0 0x , ,y A B   (10 marks) 

 

QUESTION THREE (20 marks) 

a) Let  ,X   be a n.l.s.  If every absolutely convergent series n

n

X of elements nx X is strongly 

convergent, show that  ,X  is a Banach space. (10 marks) 

b) Let  ,X  be a Banach space, show that a family  :x   of elements of X is summable if and 

only if for each real number 0  there exists a finite subset 
 of  such that x






 whenever 

 is a finite subset of  satisfying the condition


  . (10 marks) 

 

QUESTION FOUR (20 marks)  
a) Let ,X  Y be n.l.spaces over k and :T x y  be a linear transformation which is continuous at a 

point nx X with respect to the strong (norm) topologies in ,X  Y . Show that T is bounded.             

(5 marks) 
b) Let X be a n.l.s and Y a Banach space. Let T be a bounded linear transformation defined on a linear 

subspace D of X intoY . Show that there is a unique linear transformation T defined on the closure 

D of D such that T extends T  and that T T . (10 marks) 

c) If m is a proper closed linear  subspace of a n.l,s.  ,X   and  is any real number satisfying  

0 1,  show that there exists an element x X  such that 1x  and  dist. x ,m   (5 marks) 

 

 



QUESTION FIVE (20 marks)  
a) Let X be a n.l.s and let m be a linear subspace of X . Suppose that z X and  dist. , 0z m d  . 

Show that there exists a q X   such that     , ,q m o q z d  and 1.q   show also that if 

 ,m o then we have  q z z . (8 marks) 

b) Let X and Y be n.l.spaces over k .show that  ,B x y is a linear space over k under the usual 

operations of sum and scalar multiplication. Show that the mapping  , ,T T T B x y is a norm 

in  ,B x y .  If Y is a Banach space, show that   , , .B x y is a Banach space. (12 marks) 

 

 

 
 

 

 
 

 

 

 


