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Abstract

Topological Data Analysis (TDA) is an important aspect in the field of

topological data theory since the 21st century’s first decade. Modern

TDA utilizes the structural characteristics of Big Data (BD), otherwise

known as point cloud data sets. Topology and Geometry are tools used

to analyze highly complex and multi-dimensional data by creating a sum-

mary of these characteristics to uncover hidden features in these datasets,

while preserving feature relationships within the data. Describing topo-

logical Data Points (TDP) is very intricate due to the nature of BD. This

makes it difficult to locate Big Data Sets (BDS) particularly in a gen-

eral topological space setting. Because of the structure in T2-spaces, it

is even more difficult to locate these BDS in Hausdorff spaces. The ob-

jectives of the study include; to characterize TDPs in Hausdorff spaces,

to locate BDS in Hausdorff Spaces, and to establish distribution patterns

of TDPs in Hausdorff spaces. The methodology involved use of BDS,

separation criterion of Hausdorff Spaces, Artificial Intelligence (AI) and

Machine Learning (ML) techniques, as well as development of algorithms

and simulations using python. The results show that the space of a TDP

is compact, and has no less than one closed TDP. Moreover, the set of

all condensation points of a TDS is infinite and has infinite cardinality.

Lastly, Covid-19 cases are densely distributed in regions experiencing ex-

tremely low temperatures. The results of this study are useful to policy

makers in the health sector in controlling Covid-19. This work is also a

contribution of knowledge in the field of TDA.
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Chapter 1

INTRODUCTION

1.1 Mathematical Background

TDA is founded under the ubiquitous theory of persistent homology.

Some of the pioneer contributors to TDA include Frosini[16], Robins[29]

and, Edelsbrunner[13], who founded the notion of how features persist as

the data is modified. Nevertheless, the genesis of the term TDA expres-

sion appears not to have surfaced till contributions by Carlsson[12], De

Silva, and Bremer[2]. Thereafter, Carlsson[5], became instrumental in the

popularization of TDA, establishing the ways topological techniques will

remedy challenges encountered while implementing topology to analyze

BD. Perea [26] put up other developments by observing that Persistent

homology is currently one of the more widely known tools from compu-

tational topology and topological data analysis.

Topology and Geometry are tools used to investigate highly composite

data [7] by creating a compendium of the features of data to uncover

hidden attributes within the dataset. Normally, the dataset of interest is

often centered around structures that appear challenging to be revealed
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with traditional methods[24]. The major TDA approach for removing

”topological noise” is to map the original data to a lower dimensional

approximation acquired through a multidimentional assortment.

Open sets therefore provide an essential approach to understand nearness

of points without a distance element defined in a topological space. Other

inherent mathematical concepts to understand besides topology include

continuity, connectedness, and closeness, which embrace nearness. The

problem is that there isn’t a single story happening in this data. We can

therefore say this data has much ”noise”!

The explosive growth in data, voice and video traffic, and ubiquity of

social-media content, health records, and many more data sources, has

been a contributing factor of big data. It was anticipated that the gener-

ated data volume could be 44 zettabytes in 2020 as found in [3]. Just pose

and imagine the billions of emails sent and stored weekly. Using social

media to interact and communicate generates immense data quantities as

can be revealed through the following statistics [1]:

(i). 350 million photos are uploaded to Facebook daily; close to 100

hourly videos get uploaded to YouTube.com every 60 seconds, while

in Instagram, over 45 million pictures are uploaded daily.

(ii). As of 2015, Social Networking sites are used by 72% of online adults,

while the percentage of Facebook users not concerned with any kind

of privacy control is 25%.

(iii). Approximately 293,000 status updates are posted on Facebook ev-

ery sixty seconds, while every 48 hours, more than a billion tweets

are sent, as daily 1 billion new Twitter accounts created.

2



(iv). During August 2011 earthquake in Mineral, Virginia, the New York

City residents received tweets 30 seconds before they felt it.

The vast data volume with its complexity has propelled technological ad-

vancements realized as well as accelerated increase in bandwidth capacity,

processing power, storage capability and transfer velocity. This partially,

is due to the technological advancement in high power computing.

There is therefore urgent need to establish robust and resilient techniques

to process the Big Data. BD consists of 5 Vs: Value, Variety, Volume,

Veracity and Velocity[8]. The data size to be processed and analyzed

constitutes the volume. The speed of growth and usage of this data is

the velocity. The varied data formats cum types is the variety. Veracity

involves accuracy plus analysis of the results of the datasets. The richness

obtained after the processing the dataset is the value.

The growing volumes of Voice over IP (VoIP), social-media content,

[18] underscores the requirement of ways of countering the ambiguity in-

nate the finite datasets. Presently, roughly eighty percent of datasets

remains indeterminate. Figure 1.1.1 demonstrates this. TDA has lately

recorded advances in innumerable directions and application disciplines.

The fundamental aim of TDA is to extract multi-dimensional rich data

features based on geometry and topology pre-existing in distributed data-

points as shown in [5] and [25]. Connections within the data and topologi-

cal methods have a close affiliation to neural networks between data-points

which reveal insight into this united structure. According to [15], most

commonly, every other form of TDA revolves around the steps below:

Firstly, the data sample is presumed as datapoints which are finite quan-
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Figure 1.1.1: Predicted uncertainty of Big Data [32].

tified as a metric space Rd. Worth to mention is that the metric choice

may be vital to guarantee remarkable topological and geometric features

of the data set. Secondly, to tap more from the fundamental concepts of

Geometry and Topology, a mathematical structure is computed on top

of the dataset. This is mostly cases in SC or a convention of SCs, that

depicts the high dimensional data structures at varied degrees.

Thirdly, from these high dimensional data structures built on atop the

data set, topological or geometric information is derived. The shape of

the data from which we extract the topological/geometrical high dimen-

sional features can either be crude structural summaries or relevant ap-

proximations that need further approaches like persistent homology and

visualization. The extracted topological and geometric information gives

rise to insightful features and descriptors into the data which when in-

jected into further analysis and machine learning procedures, reveal very

rich results and significant meaning that can be used in other disciplines

like medicine, biology and astrophysics, just to mention a few.
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1.2 Basic Concepts

Here, we cover the basic concepts key to our study on characterization of

topological points in Big Data sets of Hausdorff spaces (HS).

Definition 1.1. ([31]Definition 1.1.1) Topological space

Let X be a non-empty set and τ a collection of all subsets of X. Then τ

is a topology on X if the following axioms are satisfied:

(i). ∅,X ∈ τ

(ii). Any arbitrary union of sets belonging to τ also belongs to τ .

(iii). Any finite intersection of sets belonging to τ also belongs to τ .

Definition 1.2. ([31]Definition 6.1.1) Metric Space

Let X be a non-void set and ρ : X x X → R be a non-negative function

satisfying the following properties;

(i). ρ(x, y) = ρ(y, x)∀x, y ∈ X (Commutativity property/symmetry ax-

iom). The distance from one point to another is the same as going

in the opposite direction.

(ii). ρ(x, y) = 0 if and only if x = y (Zero Property or Non-negativity

axiom) The distance between two points is a positive number, and

the distance is 0 if and only if the points are the same.

(iii). ρ(x, z) ≤ ρ(x, y) + ρ(y, z)∀x, y, z ∈ X (Triangle Property). The

distance between two points x and z is always no longer than taking

a detour through point y.
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Then (X, ρ) is called a metric space and the function ρ is called a

metric on the set X. The elements of X are then called the points of X.

Definition 1.3. ([10]) Data

Data refers to facts, quantities, characters, symbols gathered for investi-

gation and analysis.

Definition 1.4. ([33]) Data Set

A composition of related information consisting of unconnected data-

points stored, ordered and viewed as a component.

Definition 1.5. ([19]) Big Data

Big Data can be described as hugely large, highly composite datasets to

be analyzed by traditional techniques, but might reveal structure, pat-

terns, relationships, shapes, when computational analysis methods are

involved.

Definition 1.6. ([22]) Artificial Intelligence (AI)

Artificial Intelligence (AI) refers to an extensive branch of computer sci-

ence involved in the theory and development of smart computer systems

having the capability to perform tasks that usually require human intel-

ligence. e.g. natural languages translation, voice recognition and visual

perception.

Definition 1.7. ([22]) Machine Learning (ML)

Machine Learning (ML) refers to a discipline of AI that utilizes computer

algorithms to learn, experience, adapt and automatically improve without

human programming.

Definition 1.8. ([27]) Python

Python is a high-level, object-oriented, interpreted, general-purpose pro-
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gramming language for prototyping, website coding, application develop-

ment, processing images and scientific data analysis.

Definition 1.9. ([31]) T0 − Space

Let (X, τ) be a topological space. Let x and y be two distinct points in

X. There exists an open set G ∈ τ which contains x and not y i.e. x ∈ G

and y /∈ G.

Definition 1.10. ([31]) T1 − Space

Let (X, τ) be a topological space. Let x and y be two distinct points in

X, i.e. x ̸= y. Let U and V ∈ X be two open sets such that x ∈ U,

y /∈ U and y ∈ V, x /∈ V.

Definition 1.11. ([31]Definition 6.1.24) T2 − Space

Let (X, τ) be a topological space. Let x, y be two distinct points in X.

i.e. x ̸= y. Let U,V be two open sets of X such that x ∈ U, y ∈ V and

U ∩V = ∅.

The topological space (X, τ) that satisfies the T2 − space is referred to

as Hausdorff Space.

Example 1.12. LetX = {1, 2, 3} and τ = {∅, {2}, {2, 3}, {3}, {1, 2}, {1, 3},X}.

x = 1, y = 2 so, x ̸= y. U = {1} and V = {2, 3} then U ∩V = ∅.

Definition 1.13. Condensation Point

Let X be a topological space and S a subset of X. Then the condensation

point P ∈ S is any point P such that every neighborhood of P contains

uncountably many elements of S.

Definition 1.14. Hausdorff Maximal Principle (Zorn’s Lemma)

Let X be a partially ordered set, and let every linearly ordered subset of

X have an upper bound. Therefore, X contains a maximal subset.
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Definition 1.15. ([31]Definition 10.3.27) Regular Topological Space

Let (X, τ) be a topological space. Let F be a closed subset of τ . Let

x be a a distinct point in X such that x is not in F. Let U,V be two

disjoint open sets, one containing F and the other containing x, such that

F ⊂ U, x ∈ V. U ∩ V = ∅. Therefore, (X, τ) is a regular topological

space.

Definition 1.16. ([31]Definition 10.3.27) T3 − Space

A regular topological space (X, τ) which is also T1-space is a T3-space.

Definition 1.17. ([31]Definition 10.3.20) Normal Topological Space

(NTS)

Let (X, τ) be a topological space and F1,F2 be two disjoint closed subsets

ofX. Then there exists two disjoint open setsU,V ofX such that F1 ⊂ U

and F2 ⊂ V. Therefore, (X, τ) is a normal topological space.

Definition 1.18. ([31]Definition 10.3.20) T4 − Space

A T4 Space is a normal space which is also T1-space.

Definition 1.19. ([21]Definition 3) Open set

A subset A ⊂ X of the topological space X is an open set of X if it

belongs to τ .

The following are properties of open sets:

(i). The empty-set ∅ is open.

(ii). Any arbitrary union of open sets is open.

(iii). Any finite intersection of open sets is open.

8



Definition 1.20. ([21]Definition 4) Closed set

The subset A ⊂ X of the topological space X is a closed set of X if its

complement X\A is open.

Definition 1.21. ([21]Definition 6) Compact topological space

A topological space X is compact if every open covering of it contains a

finite sub-collection that is also a covering of X.

Definition 1.22. ([21]Definition 28) Connected topological space

A topological space X is connected if for any two points of X there exists

a path between them on X.

Definition 1.23. ([21]Definition 29) Connected components

The maximally connected subsets of a topological space X are called its

connected components.

Definition 1.24. Topological Data Point

Letting H to be a nonempty compact Hausdorff space, a point a ∈ H is

called a topological data point (TDP) if H \ {a} is a compact subspace

of H.

Definition 1.25. TDP Space

A nonempty compact Hausdorff space H is called a TDP space if every

a ∈ H is a TDP.

Remark 1.26. Letting H be a topological space, then H = P†Q means

P and Q are nonempty subsets of H such that H = P∪Q and P∩Q =

P ∩Q = ∅.
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1.3 Statement of the problem

Describing topological points is very intricate due to the nature of Big

Data. This makes it difficult to locate Big Data sets particularly in a

general topological space setting[9]. Because of the structure in T2-space,

it is even more difficult to locate these Big Data sets in Hausdorff spaces.

In spite of the remarkable efforts put up by traditional techniques in data

analysis, these techniques have not always kept up with the exploding data

quantity and complexity since the techniques often rely on overly simplis-

tic assumptions and approximations in their computations[14]. Besides,

these techniques do not pay attention to the arbitrariness of data and the

inherent unpredictability of the datasets. Accordingly, these techniques

are exploratory, lacking the efficiency to distinguish information of inter-

est from ”topological noise”. The Vietoris-Rips complex for a parameter

t has been so ubiquitously used to build a useful simplicial complex to

mirror the data structure and utilizes the original data as the vertex set.

The bone of contention, however, has always been how to choose the t

parameter such that the Rips complex reveals the structure of the under-

lying data set. It is precisely this question that appeals to our conscience

of thought towards a Hausdorff Space as a topological signature of the

data set. Finally, previous studies done on Topological Data Analysis

have had very little focus on the application of Hausdorff spaces.

1.4 Objectives of the study

Below is the main objective of our study:
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(i). To characterize topological points in Big Data sets of Hausdorff

Spaces.

Below are the specific objectives of our study;

(i). To characterize topological data points in Hausdorff spaces.

(ii). To locate Big Data sets in Hausdorff Spaces.

(iii). To establish distribution patterns of topological data points in Haus-

dorff spaces.

1.5 Significance of the study

Big Data sets contain millions of multi-dimensionally rich features and

hundreds of thousands, of measurements. These features when analyzed,

become extremely significant in areas such as computer vision domains,

image recognition, computational finance. Natural language processing,

smart keyboards and automatic email reply suggestion, machine transla-

tion, spelling correction. In transportation, self-driven cars, health care

implementations such as digital disease detection, disease prediction pat-

terns and many more. In Education, BD and DL will contribute to

improvement of the competency of systems of education as well as out-

put from the students. As the variety of data being generated expands

and speed of data generated skyrockets, the emergence of new technolo-

gies like Internet of Things (IoT), Automation, mobile technology and

cloud computing, analyzing Big Data data will provide overwhelming

opportunities[20].
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

We describe literature in Topological Data Analysis using techniques like

Persistent Homology and Simplicial Complex. We then explore BDS with

the extremely large and highly complex properties. We thereafter discuss

the characterization and significance of the Hausdorff Spaces. Next, we

describe simulations within the python programming language with ap-

plications in TDA. Finally, we establish a research gap summary of TDA

from the beginning to the latest [20].

2.2 Topological Data Analysis

The principle idea behind TDA involves the application of techniques in

recognition of shape and patterns within data. The finite TDPs within a

Euclidean space becomes the driving force for Big Data to be considered

in TDA. TDA perceives the point cloud data as a discrete cluster of points

12



Figure 2.1.1: Encoding pointcloud persistent topological features (left)

by approximation of the space by simplicial complexes (middle) into a

persistence diagram (right)[20].

within a compact topological space infinitely composed of many points.

When neighboring data points are ”connected” to reveal geometry atop

the dataset, this reveals rich topological features. The idea of distance

closeness among TDPs is the backbone that TDA exploits to qualify data

sets as metric spaces. The driving force behind Topological Data Analysis

is to construct higher-dimensional structures by linking pairs of TDPs by

edges as well as by (k + 1)− tuple of surrounding TDPs. This drives us

to a concept called simplicial complexes, which makes it easy to recognize

emerging topological characteristics including points, lines, holes, cycles,

and voids.

2.2.1 Persistent Homology

Given that u ≥ v then non-empty sets Au ⊆ Av such that u and v are

distinct points in the set A. Moving from u to v, the components of

non-empty set Au may merge as new ones are born, which have higher

chances of merging with each other or with the existent components of

Au. Consequently, these components may change in their topology with

13



holes and other structures forming and disappearing. This is a perfect

demonstration of persistent homology. The ’persistence’ idealogy is as a

result of the changing of the level u with no change in the homology until

a critical point f of level u is reached; which means that the topology of

the excursion sets ’persists’ (remain static), between the varying heights

of critical points. This concept of persistent homology (PH) persists

further; such that every time two components merge, we treat the first

of these to have appeared as though its existence continues beyond the

point of merging.

Moving forward, a more promising illustration of persistent homology is

through barcodes. Suppose dim(M) = N, and given a smooth of f, if

Au is nonempty, then dim(Au) seamlessly becomes N. The barcode for

the excursion set f becomes the collection of N + 1 graphs, with each

homology group having one. A bar in the k − th graph, beginning at u1

and terminating at u2(u1 ≥ u2) reveals Hk(Au) that emerged at u1 and

vanished at u2.

Figure 2.2.2 displays a more impressive illustration with a three dimen-

sional view. It is imperative to indicate that unlike a two dimensional

(2D) space, our comprehension is served with immense visual informa-

tion from the barcodes since the increase in the N-dimension parameter

space projects more clarity. As a result therefore, it becomes uncom-

plicated to observe barcodes with six sets of bars for the six persistent

homologies [28].

The outputs above depend on the assumption that the squared dis-

tance function d2K is 1-semiconcave. This means that the function x →

∥x∥2 − d2K(x).
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Figure 2.2.1: Bar-codes from the expression of sets within 3-D random

space. The top seven boxes reveal the sets and field values decorated in

colors. [28].

2.3 Big Data Sets

Big Data Sets can be described as hugely large, highly composite datasets

to be analyzed by traditional techniques, but might reveal structure, pat-

terns, relationships, shapes, when computational analysis methods are

involved[22]. BD is found almost everywhere with many connections and

meaning hidden within this complex data. Precisely, five ”Vs” (Value,

Veracity, Volume, Velocity and Variety) are used to sum up the descrip-

tion of BD. Given the traditional software tools, every attempt to store,

extract, search, share, analyze or process this massive and complex data

set has achieved little success. Despite this failure, different levels of

society, including businesses, Education, health, transport, research and
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Figure 2.2.2: The point cloud instance Xn derived from the torus surface

(R3 in top left) which leads to varying radii r1 < r2 < r3 [15].

many more continue to persistently and desperately sort insights from Big

Data analysis to enhance their efficiency and performance. Human ability

to visualize Big Data Sets is not keeping pace with its exploding nature

of production. It is therefore urgent to come up with advanced and pro-

ficient analysis methods that will manage this kind of data. One of such

methods is the application of Geometrical and topological tools. Geom-

etry involves the study of distance functions which works very well with

large finite data sets. The mathematical concepts that were formulated

by mathematicians, that unite both topological and geometric techniques

often revolve around point clouds, which are basically finite point sets

that are equipped with a distance function. An important objective in

BD analysis is to understand how the data is organized in large scale

hence retrieving qualitative information about the data. For instance,

given a data set of diabetic patients, insightfully distinguishing the two

16



distinct forms of the disease is firstly important. Given a very large data

set X, it may prove challenging to apply a clustering algorithm on top

of the data set. One may otherwise opt to cluster subsamples from X.

The confronting question is always whether sampling a cluster is enough

proof of representation of the whole data set. An alternate approach is

to construct two clusters from the whole dataset, assuming confidence

in their consistence. Hence, taking the subsamples X1and X2, including

their union X1 ∪X2. A clustering scheme is then applied to each of the

sets separately by denoting the three sets X1, X2, X1 ∪ X2 by sets of

clusters C(X1), C(X2), C(X1 ∪X2) respectively. Suppose the clustering

scheme on the data sets induced maps of the collection of clusters, i.e.

functorial, then a diagram of the sets would be derived as follows in figure

2.3.1.

Figure 2.3.1:

If these clusters in C(X1) and C(X2) in C(X1 ∪ X2) consistently corre-

spond under the maps, then its enough to deduce that subsample clus-

tering corresponds to the clusterings on the entire data set X. Elsewhere,

given a varying big data set X, clusters can appear, disappear, merge

or even split in distinct clusters. Functoriality can be instrumental in

studying this analysis behavior. For all t0 < t1, we represent TDS within

clusters t0 and t1 as X[t0, t1]. For all t0 < t1 < t2 < t3, the point cloud

data set results in a diagram 2.3.2. If functoriality is applied in the clus-
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Figure 2.3.2:

tering scheme, a correspondent diagram 2.3.3 of the data set is obtained.

This set will contain an over time clustering behavior as revealed in the

Figure 2.3.3:

illustration. The illustration 2.3.4 corresponds to a unit cluster at an ini-

tial time t0, which breaks into two collections within the interval [t1, t2],

that finally merges back to the interval [t2, t3]. Despite the development

Figure 2.3.4:

of fresh BD analysis techniques for complex BDS, shape identification and

interpretation has increasingly proven more challenging to visualize. Be-

cause of the existence of more structure to be mined from this BDS than

the traditional ones can output, a remarkable new method of ”shape”

identification of these BDS is TDA.

Several methods exist to construct shape from point cloud data. One of
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these methods is described herein: We encircle every TDP within a ”ball”

whose radius is ε centered within the TDP. While ε increases in size, the

cluster no longer looks like isolated points, but gradually gains shape.

As it gets larger, an irregular unit component emerges. This technique

is therefore used to generate a SC, which begins with vertices as TDPs.

Wherever intersection occurs between any two balls, an edge is inserted in

the middle, while as intersection among any 3 balls occurs, a three edges

bounded face is added. As this process continues, a high-dimensional

n-face with n+1 intersections is created. This is referred to as a C̆ech

complex.

2.4 Topological Data Points

A topological data point (TDP) a ∈ H refers to a compact subspace of H

if H \ {a} is a nonempty compact Hausdorff space. In Euclidean spaces,

the idea of closeness, or limits of points can be described with reference

to relationships between sets rather than distance. A topological space

refers a set of points, together with the neighborhoods around each set

of point, that satisfy a the axioms of the neighborhoods around each set

points.

2.4.1 Connectivity of the Data

An open ball is a ball around a point x0 of radius r within X expressed

as Bd(x0, r) = {y|d(x, y) < r} and this implies the topology of a dis-

tance function d induced around a radius of a point X with it’s boundary
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excluded. Given a set X, a simplex is the complete graph induced on

the set. The metric topology within the Euclidean plane is said to be

connected. Connectedness of a topological space is a clear indication of

non-existence of separation within a space. Separation is the existence of

nonempty, disjoint subsets U and V of a set X induced with a topology.

Taking X and draw a ball B(xi, r) around each point xi for some small

initial radius r (figure 2.4.1). As r increases at intervals, we can establish

how X connects at different radii by observing different snapshots [11].

Figure 2.4.1: The sample X of data [11].

At this point, we will keenly observe the initial intersection of the

closures of B(xi, r) and B(xj, r) on a point within the plane. Without

loss of generality, we can confidently state that xi and xj are 2r distanced

apart. Connecting them with an edge, we get a visual graph(figure 2.4.2).

Initially, we observe sparse clusters of edges connecting vertices. As

r increases, more edges emerge in small connected clusters for a given
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Figure 2.4.2: Initial radius [11].

radius as shown in figure 2.4.3.

We now begin to see the first instance of structure on the data which

we can call the connectivity information of the data. These clusters reveal

valuable information about the underlying features such that when some

initial conditions of the experiment are fulfilled, the data points are more

likely to assemble in a certain manner(figure 2.4.4).

Thereafter, notable clusters may begin to emerge, varying from those

achieved with smaller radii, basically encompassing them. As the radius

of the balls increase, a single component of X is finally observed for the

very first time. The component can among other things be a loop, a chain,

have holes or loops, have multiple flares, or another structure(figure 2.4.5).

With the further increase of the radius r, the loop in the data begins

to emerge as seen in figure 2.4.5. So as the radius r increases towards r∗,

the balls around the points xi and xj intersect and the final edge emerges
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Figure 2.4.3: Denser clusters due to increasing connections [11].

to complete the loop. When eventually this radius is attained, further

increment of the radius reveals no further structure for a significant time

period. We therefore conclude that the ranges of the radius is r > r∗ as

shown in Figure 2.4.5 and figure 2.4.6.

2.5 Hausdorff Spaces

The Hausdorff distance was named after the German mathematician,

named Felix Hausdorff. To understand (Hausdorff Spaces)[31] we first

define a T2−axiom. Let (X, τ) be topological space. Let x, y ∈ X be two

distinct points such that x ̸= y. Let U,V ∈ X be two open sets such that

x ∈ U, y ∈ V and U ∩V = ϕ. The topological space (X, τ) that satisfies

the T2−axiom is called a Hausdorff Space. Describing topological points

is very intricate due to the nature of Big Data. This makes it difficult to
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Figure 2.4.4: Clusters in X [11].

locate Big Data sets particularly in a general topological space setting[9].

Because of the structure in T2-space, it is even more difficult to locate

these Big Data sets in Hausdorff spaces.

2.6 Simulations in Python

Python is popular programming language that is widely used in Arti-

ficial Intelligence communities. Python possesses simplicity and read-

ability features for its syntax and this reduces the time taken to test

complicated algorithms through minimal code in comparison to the ex-

isting languages[23]. Python prides itself with a great numbers of rich

library modules for Machine Learning. Furthermore, python commands

overwhelming community of developers globally, who generously share

troubleshooting and debugging tips through online platforms. The ubiq-
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Figure 2.4.5: Largest singular component of X [11].

uitous nature of Python has granted its usage in nearly all research insti-

tutions as well as commercial applications of Deep Learning and Machine

Learning. Mapper is a python algorithm that works by constructing a

simplicial complex (or graph) from a data set by leveraging a projection

function to perform local clustering. As a result, this reveals the topo-

logical features of the space. Mapper therefore is an unsupervised TDA

technique through which a visual representation of the data set is gen-

erated, which so reveals new insights of the data sets, that traditional

analysis techniques cannot reveal. Kepler Mapper is a python library

for implementing the Mapper algorithm. KeplerMapper is often used for

visualization of high-dimensional and 3D point cloud data sets. Every

language, python not excluded, has its own limitations. Being an inter-

preted language that executes code line by line, python keeps it slower as

compared to C or C++. Python is the best server-side coding language.

When it comes to mobile development, Python is not very good. In case
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Figure 2.4.6: Before increasing r and first obtaining the loop structure

for some r∗ such that 0.275 <r*< 0.28 [11].

of memory limitation in your project then Python may be bad news to

use since its memory consumption is higher. Python being a dynamically

typed language, you don’t need to mention data type within programs

which may end up with run time errors.

2.6.1 DyNeuSR

According to [4], despite the existence of various Mapper software that

construct such shape graphs for different kinds of data sets, none of them

has an in-built user interface to explicitly support analysis and visual-

ization in neuroscience (see Figure 2.6.1). DyNeuSR is an open-source

module used for implementing interactive visualization and neuroscientific

computation of topological structures. DyNeuSR has also been useful

in the estimation of variation in the activities of the brain. From Fig-
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Figure 2.6.1: DyNeuSR overview. After the Mapper graph, DyNeuSR

annotates metadata mapping the graph nodes into neurophysiology, hence

capturing temporal variations

[4].

ure 2.6.2, we can observe spatial brain activation patterns obtained from

clusters at relaxed state, 3 varied types of visual states and a controlled

experiment cues (e.g. disorganized pictures).

Figure 2.6.2: Mapping a shape graph into brain anatomy. Maps of brain

activity from the ventral cortex approximated at varied time frames at

different categories of visual stimuli from the Haxby study

[4].
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Figure 2.6.3: Visualization of the mapper stages[4]. This is Mapper visu-

alization results obtained from synthetic data sampled from a 3-D trefoil

knot

.

2.6.2 Mapper Algorithm

High-dimensional gets transformed into lower dimensional graphical forms

when passed through the Mapper algorithm four stages. The graph shape

shown in figure 2.6.3 was computed by the 1st and 2nd proportions of the

three dimensional data. During the last stage, adjacent bins with common

data points (i.e. with nonempty intersections) get connected together into

a simple skeleton summary of the original dataset.

Compared to the standard dimensionality reduction techniques, the

Mapper algorithm yields better results as it leverages the techniques from

both clustering and dimensionality reduction of the initial highly featured

space. As a demerit, standard DR techniques (DR) extrapolate TDPs to

a minimal reduction state, from whence examination is done. Therefore,

as a consequence, inasmuch as an accurate prediction is the motivation,

this method always results to loss of some information from the dataset

due to interpretability. Comparatively, Mapper takes advantage of the

lens from the lower dimension to optimize the data in the initial highly-
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dimensional space. The dataset is rich in illustration as it clearly reveals

how standard dimensionality reduction techniques reveal very intricate

patterns in two dimensions (as shown in diagrams 2.6.4 (A) and 2.6.4

(B). Find comparisons in diagram 2.6.4 C [4].

Figure 2.6.4: Visualization of the mapper advantages

. The figure gives a contrast description of synthetic 3-D trefoil knot

revealed using traditional dimensionality reduction techniques such as

linear (i.e., PCA) and nonlinear (i.e., t-SNE) with one generated using

Mapper. Data points of a subset of a BTS was mapped from a higher

dimensional space (top) to each of the lower dimension renditions (bot-

tom). Notably, blue and green are separated by the third dimension in

the high-dimensional space. PCA (A) and t-SNE (B) are both unable

to resolve this separation-the blue and green points still remain in same

position in the reduced dimension space. Conversely, Mapper (C) reveals

these points as two separately disconnected clusters in the shape graph[4].

The database contains many triangulated meshed 3D shapes which

were processed as follows. Letting P be the TDS out of which 4000 land-
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mark are sampled through Euclidean maxmin procedure as illustrated in

[12]. We denote this sampled set of points as Y = {Pi, i ∈ L}, where L

refers to the set of indices within the Y. In order to expose this point

cloud as an input to Mapper, the distance between the points in Y is

computed as shown. To begin with, the adjacency metrix A for the set

P is composed using the mesh information i.e. suppose Pi and Pj are

connected on the given mesh, then A(i, j) = d(Pi,Pj), such that d(x, y)

comprises to the distance between x, y ∈ P. The filter function E1(x)

(setting p = 1) is chosen for use in applying the Mapper algorithm to this

set of shapes as show in figure 2.6.5.

Eccentricity refers to the family of functions carrying defining the geom-

etry of a TDS. Hence, having p together with 1 ≤ p < +∞, we have

Ep(x) = (
∑

y∈X d(x,y)p

N
)
1
p where x, y ∈ X. The definition may be extended

to p = +∞ by setting E∞ = maxx′∈Xd(x, x
′). Meanwhile, to minimize

the bias effect as a result of the distribution of local features, a global

clustering threshold is applied within all intervals. Our final result from

this Mapper algorithm, is a graph i.e. a single filter function. To generate

a visualization of this graph, GraphViz is employed and hence the results

of a sampled shapes from the database are displayed in figure 2.6.6 with

the following keypoints worth paying attention to [17].

(i). The Mapper algorithm has successfully recovered the graph sym-

bolizing the skeleton shape with reasonable accuracy. Taking horse

shape for instance, the three branches at the bottom, in both cases

of the recovered graphs, signify the front two legs and the neck.

Besides, the torso is symbolized by the blue colored section while

the legs and the tail are represented by the top three branches of
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Figure 2.6.5: Every row displays two poses of the same shape together

with the Mapper result. 15 intervals within the range of the filter function

with 50% overlap is used to compute each Mapper instance

[17].

the graph. Ultimately, the skeleton would be recovered by bestow-

ing the recovered graph with the mean position of the graph of the

clusters they embody.

(ii). Different poses of similar shape have reliably identical Mapper re-

sults even though different shapes produce significantly dissimilar

results. This is a revelation that this procedure retains certain in-

trinsic shape information, which is invariant to pose.

The above revelations unveiled by the Mapper algorithm under E1 filter

proposes that it may be a very instrumental tool for simplifying shapes,

conducting database query and shape comparison tasks.
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2.7 Research Gap Summary

Describing topological points is very intricate due to the nature of Big

Data. This makes it difficult to locate BDS particularly in a general

topological space setting. Because of the T2 − axiom in T2-space, it is

even more difficult to locate these BDS in Hausdorff spaces. In spite of

the remarkable efforts put up by traditional techniques in data analysis,

they have not always kept up with the exploding data quantity and com-

plexity since they often depend on exceedingly simplistic assumptions and

approximations during computations. Besides, they do not pay attention

to the arbitrariness within this TDSs as well as the underlying instability

within the topological datasets. Consequently, most of these techniques

are exploratory, lacking the efficiency to distinguish what is sometimes

called the ”topological noise” from information of interest. The Vietoris-

Rips complex for a parameter t has been so ubiquitously used to build

a useful simplicial complex to mirror the data structure and utilizes the

original data as the vertex set. The bone of contention, however, has al-

ways been how to choose the t parameter such that the Rips complex re-

veals the structure of the underlying data set. It is precisely this question

that appeals to our conscience of thought towards persistence diagram

as a topological signature of the dataset. Two metrics have commonly

been used to measure the similarity of those objects: the bottleneck and

Wasserstein distances. Each works by matching points of 1 diagram with

points of another diagram while allowing the match to be done with the

diagonal if necessary. The Mapper algorithm does have some limitations

however. The topology of shape graphs is to a large extent dependent

on whether filter function chosen is linear or nonlinear, as well as the
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resolution or gain parameters. Also, comparison of the Mapper graphs

computed from different filter functions is still very obscure. As much as

topological models have been suggested, not many of them can be com-

pared directly with the irregular structures derived from the big data sets.

Consequently, the incapacitation in making these direct comparisons has

proven to be a potential impediment to statistical validation of the Map-

per results. Finally, previous studies done on TDA have had very little

focus on the application of Hausdorff spaces.
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Chapter 3

RESEARCH

METHODOLOGY

3.1 Introduction

We, in this chapter, present the techniques, materials, and tools that we

used to achieve our objectives. These included; Big Data Sets, Separation

criterion of Hausdorff Spaces, AI and ML techniques, development of

algorithms and simulations using python programming language. BD is

described as hugely large, highly composite datasets to be analyzed by

traditional techniques, but might reveal structure, patterns, relationships,

shapes, when computational analysis methods are involved.

3.2 Separation criterion of Hausdorff Spaces

A Hausdorff space (T2 −Space) refers to a topological space with which

disjoint neighborhoods are possessed by any two distinct points of X. A

33



space is qualified as Hausdorff when any of its two distinct points can

be ”housed off” independently into two open neighborhoods. Despite the

development of fresh techniques to gather, store, and analyze large quanti-

ties and highly dimensional BDS, shape identification and interpretation

has increasingly proven extremely challenging to visualize. Since more

structure exists to be mined from this BDS, than can be revealed by the

traditional methods, an extremely remarkable new method of shape iden-

tification in these BDS is the application Hausdorff spaces in Topological

Data Analysis (TDA).

The Hausdorff spaces normally have the following two underlying fea-

tures.

(i). Any two points can be separated, i.e. to an extent, they are far

apart.

(ii). Every point can be approached very closely from other points, such

that suppose we take a sequence of points, then they will normally

gather around a point.

Many topologists believe that it is not all worth studying topological

spaces that are not Hausdorff. Hausdorffness relates to the idea that

picking any pair of distinct points, you must expand the points to disjoint

open subsets. The fundamental idea is that: the notion of being close to

the point is represented by disjoint open sets. Besides, nothing can come

quite closer to two points when they are separated by disjoint open sets.

Theorem 3.1. Subspace of Hausdorff Space is Hausdorff

Let T = (S, τ) be a topological space which is T2. Let TH = (H, τH),
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where ∅ ⊂ H ⊆ S, be a subspace of T[31]. Then TH is a T2 (Hausdorff)

space. This is, the property of being a T2 (Hausdorff) space is hereditary.

Hausdorff spaces will be very instrumental in the characterization of

data points and locating of the Big Data Sets. This includes the devel-

opment of the theorems, Lemmas and propositions, given the Big Data

Sets. To generate more meaning from the Big Data Sets, we need to ap-

ply Artificial Intelligence and Machine Learning techniques as described

in the next section.

3.3 AI and ML Techniques

Artificial Intelligence (AI) refers to an extensive branch of computer sci-

ence involved in the theory and development of smart computer systems

having the capability to perform tasks that usually require human intel-

ligence. e.g. natural languages translation, voice recognition and visual

perception. ML refers to a discipline of AI that utilizes computer al-

gorithms to learn, experience, adapt and automatically improve without

human programming. One such techniques of Machine Learning used to

analyze and feature engineer the Big Data Sets is the t-SNE unsupervised

Machine Learning algorithm. The next section details the t-SNE machine

learning algorithm.
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3.3.1 The t-SNE algorithm

t-SNE refers to feature engineering algorithm to unsupervised machine

learning algorithms (Applied AI) like k-means. t-SNE can be described

as a non-linear DR algorithm instrumental in highly dimensional data

exploration. Dimensionality reduction refers to a linear or non-linear

technique involved in mapping higher dimensional to a low-dimensional

space while preserving local features within the primary space. Reducing

the dimensions to a lower dimension by achieves the preservation of two

things: If data points are close by in the high dimensional space, it tries

to retain that closeness in small dimension space. If points are far apart,

it also tries to keep them a part in a smaller dimensional space. So it

preserves closeness and farness in the space. And it does that by apply-

ing attractive forces between points that are close and repulsive forces to

points that are apart. These forces are applied repeatedly to all the points

in the space for a number of iterations between points closer and those far

apart. T-SNE is therefore important in showing clusters of data that are

similar and close. We choose t-SNE because linear dimensionality reduc-

tion algorithms like PCA, emphasize on positioning contrasting TDPs

distantly separated in a lower dimensional space. However, achieving

representation of highly dimensional TDSs on a low dimension, indistin-

guishable datapoints must be mapped closer together and this can only

be achieved by non-linear algorithms unlike their linear counterparts. t-

SNE is an enhancement over the (SNE) algorithm[30]. To implement the

t-SNE ML algorithm, the python programming language has proved very

instrumental in Machine Learning, given its vast libraries and frameworks

for advanced computing and visualization. The t-SNE Machine Learning
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algorithm will be very applicable in establishing the distribution patterns

of the topological data points within a Hausdorff space. The next section

describes the python libraries, distributions and the computing require-

ments applicable in Machine Learning for our study.

3.4 Algorithms and Simulations in Python

Python is popular programming language that is widely used in Artificial

Intelligence communities. Python possesses simplicity and readability

features for its syntax and this reduces the time taken to test compli-

cated algorithms through minimal code in comparison to the existing

languages[23]. Python prides itself with a great numbers of rich library

modules for Machine Learning. Furthermore, python commands over-

whelming community of developers globally, who generously share trou-

bleshooting and debugging tips through online platforms. The ubiquitous

nature of Python has granted its usage in nearly all research institutions

as well as commercial applications of Deep Learning and Machine Learn-

ing. Jupyter Notebook is a computing notebook environment operated

on a interactive web browser. It is a component of the Anaconda Navi-

gator. Some of the python libraries include; pandas, sklearn, matplotlib,

seaborn, plotly, cufflinks, TSNE, KMeans. Some of these libraries are

resource intensive especially the ones that implement Machine Learning

algorithm to run through over thousands of rows of data for hundreds of

iterations, in just a few minutes. Therefore, the laptop specifications to

be used to run these python algorithms must possess a powerful proces-

sor of Core i7, 16GB of RAM memory, over 2.3 GHz speed, and a faster
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500GB Solid State Drive storage. The next section presents the Big Data

Sets that will be used in our study.

3.5 Big Data Sets

The datasets used in this study are downloaded from Kaggle.com, an

open source community of data scientists, ML, and a huge published

Repository of BD sets. We specifically focus on a collection of time series

COVID-19 datasets of cases reported from all countries of all the six world

continents (Africa, Europe, Asia, North America, South America and

Oceania) starting February 24th, 2020 until June 28th, 2021. The dataset

contain 98,904 rows and 60 columns. The huge volume of this dataset

qualifies it as a candidate of a Bid Data set. We denote the COVID-19

data set as X throughout the study. Besides, python also has the ability

to randomly generate larger data sets in a simulated environment for

analysis purposes. The next section takes us through the initial cleaning

of the raw data and exploratory data analysis, in order to get maximum

output from our data set.

3.5.1 Exploratory Data Analysis and Data Cleaning

The raw data has to go through several processes before the final analy-

sis. The data is first imported into the python using the Pandas library.

We then expose the data through the process of shaping to determine

the initial high dimension, we check the data distribution, wrangling and

initial visualization processes. Subsequently, Exploratory Data Analysis
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(EDA) follows, where we perform structural modification, further analy-

sis and visualization on the data using line graphs and surface plots using

various python libraries. After EDA, we perform a very crucial stage on

the data known as feature engineering. This involves feature selection,

dimensionality reduction using techniques like backfilling, forward-filling,

data encoding, best column formation, variance and means computations.

These processes achieve data cleaning which assists us to manage handling

of outliers and excessive null values; which TDA refers to as ”topological

noise”. At this point, the data can finally be exposed to the ML Algo-

rithms; either as Unsupervised, Supervised, Semi-supervised, or reinforce-

ment ML algorithms. During our study, we will however restrict ourselves

to t-SNE which is a feature engineering algorithm to unsupervised ma-

chine learning algorithm as a branch of Applied Artificial Intelligence. In

the next section, we embark on t-SNE as a Machine Learning algorithm.

In the next chapter, we detail the results of our study as a result of

the methodology described in this chapter.
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Chapter 4

RESULTS AND

DISCUSSION

4.1 Introduction

In this chapter, we give the results of our study. For the first objective, we

characterize topological data points in Hausdorff spaces. For the second

objective, we locate Big Data sets in Hausdorff spaces. For the third

objective, we establish distribution patterns of topological data points in

Hausdorff spaces. This results utilizes Covid-19 Big Data Sets, Python

libraries, Artificial Intelligence and Machine Learning techniques, and

Hausdorff spaces which provide higher efficiency, more reliability, and

with a more faster algorithmic complexity.
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4.2 Topological Data Points

In this section, we characterize TDPs in a Hausdorff space. From this

point, we consider X as a Hausdorff space and H is a subspace of X,

unless otherwise stated. We begin with the following proposition.

Proposition 4.1. Let H be a TDP space and a ∈ H such that H\{a} =

P†Q. Then {a} is open or closed. If {a} is open then P and Q are closed

in H and if {a} is closed, then P and Q are open.

Proof. Since P is both open and closed in H \ {a}, we have an open

subset R of H such that P = R ∩ (H \ {a}) = R \ {a} and there exists

a closed Z of H in which P = Z ∩ (H \ {a}) = Z \ {a}. Therefore,

P = R \ {a} = Z \ {a}. Analogously, Q = R \ {a} = Z \ {a}.

This proposition leads to the characterization of topological data points

in terms of compactness as seen in the next level.

Lemma 4.2. Let H be a TDP space and a ∈ H. If H \ {a} = P†Q then

P ∪ {a} is compact.

Proof. Without loss of generality, letW andV be connected and compact

subsets of H in which P ∪ {a} = W†V. Let a ∈ W. Then V ⊆ P. Now

(Q ∪W) ∩ V = (Q ∩ V) ∪ (W ∩ V) = ∅. So (Q ∪W) ∩ V = ∅ and

consequently, (Q ∪W) ∩V = ∅ implying H = (Q ∪W)†V.

In the next level, we give our main theorem for the first objective

followed by its proof.
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Theorem 4.3. Let H be a TDP space and a ∈ H. If H \ {a} = P†Q

and if every point of P is TDP in H then P has at least one closed point.

Proof. Suppose that P is compact then by Proposition 4.1, P ∪ {a} is

compact. So {a} is closed. Let z0 ∈ P. By Lemma 4.2, H \ {z0} =∪
z=P,z ̸=z0

{{a, z}∪ (Q∪{a})} is also compact. This contradicts the earlier

hypothesis that a is TDP point of H.

Remark 4.4. All TDP spaces are connected spaces. However, a finite

topological space is not a TDP.

4.3 Location of Big Data Sets

In this section, we locate Topological Data points of Big Data Sets in a

Hausdorff space. We state the following proposition.

Proposition 4.5. Let H be a TDP space. The set A0 of all condensation

points of H is a TDS which is infinite.

Proof. Let a1, a2,... be a sequence of distinct condensation points in H.

By induction, we have a condensation point a0 in A0 ⊆ H. But a0 is a

TDP of H. So we have open TDS W1 and V1 of H such that H \ {a1} =

W1†V1. Suppose that a1, a2, ..., an are in H and open subsets Wi and

Vi(i ∈ N) are picked such that H \ {ai} = Wi†Vi, where i = 1, ..., n.

Clearly, by induction and considering Wi+1 and Vi+1, the set A0 of all

condensation points of H is infinite.

Proposition 4.5 takes us to characterization of the size of the sets. We

give the size of the data set in the next result as follows.
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Lemma 4.6. Let H be a TDP space. Then CardH = ∞.

Proof. By Hausdorff Maximal Principle (HMP) and by Proposition 4.5,

the proof is complete.

To further demonstrate the characterization of the topological Data

Points within a Hausdorff space, we conclude with the following theorem.

Theorem 4.7. All TDS in a TDP space are arbitrarily distributed if

they are T2. Moreover, each TDS has at least two TDPs with closed TDS

which are singletons.

Proof. Let H be a TDP space and let H1 and H2 be TDP subspaces of H.

Then it implies that if H1 and H2 are both empty then trivially we are

done. Let H1 and H2 be non-empty. It remains to show that H1∩H2 = ∅

and hence it is T2. To see this, consider a1 ∈ H1 and a2 ∈ H2 such that

a2 /∈ H1 and a1 /∈ H2. Clearly, H1 ∩H2 = ∅, hence it is Hausdorff. Now

we show that H has at least two TDPs. Let H be such that it has at

most one TDP. Let a1 ∈ H and H\{a1} = P0†Q0 for some P0,Q0, which

are subsets of H. Since H has only one TDP then either P0 or Q0 has

TDPs. By proposition 4.5, P0 has some condensation point of H say a.

Let H\{a} = P†Q. Without loss of generality, let a0 ∈ Q. By Hausdorff

Maximal Principle, there is an optimal chain C in S of H such that for

some Uα of S,
∪

α∈ΛUα ∈ H. Hence, H is compact. Let V =
∪

α∈ΛUα,

then by Lemma 4.6, we can get at least two points of H which give a

subcover for H. Since the subcovers are open by Heine-Borel Property

(HBP), each set forms a singleton set.
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In the next Section, we demonstrate the distribution patterns of TDPs

using real life scenarios of Big Data Sets. Each TDP represents a Covid-19

case and the TDSs represents subsets of the Hausdorff Space X.

4.4 Distribution Patterns of TDPs

4.4.1 Data Set Repository

The datasets used in this study are downloaded from Kaggle.com, an open

source community of data scientists, ML, and a huge published Repository

of BD sets. In our coding, the world is represented by a Hausdorff space

X and subspaces of H represent regions or countries, unless otherwise

stated. These subspaces represent Big Data sets. We specifically focus

on a collection of time series COVID-19 datasets of cases reported from

all countries of all the six world continents (Africa, Europe, Asia, North

America, South America and Oceania) starting February 24th, 2020 until

June 28th, 2021. The dataset contained 98,904 rows and 60 columns. The

huge volume of this dataset qualifies it as a candidate of a Bid Data set.

The next section describes the connectedness of our data set. The data

can be downloaded from:

https://www.kaggle.com/imdevskp/corona-virus-report?select=countrywiselatest.csv

https : //www.kaggle.com/kalilurrahman/covid19−coronavirus−dataset−

by − owid?select = owid− covid− data.csv
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4.4.2 Connectedness of the data points

Given H1,H2 ⊆ H, such that H1 ∩H2 = ∅, then collections generated by

H1 and H2 might be equated to non-empty intersections, and these Haus-

dorff properties come in handy in building a SC. As a result, this result

leads to a multiresolution” map of the TDS. Connectedness of points in

a topological space means nonexistence of separation between the points

on the topological space. Let X be our COVID-19 data set throughout

this study. We applying a non-linear fit on X by reducing the dimension-

ality while the geometric structure, shape and connectivity of our data

set remains preserved.

4.4.3 2D Line Graph Visualizations

After Exploratory Data Analysis (EDA) and Dimensionality reduction on

our COVID-19 data set, denoted by H, we produce a few line graph visu-

alizations to initially reveal the relationship between the total confirmed,

Recovered and Deaths cases across the six world continents. A visualiza-

tion of the Total Confirmed COVID-19 cases in the world is revealed at

a glance through the line graph in figure 4.4.1. Figure 4.4.2 gives a line

graph visualization of the total Recovered cases in the world. The total

number of Deaths is visualized by the line graph in figure 4.4.3. Finally,

figure 4.4.4 reveals a combined line graph visualization of both the Total

confirmed, Recovered and Death cases of COVID-19 in the world.
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Figure 4.4.1: Line plot visualization of dataset H revealing the total

confirmed Covid-19 infection cases globally.

Figure 4.4.2: Line plot visualization of dataset H revealing the total

recovered cases globally.

4.4.4 3D Surface Plot Visualizations

In addition, after performing Exploratory Data Analysis and Dimension-

ality reduction on our COVID-19 data set denoted by H, we compute

surface plot visualizations to reveal topological structure and graphical

properties from our data set H. We use python libraries to produce

surface plot visualizations which revealed the structured shape between

the total confirmed, total Recovered and total Deaths cases across the
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Figure 4.4.3: Line plot visualization of dataset H revealing the total

confirmed death cases globally.

six world continents. Figure 4.4.5 displays elevated numbers of confirmed

cases globally, slightly lower deaths per hundred cases, and relatively fewer

New Cases during the period when the data was collected. Figure 4.4.6

visualizes a surface plot of the Covid-19 dataset displaying higher numbers

of New cases globally, slightly moderate New deaths cases, and relatively

fewer Death Cases globally, during the period of data collection. Figure

4.4.7 displays a surface plot visualization of the Covid-19 dataset display-

ing extremely higher numbers of New Deaths globally, moderately higher

New Recovery cases, and relatively lower Deaths per hundred Cases glob-

ally. Each TDP is enclosed around a ball at the center at a point with a

radius ε. While ε increases in size, the cloud gradually ceases to appear

as secluded points, but slowly gains shape. As the output increases in

size, a single shapeless blob emerges. This events eventually generates

a SC, which starts with vertices as TDPs. An edge is inserted between

the two balls as they intersect. Meanwhile, a face bounded by the three

edges is added as 3 balls intersect. With the onset of these events, highly
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Figure 4.4.4: A combined Line plot visualization of dataset H revealing

the total confirmed, recovered and death cases globally.

dimensional n-faces with n+1 intersecting emerges. Taking H and draw

a ball H(a1, r) around each point a1 for some small initial radius r (figure

4.4.8). As r increases at intervals, we can establish how H is connects at

different radii by observing different angle of snapshots of the 3-D out-

puts. We obtain a 3-dimensional scatter plot non-linear random shape of

the data at an initial default radius of 12 as shown in figure 4.4.8. At

this point, we will keenly observe whenever the initial intersection of the

closures of H(a1, r) and H(a2, r) on a point within the plane. Without

loss of generality, we can confidently state that a1 and a2 are 2r distanced

apart. Connecting them with an edge, we get a visual graph. We ob-

tain a 3-dimensional scatter plot non-linear random shape of the data at

radius of 15 as shown in figure 4.4.9. Initially, we see observe sparse

clusters of edges connecting vertices. As r increases, more edges emerge

in small connected clusters for a radius of 15. We obtain a 3-dimensional

scatter plot non-linear random shape of the data at radius of 15 as shown

in figure 4.4.10. We now begin to see the first instance of structure on
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Figure 4.4.5: A 3D surface plot visualization of the Covid-19 dataset dis-

playing higher numbers of confirmed cases globally, slightly lower deaths

per hundred cases, and relatively fewer New Cases globally.

the data which can we can call the connectivity information of the data.

These clusters reveal valuable information about the underlying features

such that when some initial conditions of the experiment are fulfilled, the

data points are more likely to assemble in a certain manner. We obtain a

3-dimensional scatter plot non-linear random shape of the data at radius

of 30 as shown in figure 4.4.11. Thereafter, notable clusters may begin to

emerge, varying from those achieved with smaller radii, basically encom-

passing them. As the radius of the balls increase, a single component of

H is finally observed for the very first time. The component can among

other things be a loop, a chain, have holes or loops, have multiple flares,

or another structure. We obtain a 3-dimensional scatter plot non-linear

random shape of the data at radius of 40 as shown in figure 4.4.12. With

the further increase of the radius r, the loop in the data begins to emerge

as seen in figure 4.4.13. So as the radius r increases towards r∗, the balls

around the points a1 and a2 intersect and the final edge emerges to com-
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Figure 4.4.6: A 3D surface plot visualization of the Covid-19 dataset

displaying higher numbers of New cases globally, slightly moderate New

deaths cases, and relatively fewer Death Cases globally.

plete the loop. When eventually this radius is attained, further increment

of the radius reveals no further structure for a significant time period. We

therefore conclude that the ranges of the radius is r > r∗ as shown. We

obtain a 3-dimensional scatter plot non-linear random shape of the data

at radius of 50 as shown in figure 4.4.13.

4.4.5 t-SNE Clusters

Before we apply the t-SNE algorithm, we first compute a quick visualiza-

tion of three categories within the global covid-19 dataset. These groups

include; the cardiovascular death rate, diabetes prevalence and the pop-

ulation aged 70 years and older. The 3D surface plot on figure 4.4.14

visualizes a common relationship between the three groups. From the

data set, we also compute a 3D visualization to reveal the shape of three

more categories, i.e. total confirmed, total recovered and the the total
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Figure 4.4.7: A 3D surface plot visualization of the Covid-19 dataset

displaying extremely higher numbers of New Deaths globally, moderately

higher New Recovery cases, and relatively lower Deaths per hundred Cases

globally.

deaths among the six continents as shown in figure 4.4.15. After the

Covid-19 dataset is subjected to the t-SNE algorithm, a feature engineer-

ing algorithm to unsupervised machine learning algorithms, we obtain the

following three clusters distributions; at the global, Continental (Africa)

and country (Kenya) levels. Within the clustered distributions, a shape

is revealed outlining the distribution pattern of the data points within

the Covid-19 data sets. Also included, are outliers (Topological ”noise”

(TN)). The outliers include extremely high or extremely low figures within

the datasets. Also noted within the distribution spaces, condensed points

and sparsely distributed data points. The global distribution pattern is

revealed in figure 4.4.16.

You can find our code at the links below. However, to run the code to

view the visualizations, you might need to install Anaconda Navigator,

a python distribution library, for Machine Learning, install the relevant
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Figure 4.4.8: 3D scatter plot of the sample H of data points in at initial

default radius of 12.

libraries, then download the CSV datasets from the kaggle.com repository:

http://localhost:8888/notebooks/Hausdorff%203D%20A.I%20Visualizations.ipynb

http://localhost:8888/notebooks/Hausdorff%20Machine%20Learning.ipynb

Figure 4.4.17 reveals the distribution pattern of the datapoints within

Africa as a continent. Finally, figure 4.4.18 reveals the distribution

pattern of the data points of the Kenyan portion of the global portion of

the Covid-19 data set.
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Figure 4.4.9: 3D scatter plot of the first radius increment to 15.

Figure 4.4.10: Denser 3D scatter plot clusters due to increasing connec-

tions at radius of 25.
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Figure 4.4.11: 3D scatter plot non-linear random shape of the data H at

radius of 30.

Figure 4.4.12: 3D scatter plot non-linear random shape of the data H at

radius of 40
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Figure 4.4.13: 3-D largest scatter plot non-linear random shape of the

data H at radius of 50.

Figure 4.4.14: 3D Surface plot visualization revealing how cardiovascular

death rate, diabetes prevalence and the population aged 70 years and

older are related.
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Figure 4.4.15: 3D Surface plot visualization revealing how the means of

total confirmed, total recovered and the the total deaths among the six

continents are related.

Figure 4.4.16: t-SNE generated distribution pattern of Covid-19 data

points within statistics of the world.
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Figure 4.4.17: t-SNE generated distribution pattern of Covid-19 data

points within statistics of the African continent.

Figure 4.4.18: t-SNE generated distribution pattern of Covid-19 data

points of Kenya.
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Chapter 5

CONCLUSION AND

RECOMMENDATIONS

5.1 Introduction

In this chapter, we give a conclusion and recommendations of our study

as per the objectives in Section 1.4. We have considered characterization

and location of topological data points in a Hausdorff space. Finally, we

established the distribution patterns of topological data points using real

life data sets of Covid-19.

5.2 Conclusion

In this section, we give a conclusion of our study. For the first objec-

tive, we have determined that topological data points form singleton sets

which are closed. Besides, the set of topological data points is compact,

and finally, the set of topological data points has at least one closed point.

58



As for our second objective, we have determined that the set of all conden-

sation points of a topological data points is infinite. Also, the cardinality

of a topological data set is infinite, and finally, topological data sets are

arbitrarily distributed is Hausdorff spaces.

As for our last objective, we have managed to demonstrate the distribu-

tion patterns of topological data points within a Hausdorff space, using

3D visualizations and application of t-SNE Machine Learning algorithm

clusters of the data set from all the six World continents, African con-

tinent and the country Kenya. From the distribution of the real life

Covid-19 data set, the Coronavirus situation was densely distributed in

Winter-prone regions like Europe, United States of America, and Canada.

5.3 Recommendations

From this study, we recommend that characterization of topological data

points can be considered in Normal spaces.

We further recommend that location of Big Data Sets can be carried out

in normal spaces.

Finally, we recommend that establishment of distribution patterns of

topological data points can be done in normal spaces using data from

other fields like health, business and social media.
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