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Abstract

We establish the norm-denseness of the norm-attainable class NAB(H) in the Banach algebra B(H), which consists of all bounded
linear operators on a complex Hilbert space H. Specifically, for every O ∈ NAB(H) and each ε > 0, there exists O′ ∈ B(H)
such that ‖O − O′‖ < ε. We achieve this characterization by utilizing the convergence of sequences and the existence of limit
points. The properties A and B of Lindenstrauss are sufficient to ensure the density of NAB(H). Moreover, countable unions, finite
intersections, countable tensor products, and countable Cartesian products preserve density in the associated classes NAB(H).
Additionally, density in NAB(H) exhibits transitivity. We also investigate the concept of dentability in norm-attainable classes
defined on the Banach algebra of all bounded linear operators on a complex Hilbert space H. Dentability of a norm-attainable class
refers to the existence of a bounded linear norm-attainable operator (within the class) that lies outside the closed convex hull of the
subclass obtained by excluding a ball of sufficiently small radius containing the particular bounded linear norm-attainable operator.
We provide conditions for dentability and s-dentability of subclasses, closures, closed convex hulls, and superclasses of given
norm-attainable classes. Furthermore, we demonstrate that countable unions, Cartesian products, and finite intersections preserve
dentability. Moreover, we prove that arbitrary unions, finite intersections, and arbitrary Cartesian products maintain the dentability
of classes. Our work significantly contributes to the characterization and understanding of dentability in norm-attainable classes.
The findings of our study advance knowledge and have practical applications in the fields of operator analysis, operator theory, and
optimization with respect to dentability. These results enhance the understanding and further characterization of bounded linear
operators. Moreover, the findings are valuable in studying the linearbility and spaceability of norm-attainable classes and Banach
spaces.
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1. Introduction

Density in metric spaces is a property that has been studied for a very long time. Various notions of density exist,
including the use of limit points and convergence of sequences. Bishop and Phelps [1] described the density of
the set of norm-attainable functionals in the dual space of a Banach space B, and their proof employed the use of
Zorn’s lemma [2]. Consequently, it has been asked if their result can be generalized (a problem that is still open
to date). Topologically, in a metric space (X, d) (the topology is induced by the distance function d), a subset A
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of X is dense in X if every member x of X is either in A or a limit point of A. Simply put, the set A is spread
throughout the set X. A classical example is the set of rationals in the reals. In fact, the density of rationals in
the reals allows for a ”good” approximation of the reals by the rationals for practical uses. Alternatively, we can
define density using the convergence of sequences. This way, a set A is dense in the set X if for every member x
of X, there exists a sequence (xn) in A such that xn → x in the sense of the metric inducing the topology. Let H
be a complex Hilbert space, and let O : H −→ H be a bounded linear operator on H. Furthermore, let B(H) be
the Banach algebra of all bounded linear operators on H. This Banach algebra is actually a C*-algebra. We will
denote by NAB(H) the class of operators T : B(H) −→ B(H) for which there exists a unit operator u ∈ S B(H)
such that ‖Tu‖ = ‖T‖. Dentability of sets was introduced by Rieffel [3], who showed its connection to the Radon-
Nikodym Theorem. Maynard [4] extended the concept by introducing s-dentability. Furthermore, [5] provided an
affirmative answer to the question of dentability in Banach spaces with the Radon-Nikodym Property. Sufficient
conditions for the convergence of minimizing sequences were given in [6, 7], with additional results available in
[8]. Bourgain [9] showed the interrelation between dentability and strong exposition when he demonstrated that if a
bounded separable closed convex subset B1sbcc of B1 satisfies the BPP, then it is dentable. A characterization of Banach
spaces satisfying the Radon-Nikodym property (RNP) has been established using a convexity property on all bounded
subsets of the space [3]. The Radon-Nikodym Theorem for the Bochner integral and the Philips-Metivier Radon-
Nikodym theorem are logically equivalent to the Radon-Nikodym Theorem [3]. Rieffel proved the Radon-Nikodým
theorem using strategies established in his previous work [3, 10]. The construction of Metivier and Philips variants of
the theorem relied on the idea that compact convex sets can be dented [11]. The crucial geometric condition for Banach
spaces with the Radon-Nikodým property (RNP) is the existence of bounded dentable subsets [4]. The concept of
s-dentability, weaker than dentability, also characterizes RNP Banach spaces [4]. The logical equivalence between
meeting RNP conditions and s-dentability has been established [4]. Banach spaces with closed separable subspaces
linearly homeomorphic to dual separable subspaces satisfy the RNP [4]. Regarding dentability, researchers such as
Rieffel [3], Maynard [12], Huff [13], Davis [5], and Phelps [14] have studied the connection between dentability and
the Radon-Nikodým Property (RNP). They have shown that the condition for a Banach space to have the RNP is
equivalent to every bounded subset being dentable. A claim of the RNP implying PB has been shown to be false,
as demonstrated by counterexamples provided by Huff [15] and Bourgain [9]. Despite all these studies bordering
dentabiliy, a characterizaition of dentability in norm-attainable classes has been missing in literature. This forms main
motivation for our work. The goal of this paper is to characterize density and dentability in the class NAB(H). The
following basic concepts will be useful in our presentation.

2. Basic Concepts

We begin by introducing the basic concepts that will be used throughout the paper.

Definition 1. [16, Definition 2.3] Let H be a complex Hilbert space, and let B(H) be the Banach algebra of all
bounded linear operators on H. Then, a collection C of bounded linear operators is dense in the collection of all
bounded linear operators on B(H) if, for any bounded linear operator O ∈ C and for every ε > 0, there exists
O′ ∈ B(H) such that ‖O − O′‖ < ε.

Definition 2. [17, Definition 2.1] Let H be a complex Hilbert space, and let B(H) be the Banach algebra of all
bounded linear operators on H. Then, a bounded linear operator O : B(H) −→ B(H) is said to be norm-attainable
if there exists a unit operator u ∈ S B(H) such that ‖Ou‖ = ‖O‖. A collection of such operators on B(H) forms the
norm-attainable class NAB(H).

Definition 3. [17, Definition 5] Let H be a complex Hilbert space and let B(H) be the Banach algebra of all bounded
linear operators on H. Then an operator O : B(H) −→ B(H) is norm-attainable if there exists u ∈ SB(H) such that
‖O(u)‖ = ‖O‖, where S A is the unit sphere of A. A collection of such operators constitute a norm-attainable class
NAB(H).

Definition 4. [5, Definition 1] Let H be a complex Hilbert space and let NAB(H) be a norm-attainable class of
operators in B(H). Then N = NAB(H) has the Radon-Nikodým Property (RNP) if, for each totally finite positive
measure space (N,ΣN ,m1) and each N-valued m1- absolutely continuous measure m2 on ΣN of bounded variation with
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|m2|(N) < ∞, then there exists an L1(N,ΣN ,m2) integrable function O such that m2(Ni) =
∫

Ni
Odm1 ∀Ni ∈ ΣN . We

will refer to N as an RNP class if this definition holds for N. A norm-attainable class N is dentable (resp. s-dentable)
if for every ε > 0, then there exists an operator O ∈ N such that O < cch[N \ Bε(O)] (resp. O < s[N \ Bε(O)]), where

cch[X] is the closed convex hull of X and s[X] the convex combination of X given by s(X) = Big{
∞∑

i=1
sivi|si ≥ 0,

∞∑
i=1

si =

1, {vi} ⊂ XBig} . In this case, O is the dentable (s-dentable) point of the class N and any RNP class and those with
separable duals are dentable classes. If an operator in dentable and norm-attainable, then we will refer to it as a
dentable norm-attainable operator.

Definition 5. [8, Definition 2] Let H be a Hilbert space and Hc ⊆ H be a convex subspace. A functional φ : Hc → R
is dentable at v if (v, φ(v)) is a dentable point of epi(φ) = {(v, α) ∈ H × R : α ≥ φ(v)}.

The following theorem will be useful in the work.

Theorem 1. [18, Krein-Milman Theorem] Let V be a topological vector space, and let Vcc ⊆ V be a non-empty
compact convex set. Then, the convex hull of the set of extreme points of Vcc is dense in Vcc.

3. Density in Norm-Attainable Classes

In this section, we study various aspects of density in the norm-attainable class NAB(H).

Theorem 2. Let NAB(H) ⊆ B(H). Then NAB(H) is norm-dense in B(H).

Proof. We need to choose O ∈ NAB(H) and show that such O ∈ B(H). By definition, there exists u ∈ S H such that
‖O(u)‖ = ‖O‖. By norm-attainability, there exist M > 0 such that ‖O(u)‖ = M. Then ‖O(u)‖ ≤ M‖u‖ and it follows
that O is bounded. Since this choice is arbitrary, it follows that NAB(H) is norm-dense in B(H).

Proposition 3. Let NAB(H)0 ⊆ NAB(H). Then, NAB(H)0 is norm-dense in NAB(H) if for T ∈ NAB(H), there exists
a sequence (Tn) in NAB(H)0 such that Tn → T.

Proof. We need to show that for every ε > 0, ‖Tn − T‖ < ε. Let (Tn) be a sequence in NAB(H)0. Then, each member
of the sequence is norm-attainable, meaning that there exists a unit operator u ∈ B(H) such that ‖Tnu‖ = ‖Tn‖ for all
n. In particular, lim

n→∞
‖Tnu − T‖ = 0. Hence, |‖Tn‖‖u‖ − ‖T‖| ≤ ‖Tnu − T‖, which implies that ‖Tn‖ − ‖T‖ = 0. Finally,

for every ε > 0, ‖Tn − T‖ < ε.

Proposition 4. Let NAB(H) be a norm-attainable class in B(H). If NAB(H) has property A or property B, then
NA(NAB(H)) is norm-dense in B(B(H)).

Proof. Let NAB(H) have Lindenstrauss’ property A or property B. Then, for any O : NAB(H) −→ NAB(H) such
that O is norm-attainable, there exists a norm-attainable operator O′ : NAB(H) −→ NAB(H) such that for all ε > 0,
‖O − O′‖ < ε. This suffices for the density of NA(NAB(H)) in B(NAB(H)).

Theorem 5. Let (NAB(H) j) j≥1 be a disjoint sequence of non-empty norm-attainable classes in B(H) such that each

NAB(H) j is norm-dense in B(H) for all j ≥ 1. Then, the countable union
∞

∪
j=1

NAB(H) j is dense in B(H).

Proof. Let NAB(H) j be dense in B(H) for all j ≥ 1. Then, for each operator O j ∈ B(H) and for every ε > 0, there

exists an O′j ∈ NAB(H) j such that for all j, ‖O j − O′j‖ < ε. Since O′j ∈ NAB(H) j, it follows that O′j ∈
∞

∪
j=1

NAB(H) j.

Since the choices of O j and O′j were arbitrary, it means that for every O j ∈ B(H), there exists an O′j ∈ NAB(H) j such

that ‖O j − O′j‖ < ε. Hence,
∞

∪
j=1

NAB(H) j is dense in B(H) as claimed.
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Theorem 6. Let (NAB(H) j)M
j≥1 be a finite sequence of non-empty norm-attainable classes in B(H) such that each

NAB(H) j is norm-dense in B(H) for all j. Then, the finite intersection
M
∩
i=1

NAB(H) j is dense in B(H).

Proof. Let NAB(H) j be dense in B(H) for 1 ≤ j ≤ M. Then, for all j and ε > 0, there exists O′j ∈ NAB(H) j such that

‖O′j − O j‖ < ε. By the definition of intersection, it follows that O′j ∈
M
∩
i=1

NAB(H) j. Since O j ∈ B(H), it follows that
M
∩
i=1

NAB(H) j is dense in B(H).

Theorem 7. Let (NAB(H) j) j≥1 be a countable disjoint sequence of non-empty norm-attainable classes in B(H) such

that each NAB(H) j is norm-dense in B(H) for all j ≥ 1. Then, the countable Cartesian product
∞∏
j=1

NAB(H) j is dense

in
∞∏
j=1

B(H).

Proof. Let NAB(H) j be norm-dense in B(H) for all j ≥ 1. Now, for j = 1 and for all ε > 0, if O1 ∈ B(H), then
either O1 ∈ NAB(H)1 or O1 is a limit point for NAB(H)1. More precisely, there exists O′1 ∈ NAB(H)1 such that
‖O1 − O′1‖ <

ε
21+1 .

Similarly, for j = 2, we can find O2 ∈ B(H) and O′2 ∈ NAB(H)2 such that ‖O2−O′2‖ <
ε

22+1 . Continuing in this manner,
we obtain two summable operator sequences (O j) j≥1 ∈ B(H) × B(H) × . . . and (O′j) j≥1 ∈ NAB(H)1 × NAB(H)2 × . . .
such that ‖O j − O′j‖ <

ε
2 j+1 .

We then construct two operator vectors O = (O1,O2,O3, . . . ,O j, . . .) ∈
∞∏
j=1

B(H) and O′ = (O′1,O
′
2,O

′
3, . . . ,O

′
j, . . .) ∈

∞∏
j=1

NAB(H) j such that

‖O − O′‖ =

∞∑
j=1

ε

2 j+1 =
ε

2
< ε. (1)

Theorem 8. Let (NAB(H) j) j≥1 be a countable disjoint sequence of non-empty norm-attainable classes in B(H) such

that each NAB(H) j is norm-dense in B(H) for all j ≥ 1. Then, the countable tensor product
∞

⊗
j=1

NAB(H) j is dense in
∞

⊗
j=1

B(H).

Proof. Let O = O1 ⊗ O2 ⊗ O3 ⊗ . . . ∈
∞

⊗
j=1

B(H). We know that for all j ≥ 1, then NAB(H) j is dense in B(H). Then for

j = 1, there exists O′1 ∈ NAB(H)1 such that for all 0 < ε < 1
10 , then ‖O1 − O′1‖ < ε. For j > 1, we can find O j ∈ B(H)

and O′j ∈ NAB(H) j such that ‖O j − O′j‖ < 1 + εk. Continuing this way, we can construct an operator in
∞

⊗
j=1

NAB(H) j

given by O′ = O′1 ⊗ O′2 ⊗ O′3 ⊗ . . ..
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Now

‖O − O′‖ ≤=‖O1 ⊗ O2 ⊗ O3 ⊗ . . . − O′1 ⊗ O′2 ⊗ O′3 ⊗ . . . ‖ (2)
≤‖(O1 − O′1) ⊗ (O2 − O′2) ⊗ (O3 − O′3) ⊗ . . . ‖ (3)
≤‖O1 − O′1‖‖O2 − O′2‖‖O3 − O′3‖‖ . . . (4)

≤(1 + ε)(1 + ε2)((1 + ε3) . . . (1 + ε j) . . . (5)

< 1 + 2ε + 3ε2 + 4ε3 + 5ε4 + . . . =
1

(1 − ε)2 > 0. (6)

Thus for any ε′ = 1
(1−ε)2 , we have that for any O ∈

∞

⊗
j=1

B(H), there exists O′ ∈
∞

⊗
j=1

NAB(H) j such that ‖O−O′‖ < ε′.

Theorem 9. Let (NAB(H) j) j≥1 be a countable disjoint sequence of non-empty norm-attainable classes of densely

defined operators in B(H). Then the countable union
∞

∪
j=1

NAB(H) j is dense in B(H).

Proof. Fix an index k ∈ {1, 2, 3, . . . , j, . . .}. Then by hypothesis, for any Ok ∈ B(H) and for every positive real
number ε > 0, there exists O′k ∈ NAB(H)k such that ‖Ok − O′k‖ < ε. By definition of a union, such an O′k ∈
∞

∪
j=1

NAB(H) j. Since Ok was arbitrarily chosen, it follows that for any operator O ∈ B(H), there exists an operator in

O′ ∈
∞

∪
j=1

NAB(H) j(at least in one of the indices) such that for every ε > 0, then ‖O − O′‖ < ε. Thus
∞

∪
j=1

NAB(H) j is

dense in B(H) as claimed.

Theorem 10. Let (NAB(H) j), j = 1, 2, 3 be a sequence of norm-attainable classes in B(H) such that NAB(H) j is
dense in NAB(H) j+1 for j = 1, 2. Then NAB(H) j is dense in NAB(H) j+2 for j = 1.

Proof. Let NAB(H)1 be norm-dense in NAB(H)2. Then for each O2 ∈ NAB(H)2 and for all ε > 0, there exists
O1 ∈ NAB(H)1 such that ‖O1 −O2‖ <

ε
2 . Since NAB(H)2 is dense in NAB(H)3, it follows that for all O3 ∈ NAB(H)3,

we have that for O2 ∈ NAB(H)2, then ‖O2 − O3‖ <
ε
2 . Now using the triangle inequality, we have that

‖O1 − O3‖ = ‖O1 − O2 + O2 − O3‖ ≤ ‖O1 − O2‖ + ‖O2 − O3‖ <
ε

2
+
ε

2
= ε. (7)

Thus for any O3 ∈ NAB(H)3, there exists O1 ∈ NAB(H)1 such that for all ε > 0, then ‖O1 −O3‖ < ε. This means that
NAB(H)1 is norm-dense in NAB(H)3.

Theorem 11. If NAB(H) has the RNP then NAB(H) is dense in B(H).

Proof. If NAB(H) has the RNP, then it has property A. Then by Proposition 4 it follows that NAB(H) is dense in
B(H).

Theorem 12. If NAB(H) has the Bishop Phelps Property, then NAB(H) is dense in B(H).

Proof. Let NAB(H) be closed convex and bounded. If NAB(H) has the Bishop Phelps Property, then the class of
operators O : NAB(H) −→ NAB(H) such that the image ‖Ou‖ achieves its maximum in NAB(H) for some u ∈
NAB(H) is dense in B(NAB(H)). This means that NAB(H) is dense in B(H).
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4. Dentability in Norm-Attainable Classes

In this section, we characterize dentability within a class of norm-attainable operators. The following proposition
shows that dentability of a norm-attainable class is sufficient for its s-dentability.

Proposition 13. Let H be a complex Hilbert space and let N = NAB(H) be a norm-attainable class on B(H). If
∅ , N0 ⊂ N is dentable, then it is s-dentable.

Proof. Let N0 be dentable but not s-dentable and let O ∈ N0 such that O < cch[N0 \Bε(O)]. Since N0 is not s-dentable
(by hypothesis), it follows that and O ∈ s[N0 \Bε(O)]. Then O ∈ cch[Bε(O)] and O < s(Bε(O)). This is a contradiction
meaning that N0 is s-dentable.

The converse of Proposition 13 may not hold as there exist classes which are s-dentable but not dentable. We have the
following theorem which proves that any dentable mapping is s-dentable.

Theorem 14. Let H be a complex Hilbert space and let NAB(H) be a norm-attainable cass on B(H). Then if
O : NAB(H) −→ NAB(H) is dentable, it is s-dentable.

Proof. If O : NAB(H) −→ NAB(H) is dentable, if follows that for every ε > 0, there exists an operator u ∈ NAB(H)
such that (u,O(u)) < cch[epi(O) \ Bε{(u,O(u))}], where epi(F) is the epigraph of the operator F. We know from
Proposition 13 that s-dentability of O follows from its dentability. Thus O is s-dentable.

Remark 1. The converse of Theorem 14 does not hold. A good example is a norm-attainable class on BC[0,1] which
has s-dentable point but does not have any dentable point.

In the next theorem, we prove that dentability for the closed convex hull of a non-empty subclass is sufficient for the
dentability that subclass.

Theorem 15. Let H be a complex Hilbert space and let NAB(H) be a norm-attainable class on B(H). If N0 ⊂ NAB(H)
is dentable, then so is the closed convex hull of N0.

Proof. Let N0 be a dentable subclass. Then for all ε > 0, there exists a norm-attainable operator O ∈ N0 such that
O < cch[N0 \ Bε(O)]. Then O < cch(N0) and O ∈ cch(Bε(O)). Since Bε(O) ⊆ cch(Bε(O)), then there exists ε′

such that 0 < ε′ < ε and O ∈ Bε′ (O). We can choose an operator O′ ∈ Bε′ (O) such that O′ ∈ cch(N0). Thus
O′ < cch[chh[N0] \ Bε′ (O)]. In particular, we have that O′ < cch[chh[N0] \ Bε′ (O′)] and thus cch[N0] is dentable as
claimed.

We have the following corollary from Theorem 15.

Corollary 1. Let H be a complex Hilbert space and let NAB(H) a norm-attainable class on B(H). For any ∅ , N0 ⊂

NAB(H), if cch(N0) is not dentable, then neither is N0.

Proof. Let N0 be not dentable. Then for all ε > 0, there exists O ∈ cch(N0) such that O ∈ cch[cch(N0) \ Bε(O)]. In
particular, O ∈ cch[cch(N0)] and O < cch[Bε(O)]. Now for any δ ∈ (0, ε) we know that Bδ(O) ⊆ cch[Bδ(O)], it follows
that if O < cch[Bδ(O)], then O < Bδ(O). Let O′ ∈ N0 such that O′ < Bδ(O). Then O′ ∈ N0 implies that O′ ∈ cch[N0].
Putting together O′ ∈ N0 and O′ < Bδ(O) implies that O′ ∈ [N0 \Bδ(O′)]. Now since [N0 \Bδ(O′)] ⊆ chh[N0 \Bδ(O′)],
it follows that O′ ∈ chh[N0 \ Bδ(O′)] and N0 is not dentable as claimed.

We state and prove the following lemma that shall be used in the proof of Corollary 2.

Lemma 1. Let H be a complex Hilbert space and let C be the C-* algebra of all bounded linear operators on H and
let NAB(H) be a norm-attainable class on B(H). Then ∅ , N0 ⊆ NAB(H) is not dentable, if and only if there exists
ε > 0 such that for any norm-attainable operator O ∈ N0, then N0 ⊆ cch[N0 \ Bε(O)].
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Proof. We have two directions to prove.
=⇒ Let N0 be a not dentable and non-empty subclass in NAB(H). Then there exists O ∈ N0 such that for every ε > 0,
we have O ∈ cch[N0 \ Bε(O)]. Since O ∈ N0 implies that O ∈ cch[N0 \ Bε(O)] (by the non-dentability of N0), and the
choice of O is arbitrary, it follows that for any ε > 0, then N0 ⊆ cch[N0 \ Bε(O)].
⇐= Let O ∈ N0 and let ε > 0, such that N0 ⊆ cch[N0 \ Bε(O)]. By definition of subclasses, any such O ∈ N0 will be
a member of cch[N0 \ Bε(O)]. This means that there exists O ∈ N0 such that O ∈ cch[N0 \ Bε(O)], which means that
N0 is not dentable.

The following corollary arises from Lemma 1.

Corollary 2. Let H be a complex Hilbert space and let NAB(H) be a norm-attainable class on B(H). If ∅ , N0 ⊆

NAB(H) is closed and convex, then the consequent of Lemma 1 is that there exists O ∈ N0 such that for any ε > 0,
then

N0 = cch[N0 \ Bε(O)]. (8)

Proof. We have to prove the inclusions and conclude equality of the two norm-attainable classes using the principle
of extensionality. By definition, we know that N0 \ Bε ⊆ N0 and that N0 = cl(N0) if N0 is closed (where cl(N0) is the
closure of N0). By taking closures for the convex hulls, we have cch[N0 \ Bε(u)] ⊆ cch[N0] = N0, where the last part
of the statement is true by the convexity of N0 in the hypothesis. Thus

cch[N0 \ Bε(O)] ⊆ N0 (9)

Conversely, if N0 is not dentable, then by Lemma 1, there exists an operator u ∈ N0 such that for any ε > 0, then

N0 ⊆ cch[N0 \ Bε(O)]. (10)

The two inclusions in Equations 9 and 10 imply the equality claimed in Corollary 2.

Theorem 16. Let H be a complex Hilbert space and NAB(H) be a norm-attainable class on B(H). If Ns ⊂ NAB(H)
is a relatively norm-compact convex subclass, then it Ns dentable.

Proof. Fix a relatively compact convex subset Ns ⊆ NAB(H) and pick any of its extreme points e ∈ cl(Ns) (points of
cl(Ns) which cannot be expressed as a nontrivial convex combination of points in Ns and cl(A) is the closure of A).
Since Ns is relatively compact, it follows that cl(Ns) is compact. The for each ε > 0, it is clear that e < cl[cl(Ns)\Bε(e)],
where By Theorem 1 (Krein Milman Theorem) and Theorem 15, e < cch[cl(Ns) \ Bε(e)]. Now by definition, we have
that cch[cl(Ns) \ Bε(e)] = cch[Ns \ Bε(e)]. Thus e < cch[Ns \ Bε(e)] and Ns is dentable as desired.

The following Corollary arises from Theorem 16.

Corollary 3. Let H be a complex Hilbert space and let NAB(H) be a norm-attainable class on B(H). If Nc ⊆ NAB(H)
is any norm-compact subclass of NAB(H), then Nc is dentable.

Proof. Compactness is sufficient for relative compactness and the result follows from Theorem 16.

Theorem 17. Let H be a complex Hilbert space and let NAB(H) be a norm-attainable class on B(H). If Ns ⊆ NAB(H)
is any subclass of NAB(H) such that cch[Ns] is dentable, then so is Ns.

Proof. Let cch[Ns] be dentable. Then for any ε > 0, there exists O ∈ Ns such that O < cch[cch[Ns] \ Bε(O)]. In
particular, O < cch[cch[Ns]] = cch[Ns] and O ∈ Bε(O). Since Ns ⊆ cch[Ns], if O < cch[Ns], then O < Ns. Now
choose δ ∈ (ε,∞) and let O′ ∈ Ns such that O′ ∈ Bδ(O). Hence O′ < Ns \ Bδ(O). By taking closed convex hulls, we
have that O′ ∈ Ns such that for δ ∈ (ε,∞), then O′ < chh[Ns \ Bδ(O′)]. This proves that Ns is dentable.
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We have the following corollary.

Corollary 4. Let H be a complex Hilbert space and let NAB(H) be a norm-attainable class on B(H). If Ns ⊆ NAB(H)
is any subclass such that cch[Ns] is s-dentable, then so is Ns.

Proof. This is clear by Proposition 13 and Theorem 17.

We have some results on dentability of classes and subclasses. The following theorem relates the dentability of the
closure of a class to that of the class.

Theorem 18. Let H be a complex Hilbert space and let N = NAB(H) be a norm-attainable class on B(H). If the
closure cl(N) of N is dentable, then so is N.

Proof. Let cl(N) be dentable and choose O ∈ N such that for any ε > 0, then O < cch[cl(N)\Bε(O)]. Since N ⊆ cl(N),
it follows that whenever O ∈ N, then O ∈ cl(N) and furthermore, N \Bε(O) ⊆ cl(N)\Bε(O). Now if O < cl(N)\Bε(O),
then O < N \ Bε(O). Then by taking closed convex hulls, we have that for any δ ∈ (ε,∞), there exists O ∈ N such that
O < cch[N \ Bδ(O)]. Thus N is dentable as claimed.

Remark 2. For the proof to work, we must choose a point in N. This is because N ⊆ cl(N) and it is possible to have
O < N but O ∈ cl(N). Hence N may be dentable but cl(N) may fail to be dentable.

We have the following corollaries.

Corollary 5. Let H be a complex Hilbert space and let NAB(H) be a norm-attainable class on B(H)Let N1 and N0
be non-empty subclasses in NAB(H) such that N0 ⊆ N1. If N1 is dentable, then N0 is dentable.

Proof. Let O ∈ N0 such that for every ε > 0, we have that O < cch[N1 \ Bε(O)] (by dentability of N1). We also have
that N0 ⊆ N1 implies that cch[N0 \ Bε(O)] ⊆ cch[N1 \ Bε(O)]. Now since O < cch[N1 \ Bε(O)], it is easy to see that
O < cch[N0 \ Bε(O)] and this means that N0 is dentable.

Remark 3. Dentability is reverse-transitive by set inclusion if we choose a dentable point from the intersection of
the three classes. That is for any subclasses ∅ , N0 ⊆ N1 ⊆ N2 such that N2 and N1 are dentable, then N0 is also
dentable. The proof of Corollary 5 fails if we choose a dentable point of N1 which is not in N0. This is to say that a
dentable point of a superclass may fail to exist in the subclass.

We now shift attention to dentability of sums, scalar multiples and products of mappings between norm-attainable
classes.

Theorem 19. Let H be a complex Hilbert space and let NAB(H) be a norm-attainable class on B(H). Let O1 :
NAB(H) −→ NAB(H) and O2 : NAB(H) −→ NAB(H) be positive and monotone norm-attainable operators such
that O1 ≤ O2. Then if O1 and O2 are dentable, so is their sum O1 + O2.

Proof. Since O1 ≤ O2, then O1 ≤ O1 + O2 and epi(O1 + O2) ⊆ epi(O2) ⊆ epi(O1). By dentability of O1, there
exists h1 ∈ NAB(H) such that for every ε > 0, then (h1,O1(h1) < cch

[
epi(O1) \ Bε(h1,O1(h1))

]
. In particular, for any

δ ∈ (ε,∞), then there exists h2 ∈ N1 such that h2 ∈ Bε(h1) and

epi(O1 + O2) \ Bδ
(
h2, (O1 + O2)(h2)

)
⊆ epi(O1) \ Bδ

(
h2,O1(h2)

)
. (11)

By taking closed convex hulls in the Inclusion 11, we have that (h2, (O1 + O2)(h2)) < cch[epi(O1 + O2) \ Bδ
(
h2, (O1 +

O2)(h2)
)
]. Thus the sum is dentable as claimed.

Remark 4. From the proof of Theorem 19, it is clear that only one of the summand operators need to be dentable. In
deed, Theorem 19 is sufficient for dentability of a difference of dentable operators.
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Theorem 20. Let H be a Hilbert space and NAB(H) be a norm-attainable class on B(H). Further let O : NAB(H) −→
NAB(H) be a positive and monotone norm-attainable operator and let λ be a complex scalar. If O is dentable, so is
|λ|O.

Proof. We prove for positive scalar multiples and the negative ones can be done analogously. There are two cases to
consider. On the one hand, if |λ| > 1, then O < |λ|O and epi(|λ|O) ⊆ epi(O). Since O is dentable, then for any ε > 0,
there exists h1 ∈ NAB(H) such that (h1,O(h1)) < cch

[
epi(O) \ Bε(h1,O(h1))

]
. Furthermore, from epi(|λ|O) ⊆ epi(O),

it follows that

cch
[
epi(|λ|O) \ Bε(h1,O(h1)

]
⊆ cch

[
epi(O) \ Bε(h1,O(h1)

]
. (12)

In particular,

cch
[
epi(|λ|O) \ Bε(h1, |λ|O(h1)

]
⊆ cch

[
epi(O) \ Bε(h1, |λ|O(h1)

]
. (13)

Now for every δ ∈ (λ,∞), then (h1, λO(h1)) < cch
[
epi(O) \ Bδ(h1, λO(h1)

]
implies that (h1, λO(h1)) < cch

[
epi(λO) \

Bδ(h1, λO(h1)
]

and |λ|O is dentable for |λ| > 1. On the other hand, if 0 < |λ| < 1 then |λ|O < Oand epi(O) ⊆ epi(O).
Take h2 ∈ NAB(H) such that h2 ∈ Bε(h1). Then for any δ ∈ (|λ|,∞), we have (h2, |λ|O(h2)) < cch

[
epi(|λ|O) \

Bδ(h2, |λ|O(h2)
]
. Thus in both cases, |λ|O is dentable.

Remark 5. Observe that the case when |λ| = 1 is a trivial case. That is, if O is dentable, then its scalar multiple with
a scalar |λ| = 1 is still O which is dentable by hypothesis.

Theorem 21. Let H be a complex Hilbert space and let NAB(H) be a norm-attainable class on B(H). Let {O1,O2}

be a sequence of positive and monotone norm-attainable operators Oi : NAB(H) −→ NAB(H), i = 1, 2 such that
O1 ≤ O2. If O1 and O2 are dentable, then so is O1O2.

Proof. We consider two cases, that is, inside and outside the unit ball. If 1 < O1 ≤ O2 ≤ O1O2, then it follows that
epi(O1O2) ⊆ epi(O2) ⊆ epi(O1). Then by dentability of O1 and O2, the dentability of the product follows as seen
in the proof of Theorem 19. If 0 < O1 ≤ O2 < 1, then for some Λ > 1

‖O1‖
> 1, if follows that 0 < O1O2 ≤ O1 ≤

O2 ≤ 1 ≤ ΛO2. By dentability of O2, it follows from Theorem 20 that ΛO2 is dentable. Furthermore, we know that
epi(ΛO2) ⊂ epi(O1O2) which implies that

cch
[
epi(ΛO2) \ Bε(h1, λO2(h1))

]
⊂ cch

[
epi(O1O2) \ Bε(h1,ΛO2(h1))

]
(14)

Now choose h ∈ Bε(h1) such that for any δ ∈ (ε,∞), then

(h,O1O2(h)) < cch
[
epi(O1O2) \ Bδ(h1,O1O2(h))

]
. (15)

Then O1O2 is dentable as desired.

Remark 6. By the proof of Theorem 21, the dentability of one of O1 and O2 is sufficient for that of the product O1O2.
Moreover, Theorem 20 and Theorem 21 can be used to prove that the quotient of dentable operators is dentable.

We now study the dentability of unions, intersections and cartesian products of norm-attainable classes.

Theorem 22. Let H be a complex Hilbert space and let NAB(H) be a norm-attainable class on B(H). Further, let{
NAB(H) j

}
j≥1 be a countable sequence of disjoint norm-attainable classes on B(H). If NAB(H) j is dentable for all

j ∈ N, then the countable union N =
∞

∪
j=1

NAB(H) j is dentable.

Proof. Fix a disjoint countable sequence of norm-attainable classes {NAB(H) j} on B(H). Since each of them is
dentable, it follows that for some k ∈ N, there exist hk ∈ NAB(H)k, k = 1, 2, 3, . . . such that for ε > 0, then
hk < cch[NAB(H)k \ Bε(hk)]. We know that NAB(H)k ⊆ N, which implies that NAB(H)k \ Bε(hk) ⊆ N \ Bε(hk).
Take closed convex hulls on both sides to obtain cch[NAB(H)k \ Bε(hk)] ⊆ cch[N \ Bε(hk)]. Now using the disjoint-
ness of the countable sequence and dentability of Nk (there nothing special about Nk as any of the classes would do
the job) and if h < NAB(H)k, then h < N. Then hk < cch[N \ Bε(hk)] and N is dentable.

9

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4754085

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



/ Scientific African 00 (2024) 1–11 10

Remark 7. From the proof of Theorem 22, one only needs to choose a dentable point for one of the subclasses and
this works for the disjoint union. This proof fails when the union is not of disjoint classes.

Theorem 23. Let H be a complex Hilbert space such that NAB(H) is a norm-attainable class on B(H). Further,
let {NAB(H)i}1≤i≤M be a finite sequence of norm-attainable classes on B(H). If NAB(H)i is dentable for all i ∈

{1, 2, . . . ,M}, then the finite intersection N =
M
∩
i=1

NAB(H)i is dentable.

Proof. Fix a finite sequence {NAB(H)i}1≤i≤M of dentable norm-attainable classes on B(H). Since NAB(H)i is dentable
for all i, there exists an index 1 ≤ k ≤ M such that hk ∈ NAB(H)k and hk is a dentable point for NAB(H)k. This
implies that for some ε > 0, we have that hk < cch[NAB(H)k \ Bε(hk)]. Using the fact that N ⊆ NAB(H)k, it
follows that N \ Bε(hk) ⊆ NAB(H)k \ Bε(hk). Now take convex closures on the inclusion to yield cch[N \ Bε(hk)] ⊆

cch[NAB(H)k \ Bε(hk)]. Clearly hk < cch[N \ Bε(hk)]. Thus N =
M
∩
i=1

NAB(H)i is dentable.

Theorem 24. Let H be a complex Hilbert space and let NAB(H) be a norm-attainable class on B(H). Further, let
{NAB(H) j} j≥1 be a countable sequence of norm-attainable classes on B(H). If NAB(H) j is dentable for all j ∈ N,

then the countable Cartesian product P =
∞∏
j=1

NAB(H) j is dentable.

Proof. Fix a countable sequence {NAB(H) j} j≥1 of dentable norm-attainable classes on B(H). By dentability of
NAB(H) j for all j, we have that there exists h j ∈ NAB(H) j for ε j > 0 such that h j < cch[NAB(H) j \ Bε j (h j)].
The map that associates (h1, h2, . . .) 7−→ NAB(H)1 × NAB(H)2 × . . . = P is bijective. Choose ε = max{ε j}. Then we
have (h1, h2, . . .) < cch[P \ Bε(h1, h2, . . .)] and P is dentable.

5. An application to optimization

Consider an optimization problem of the form:
Minimize f (x)
subject to gi(x) ≤ 0 for i = 1, 2, . . . ,m
h j(x) = 0 for j = 1, 2, . . . , p
Where:
f (x) is the convex objective function, gi(x) are the inequality constraints, h j(x) are the equality constraints, andx is the
vector of variables. We take the domain Ω of f (x) to be convex, closed and bounded. To minimize f (x), we define
a minimizing sequence (xn) in Ω such that f (xn) −→ inf f (Ω). Then lim xn = x will be a dentable point of f (x),
which minimizes f . This approach can also be used on the dual problem. By extending Theorem 19 to more than
two operators, more than one optimization problems can be solved once by ensuring that at least one of the objective
functions is dentable. This alludes to superposition of solutions to different convex optimization problems. However,
it is expected that to obtain sharper bounds, all the objective functions must necessarily be convex and dentable.

6. Conclusions

In conclusion, we have presented various key findings regarding dentability and density in norm-attainable classes.
We have shown that dentability of a norm-attainable class NAC implies its s-dentability, and the dentability of the
closed convex hull of NAC ensures the dentability of NAC itself. Conversely, if a class lacks dentability, its closed
convex hull also lacks dentability. This relationship highlights the importance of dentability in understanding the
structure of norm-attainable classes.

We have demonstrated that both relatively norm-compact classes and norm-compact classes are dentable, expanding
our understanding of dentability in different subclasses. Furthermore, we have established conditions for the dentabil-
ity of superclasses and subclasses, providing insight into the dentability properties of related classes.
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Additionally, we have investigated the preservation of dentability under various operations. We have proven that
dentability is preserved under summation, scalar multiplication, and product for positive and monotone dentable oper-
ators in norm-attainable classes. This result highlights the robustness of dentability in the context of these operations.

Moreover, we have shown that dentability of classes is preserved under countable unions, finite intersections, and
countable Cartesian products. This preservation property extends the understanding of dentability to composite classes
formed through these set operations.

Furthermore, our study has focused on characterizing density in the norm-attainable class NAB(H) within the Banach
algebra B(H) of all bounded linear operators on a complex Hilbert space H. We have established the characterization
of density using concepts such as the convergence of sequences and the existence of limit points. Notably, proper-
ties A and B of Lindenstrauss have been shown to be sufficient for the density of NAB(H). Additionally, we have
demonstrated that countable unions, finite intersections, countable tensor products, and countable Cartesian products
preserve density in associated classes. The transitivity of density in NAB(H) further enhances our understanding of
the distribution of norm-attainable operators.

Overall, our findings contribute significantly to the characterization and understanding of dentability and density in
norm-attainable classes. These results have implications in the fields of operator analysis, operator theory, and op-
timization, providing valuable insights into the properties of bounded linear operators. Furthermore, they aid in the
study of linearbility and spaceability of norm-attainable classes and Banach spaces, further advancing our compre-
hension of these fundamental mathematical concepts.
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