SCHOOL OF SPATIAL PLANNING AND NATURAL RESOURCE MANAGEMENT UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF ARTS IN PLANNING AND MANAGEMENT

YEAR I SEMESTER I 2023/2024 DECEMBER EXAMS

MAIN UNIVERSITY EXAMINATION

COURSE CODE:	APP 802
COURSE TITLE:	QUANTITATIVE METHODS
STREAM:	MASTER IN PLANNING AND DESIGN
SCHOOL:	SCHOOL OF SPATIAL PLANNING AND NATURAL RESOURCE MAMAGEMENT ACADEMIC YEAR:
VENUE	$2023 / 2024$
DATE:	TBD
TIME:	TBD

Instructions:

1. Answer QUESTION ONE and ANY OTHER TWOquestions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room

QUESTION 1

Consider the following frequency tabulation of a sample of land parcels in a peri-urban area in Ha :

$\boldsymbol{X}_{\boldsymbol{i}}($ Ha. $)$	$\boldsymbol{f}_{\boldsymbol{i}}$ (Number)
$1.85-1.95$	2
$1.95-2.05$	1
$2.05-2.15$	2
$2.15-2.25$	3
$2.25-2.35$	5
$2.35-2.45$	6
$2.45-2.55$	4
$2.55-2.65$	3
$2.65-2.75$	1

a) Using the midpoints of the indicated ranges of X,
i) Calculate the mean parcel size in Ha .
ii) Calculate the median parcel size in Ha.
iii) Determine the mode of the frequency distribution.
b) Consider the following data, which are a sample of amino acid concentrations ($\mathrm{mg} / 100 \mathrm{ml}$) in arthropod hemolymph: 240.6, 238.2, 236.4, 244.8, 240.7, 241.3, 237.9.
i) Determine the range of the data
ii) Calculate the "sum of squares" of the data.
iii) Calculate the variance of the data.
iv) Calculate the standard deviation of the data.

QUESTION 2

Discuss the principles, typical application, data requirements and limitations of:
a) Cluster Analysis
b) Principal Component Analysis (PCA)

QUESTION 3

a) Differentiate between the characteristics of qualitative and quantitative data
b) Discuss the following types of data and approaches in analysis:
i) Data on ratio scale
ii) Data on interval scale
iii) Data on ordinal scale

QUESTION 4

Based on the normal distribution and the Standard Score (Z), discuss:
a) Type I and Type II statistical errors in hypothesis testing
b) Long-term probabilities in hypothesis testing
c) Statistical power of tests

QUESTION 5

The following computer-based analysis shows the demand for middles class housing in two separate towns A and B. The demand is classified as low or high for 92 respondents with additional data on mortgage prices. Discuss and interpret these results based on qualitative approach to data analysis.
(20 Marks)
Binary Logistic Regression: Demand versus Source, Price

Link function	Logit

Response Information

Variable	Value	Count	
Demand	Low	70	(Event)
	High	22	
	Total	92	

Deviance Table

Source	DF	Adj Dev	Adj Mean	Chi-Square	P-Value
Regression	2	7.574	3.787	7.57	0.023
Price	1	4.629	4.629	4.63	0.031
Town	1	4.737	4.737	4.74	0.030
Error	89	93.640	1.052		
Total	91	101.214			

Model Summary

Deviance	Deviance	
$\mathbf{R - S q}$	R-Sq(adj)	AIC
7.48%	5.51%	99.64

Coefficients

Term	Coef	SE Coef	VIF
Constant	-1.99	1.68	
Price	0.0250	0.0123	1.12
Town			
Town B	-1.193	0.553	1.12

Odds Ratios for Continuous Predictors

	Odds Ratio	95\% CI
Price	1.0253	$(1.0010,1.0503)$

Odds Ratios for Categorical Predictors(Odds ratio for level A relative to level B)

Level A	Level B	Odds Ratio	95\% CI
Town			
Town B	Town A	0.3033	$0.1026,0.8966)$

Regression Equation

$\mathrm{P}($ Low $)=\exp \left(\mathrm{Y}^{\prime}\right) /\left(1+\exp \left(\mathrm{Y}^{\prime}\right)\right)$

Town

Goodness-of-Fit Tests

Test	DF	Chi-Square	P-Value
Deviance	89	93.64	0.348
Pearson	89	88.63	0.491
Hosmer-Lemeshow	8	4.75	0.784

Observed and Expected Frequencies for Hosmer-Lemeshow Test

Group	Event Probability Range	Demand = Low		Demand = High	
		Expected	Observed	Expected	
1	$(0.000,0.580)$	4	4.4	5	4.6
2	$(0.580,0.668)$	6	6.4	4	3.6
3	$(0.668,0.714)$	6	6.3	3	2.7
4	$(0.714,0.745)$	8	6.6	1	2.4
5	$(0.745,0.780)$	8	6.9	1	2.1
6	$(0.780,0.812)$	6	7.2	3	1.8
7	$(0.812,0.838)$	8	8.3	2	1.7
8	$(0.838,0.869)$	12	12.9	3	2.1
9	$(0.869,0.941)$	10	9.1	0	0.9
10	$(0.941,0.967)$	2	1.9	0	0.1

Measures of Association

Pairs	Number	Percent	Summary Measures	Value
Concordant	1045	67.9	Somers’ D	0.38
Discordant	461	29.9	Goodman-Kruskal Gamma	0.39
Ties	34	2.2	Kendall's Tau-a	0.14
Total	1540	100.0		

SN USEFUL FORMULAE

1. $\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}$ or $\bar{X}=\frac{\sum X_{i}}{n}$
2. $\bar{X}=\frac{\sum_{i=1}^{k} f_{i} X_{i}}{n}$
3. \quad sample median $=X_{(n+1) / 2}$.
4. \quad median $=\binom{$ lower limit }{ of interval }$+\left(\frac{0.5 n-\text { cum. freq. }}{\text { no. of observations in interval }}\right)\binom{$ interval }{ size }
5. \quad sample range $=$ largest $X-$ smallest X.
6. sample $\mathrm{SS}=\sum X_{i}^{2}-\frac{\left(\sum X_{i}\right)^{2}}{n}$
7. sample $\mathrm{SS}=\sum f_{i} X_{i}^{2}-\frac{\left(\sum f_{i} X_{i}\right)^{2}}{n}$
8. $s^{2}=\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{n-1}$.
9. $s^{2}=\frac{\sum X_{i}^{2}-\frac{\left(\sum X_{i}\right)^{2}}{n}}{n-1}$
10. $s=\sqrt{\frac{\sum X_{i}^{2}-\frac{\left(\sum X_{i}\right)^{2}}{n}}{n-1}}$.
