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Abstract 

 

Liver cancer, also known as hepatocellular carcinoma (HCC) is a primary cancer 

of the liver and the fifth cause of mortality world-wide. It is a global public health 

problem which is poorly addressed in the developing countries. Data on 

prevalence and incidence is scanty leading to inability to predict the burden of 

HCC in the developing world and this leads to poor policy framework for 

management and control of HCC. More-over, management and control of HCC is 

poorly addressed in Kenya. Most subjects with HCC in the developing world 

present late to the hospital leading to high mortality. The objectives of this study 

were to develop a predictive mathematical model to predict the proportion of 

subjects who would develop HCC over 5 years in western Kenya and to conduct a 

sensitivity analysis of the model developed to ascertain effectiveness in 

prediction. Liver cancer is the only cancer with both infectious and non-infectious 

causes. The design of the study was a hybrid mathematical model developed 

integrating both I.P.M (incidence, prevalence, mortality) and S.I.R (susceptible, 

infected, recovered) models. Ordinary differential equations were generated and 

solved using Matlab software to predict burden of HCC. MatLab software was 

also used to generate graphs to predict the number of subjects who will develop 

HCC over time. Parameters used were generated from empirical data from the 

study and secondary sources. The study was approved by the ethics committee at 
Jaramogi Oginga Odinga teaching and referral hospital. The study site was Kisumu 
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county and referral hospital and was conducted between June 2015 and June 

2016.  Out of 331 (231 males and 100 females) subjects screened, 257 (178 males 

and 79 females) subjects were included and 74 (50 males and 24 females) were 

excluded (no liver cancer).  Ordinary differential equations were developed which 

included temporal parameters in the model which were the susceptible population, 

HCC incidence rates, death rates and birth rates. A schematic hybrid model 

modified from I.P.M + S.I.R model was developed. S.I.R + I.P.M model was used 

because HCC cases invariably die but some cases of HCC in early stages survive 

for some time. In conclusion, this study has established the applicability of the 

hybrid mathematical model from SIR and IPM for liver cancer burden. Liver 

cancer burden in western Kenya would increase over time unless risk factors are 

controlled. The models are sensitive and effective in predicting the burden of liver 

cancer in the community. This study provides health care workers and stake 

holders with information to enable generation of policy for management and 

prevention of HCC. 

 

Keywords: Liver cancer, SIR and IPM model, prediction of burden, Western 

Kenya  

 

1. Introduction  
 

Liver cancer, also known as hepatocellular carcinoma (HCC), is a malignant 

cancer of the liver which is the second largest organ of the body. It is a global 

public health problem. It is the 5th common cancer worldwide and the 3rd and 4th 

important cause of cancer related deaths in men and women world-wide 

respectively [14]. It is a public health problem which is often under diagnosed or 

diagnosed late. HCC is a “silent killer,” because signs and symptoms usually 

don’t appear until the disease is at an advanced stage. Data is lacking to predict 

the number of subjects who will develop HCC in the community, making 

planning to be difficult. Estimating the burden of liver cancer in the community is 

important in understanding adequate resource allocation, mobilization and 

prevention strategies. Disease models describing the relationship between 

incidence, prevalence and mortality (I.P.M) are used to detect data problems or 

supplement missing data [18, 19]].   

Estimates of disease-specific incidence, prevalence and mortality (I.P.M) are 

essential and have been used in burden of disease calculations. It’s noteworthy 

that empirical data, however, are often difficult to obtain or are of questionable 

validity. To remedy some of these data problems, disease models have been 

developed that describe the relationship between the epidemiological parameters 

by exploiting the causal structure of a disease [18, 19]. The incidence, prevalence, 

mortality (I.P.M) models formalize the relationship between the three parameters, 

using the fact that incidence has to precede prevalence and that cause-specific 

mortality can only follow disease. IPM models have been used frequently both to 

supplement missing data, study burden of disease and the agreement between 
different epidemiological data [3, 11, 14, 15, 18, 19]. Hybrid SIR + IPM model was 
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used because most HCC cases invariably die but, some HCC cases in early 

Barcelona Clinic Liver clinic (BCLC) stages 0, 1 and 2 survive for some time.  

Most prediction approaches use appropriate statistical models by analyzing the 

available data to predict cancer incidences [2, 16, 22, 25]. Pancreas and liver 

cancers (HCC) are projected to surpass breast, prostate, and colorectal cancers and 

are likely to become the second and third leading causes of cancer-related death 

by 2030, respectively in the US [14]. HCC is an ignored non communicable 

disease (NCD) in the developing world due to changing epidemiology secondary 

to unknown causes and HIV, poor policy frame work for prevention, inadequate 

specialized human resource and insufficient surveillance and research. In Africa, 

there are only three population based cancer registries in three countries namely; 

Gambia, Uganda and Zimbabwe [23]. The Kenya cancer registry based at Kenya 

medical research institute (KEMRI) is not cited in literature because it is poorly 

maintained and there is no population cancer registry in western Kenya. The 

population based cancer registry is important in evaluating the burden of the 

disease [26]. Projection of burden of liver cancer will enable the government to 

allocate enough resources to manage HCC and enact policies for prevention. 

Health policy and planning depend on quantitative data of disease epidemiology.  

 

2. Materials and Methods 
 

The study was approved by the ethics committe of the IRB (Institutional Review 

board) of Jaramogi Oginga Odinga Teaching and Referral Hospital, Kisumu.  The 

study site was Kisumu county and referral hospital liver clinic and medical wards 

and the study utilized data from subjects with liver cancer who were referred from 

the peripheral hospitals in western Kenya. Informed, signed consent was obtained 

from each subject, (< 18 years old signed by parent (s) or guardian). Using data 

collected between June 2015 and June 2016 which included 331 (231 males and 

100 females) subjects screened, 257 (179 males and 78 females) liver cancer cases 

diagnosed using both imaging (liver ultrasound and alfa-fetoprotein levels) were 

included.  

A standard questionnaire was administered for each study subject and it included: 

patients baseline information:- demographics-bio-data [age (years), sex, (M/F], 

symptoms and signs of HCC. Each study subject underwent a physical clinical 

examination. Under aseptic technique, blood was drawn from the cubital fossa 

and used to determine alpha-fetoprotein levels, liver function tests (ALT, AST 

and INR), markers of HBV, HCV and HIV and urine for aflatoxins. Liver 

ultrasound was done for all the subjects. The liver cancer cases were classified by 

BCLC system [7]. BCLC (Barcelona Clinic Liver Clinic) is a staging system of 

liver cancer. 

The study design was a hybrid S.I.R + I.P.M model. From the data generated, 

statistical analysis was conducted to determine the prevalence of risk factors of 

HCC and the parameters generated were included in this model. Other parameters 

used were generated from published data and other secondary sources. These 

included: - crude birth rates, crude death rates, prevalence of liver cancer, survival  
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and recovery rates from liver cancer. These are represented in the diagram in 

figure 1.  

 

3. Theoretical framework:- Model Description and Analysis 
 

3.1 I.P.M and S.I.R Models 

In modeling of disease states, a basic procedure in modeling of disease states is to 

use a compartmental model where a population is divided into groups. The S.I.R 

model divides the groups in to susceptible, infected and recovered and is useful in 

epidemiology and prediction of disease [4, 24]. Projected liver cancer burden in 

this community was done using a modified SIR + IPM model. The model 

describes a population in two states; as being diseased or susceptible. The model 

then allows for calculation of burden of HCC disease.  

Ordinary differential equations (ODE) of the infectious risk factors were then 

generated. Morbidity and mortality indicators of  liver cancer were obtained from 

literature and from the study and these included, crude birth rate, crude death rate, 

mortality due to HCC, mortality due to other diseases, survival and recovery rates 

from HCC, incidence, prevalence, susceptible population, infected population and 

recovered  subjects from HCC. These are represented in diagram in figure 1. 

 

 
Figure 1.0. A schema for modified model combining S-I-R and I.P.M model 

concepts 
 

In this model, the population is broken into three groups: S(t), the number of 

susceptible people, I(t), the number of infected people, and R(t), the number 

removed through death or recovery. In this scenario, time (t) is the number of 

years since the epidemic was discovered in western Kenya with a population of 

11,347,638 people [16].  
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This, keeping in assumptions that some of the susceptible people in the model 

may die because of other causes other than the liver cancer, we also isolate the 

cause-specific deaths of the infected individuals. 

 

The deterministic model is: 

 

•  = S(α-β) -µІ                                                                                           (1) 

•   = µІ-I (r +β)                                                                                          (2) 

•    =rI+ R (α+ β)                                                                                       (3)  

Where S, I and R are the numbers of susceptible, infected and recovered patients 

from liver cancer. The parameters r and µ respectively control the rate of infection 

and rate of recovery. The deterministic solution was calculated for the initial 

conditions of 1 infected and 257 susceptible using the ode45 integrator in MatLab 

The parameters were represented by the symbols included which are:- 

, α, µ, S, I, R, I, P, M, D 

 

Description of Parameters 

S(t)- Susceptible Individuals at time t 

I(t) Infected Individuals at time t 

R(t) Recovered Individuals at time t 

D(t) Dead Individuals due to all causes at time t 

F(t) HCC specific deaths at time t 

α(t)- number of births at time t 

β1 deaths rates amongst the susceptible population 

β2 deaths rates amongst the infected  population 

β3 deaths rates amongst those who have recovered 

δ  death rates amongst infected due to non-HCC causes 

ϒ  rate of recoveries 

  

Analysis was done by utilizing first order ordinary differential equations (ODE) in 

MatLab which were generated to model liver cancer in western Kenya. These 

deterministic models were then compared with discrete stochastic models in R 

that rely upon bio-statistical techniques to model liver cancer and it’s predicted 

burden.  

 

3.2 Parameterisation 

While models can provide us with a deeper understanding of the attack and 

control of non-communicable disease, to be applied more specifically to liver 

cancer, there is need to parameterise our models to match the observed behaviour 
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of the disease. Therefore, with the known values for S, I and R including their 

rates, the future disease occurrences in the population was predicted. In this case, 

the following in the model was applied. 

I(1)=0.43; % As from the statistical analysis 

R(1)=0.31; % This changes for every HCC, BCLC class i.e 0.0305 or between 

0.06 to 0.07 

S(1)=0.059; % As from the statistical analysis 

D(1)=0.69; % This also changes depending on the survival rates (which depends 

on the HCC BCLC class).  

 

Table 1. List of baseline parameters 

 

Symbol Description         Value More  information  

t Time  Years Number of years 

S(t) Susceptible Individuals at time t 0.059% Empirical statistical analysis  

I(t)  Infected Individuals at time t 0.43% This changes for every HCC, 

BCLC class i.e 0.0305 or 

between 0.06 to 0.07 
R(t)  Recovered Individuals at time t 0.31% Empirical statistical analysis 

D(t)  Proportion of dead Individuals at 

time t 
0.69% This also changes depending on 

the survival rates (which depends 

on the HCC BCLC class) 

Α Proportion of susceptible   α = [0.0005]. Proportion of susceptible  to cancer 

P Total Population of western 

Kenya 2016 

11,347,638 The population of western Kenya 

[S(t) + I(t) + R(t)] [20]] 

In Total number of  Infected 

cases 

257 Empirical statistical analysis 

Rn Total number of infected 

people recovered  

0 A very low value to due unlikely 

of full recovery 

µ The rate of recovery  0.093 Very low value 

R The rate of infection 

[incidence]  

0.257 per 

10,000 

Calculated from empirical data 

(βs) Rate of infection from 

infected population [I] 

0.43  
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Table 1. (Continued): List of baseline parameters 
 

(βa) Rate of infection from the 

recovered population [R] 

0.18 Obtained from secondary sources 

[6] 

ξ The average rate of infection 

or having HCC (liver cancer) 

after exposure to risk factors  

59% 

 

Effect of risk factors on HCC 

determined by statistical analysis   

 

 

 

TABLE 2: Referral proportions per county of the 257 HCC subjects 

 

 

County HCC Numbers 

(%) 

County HCC Numbers 

(%) 

Kisumu 

Vihiga 

Busia 

Migori 

Nyamira 

Nandi  

43 (16.7) 

11 (4.3) 

20 (7.8) 

50 (19.5) 

3 (1.1) 

9 (3.5) 

Siaya 

Kakamega 

Homabay 

Kisii 

Kericho  

40 (15.6) 

25 (9.7) 

41 (15.9) 

10 (3.9) 

5 (1.9) 

 

 

3.3 Empirical Framework: Model Design and Implementation of the 

integrated S.I.R + I.P.M model 

 

The average rate of infection or having HCC (liver cancer) after exposure to main 

risk factors is (1.59) 59%. Let the total population be described as one, susceptible 

fraction of the population (S(t)), infected fraction of the population (I(t)). We 

know β1= 0.257 i.e. 257 per 10000 individuals is the rate of infection. In the 

general case the change in the infected population is a product of I and S: We 

assume initial conditions with one infected individual in Western Kenya where 

the population is about 11,347,638 in a given year i.e. 365 days.  
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Fig 2. Susceptible and infected fractions of the population over time. 

 

 

Figure 2 shows that after the first 75 days of exposure in each year to the different 

risk factors, the entire population moves from the healthy to the infected 

population. The rate at which the infected population grew was exponential. 

 

3.4 Model Design and Implementation including Recovery Rate. 

 

Let the total population be defined as one, infected fraction of the population 

(I(t)), infected recovered fraction of the population (R(t)), infected-dead fraction 

of the population (D(t)), susceptible fraction of the population (S(t)), the rate of 

infection from the I population (βs) is 0.43, the rate of infection from the R 

population (βa) is 0.18. The parameter γ is called the removal or recovery rate. 

For most diseases, the period of infection can be estimated relatively precisely 

from epidemiological data.  

 

Note that we know that S + I + R = 1, hence knowing S and I will allow us to 

calculate R.  

These equations have the initial conditions S (0) > 0, I(0) > 0 and R(0) = 0. 

The MatLab code was used to solve the system of differential equations for a 3 -

year duration period of liver cancer progression in the population in western 

Kenya. 
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Figure 3: General graphical representation of the model 

 

Figure 3 shows that there is an exponential increase of liver cancer cases over 

time if there is no control 

 
 

Figure 4: Graphical model display for 5-year localized liver cancer. 

 

 (Recovery rate =0.31, Death rate=0.69) [Localized liver cancer is BCLC stages 0, 

1 and 2] 
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The Epidemic graph in Figure 4 depicts the fact that 90% of the population was 

infected during epidemic. This was because of the high infection rate (β). While 

the rate of infection in the population was 0.31, the rate of recovery was as low as 

0.093. It is very important to implement control measures to reduce infection rate 

in the population while increasing the recovery rate. 

 
Figure 5: Graphical model display for 5-year Regional Liver Cancer (Recovery 

rate =0.305, Death rate=0.695) [Regional liver cancer is BCLC stage 3]. 

 

Epidemic graph in figure 5 shows epidemic population arises because of more 

infected people leaving the infective group as compared to the epidemic model.   

 
Figure 6: Graphical model display for 5-year distant liver cancer (Recovery rate is 

between 0.6 and 0.7, Death rate is between 0.4 and 0.3) [Distant HCC is BCLC 

stage 4] 
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Epidemic graph in Figure 6, shows that the rate of susceptibility is fading out. 

This may be attributed to the fact that most people are becoming aware of the 

cancer prevention measures and are implementing them or there is a high 

mortality rate from HCC due to the advanced disease and metastases (spread of 

liver cancer). 
 

3.5 Forecasting future liver cancer burden.  

 

The above models therefore accurately predicts the burden of liver cancer among 

the population from one year to the next. Two principles are at play. The first 

principle is that  

i.)  The disease is spread because of exposure to the risk factors 

(susceptibility). This principle means that percentage of the population 

infected will generally increase over time (if the exposure rate is not 

reduced) at a rate proportional to the amount currently susceptible.  

          Let’s call 𝑥𝑛 the proportion of the population that is exposed in year 𝑛, 

where 0 ≤ 𝑥𝑛 ≤ 1. This first principle suggests that 𝑥𝑛 +1= I ∙ 𝑥𝑛, where I is 

the disease infection rate with unknown value.   

          In other words, if I = 3 and 2% of the population is exposed this year, then 

according to this principle, 6% of the population will be infected next year: 

[𝑥𝑛 +1] = 3 ∙ 0.02 = 0.06.   

ii.) The second principle in understanding the outbreak is that people who are 

exposed are more likely to be infected into the next year. This principle 

suggests that a low infection rate in one year will generally become a higher 

infection rate in the following year as a considerable proportion of the 

infected people do not recover but stay long with the disease. Ignoring the 

first principle, the second principle suggests that 𝑥𝑛 +1= R ∙ (1 − 𝑥𝑛), where 

R is a disease recovery rate. If R = 2 and 75% of the population is exposed 

this year, then according to this principle, 50% of the remaining population 

will be infected next year: 𝑥𝑛 +1= 2 ∙ (1 − 0.75) = 0.50.  

          Accounting for both principles at play, the infection rate in year 𝑛 and 

number of susceptible, we can accurately predict the infection rate in year 𝑛 

+ 1 according to: 𝑥𝑛 +1= T ∙ 𝑥𝑛 ∙ (1 − 𝑥𝑛) where T is a factor that combines I 

and R, the yearly rates of disease Infection and Recovery. 

 

3.5.1 Limitations 

 

There are two unknown parameters about this disease; the first unknown is what 

proportion of the population is currently susceptible. Let’s call this value 𝑥1. The 

second unknown is the value of T.  The values of 𝑥1 and T were therefore 

determined. 

 

3.6 Summary 

 

The total population of Western Kenya is 11,347,638 individuals [20]. 
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Then S(t) + I(t) + R(t) = 11,347,638. This is the original population of western 

Kenya. Since every person is exactly one of susceptible, infected, or 

recovered/died. This does not depend on t. 

Since infections emerge from lifestyle malpractices among susceptible, it’s 

believed that the number of susceptible will decrease over time at a rate 

proportional to the number of susceptible and proportional to the type of lifestyle 

they are leaving, with a constant of proportionality – α  (α =proportion of 

susceptible  ), where α > 0 [0.0005]. 

Therefore; dS /dt = − α S(t)I(t). 

Naturally, people are “removed” i.e. die at a rate proportional to the number of 

people infected, with a constant of proportionality µ (µ =death rate [0.12] hence 

we have; 

dR /dt = µ I(t). 

Assuming the total number of people being counted is always the original 

population of the western Kenya community, differentiating the equation gives; 

dS /dt + dI/ dt + dR/ dt = 0. 

And so; dI /dt = α S(t)I(t) − µ I(t). 

With the solution of these differential equations, sequences can be used to 

approximate the solutions, as in Euler’s method. 

Let Sn = S(n), In = I(n), and Rn = R(n), that is, the subscript of the sequence  

denotes the number of years that have passed.  

We can approximate dS/dt by setting the expression we found for it equal to ∆S/ 

∆t.  

Using this approximation, along with ∆S = Sn+1 − Sn, and a step-size of ∆t = 1 

year, to find a recursive formula for Sn+1 in terms of Sn and In.  

Therefore; Sn+1 = Sn – aSnIn. 

Using dI /dt ≈ ∆I ∆t, ∆I = In+1 − In, and a step-size of ∆t = 1 year, to find a 

recursive formula for In+1 in terms of Sn and In. 

Therefore; In+1 = In + α SnIn – bIn 

Using dR /dt ≈ ∆R ∆t, ∆R = Rn+1 − Rn, and a step-size of ∆t = 1 year, to find a 

recursive formula for Rn+1 in terms of Rn and In. 

We find; Rn+1 = Rn + bIn 

We therefore estimate that if no interventions are put into place, a = 0.0005 and b 

= 0.12 then the following table shows the progression of the liver cancer in 

western Kenya.  

 

Table 3. Progression of liver cancer burden over 3 years. 

 

      n(year) Sn In Rn Susceptibility Rate Infection Rate Recovery Rate

0 11347638 257 0 0.000617 0.00226 0.0000

1 11347381 10232 32 0.002265 0.09017 0.0003

2 11337149 9302 17 0.090171 0.08205 0.0001

3 11327847 6135 98 0.082049 0.05416 0.0009
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Table 3 shows that as the recovery rate changes due to an intervention in the 

population to manage liver cancer to improve the well-being of the HCC patients, 

the burden of HCC decreases.  

 

4.0 Determination of the Effectiveness of the Model 
 

This uses techniques from Markov chains, applied to epidemic modelling that 

may allow for more detailed analysis of epidemics. 

i) Markov Chains for Stochastic Epidemic Models 

All but the simplest epidemic models are nonlinear, preventing direct analytic 

computation of the time dependent probability distribution [27]. However, 

numerical solutions can be computed for systems of moderate size (100's or 

1000's individuals). 

A continuous time Markov chain is a discrete set of states, known as the state 

space, and a set of rules for transitions among the states. The Markov property 

means transitions between states occur randomly and depend only on the previous 

state.  

Let  be a random variable that takes a value on the state space and represents 

the state of the Markov chain at time t then, 

 

for all sequences,  in the state space and all times . 

 

Deterministic model-These are models in which outcomes are precisely 

determined through known relationships among states and events, without any 

room for random variation. In such models, a given input will always produce the 

same output, such as in a known chemical reaction or disease state. Therefore, 

The deterministic model is: 

 

 
A stochastic model is a tool for estimating probability distributions of potential 

outcomes by allowing for random variation in one or more inputs over time. The 

random variation is usually based on fluctuations observed in historical data for a 

selected period using standard time-series techniques [4]. 

The stochastic model is: 

S + I [f(r)] = 2 *I 

I [f(r)] =S 

ii) Conditional Probability 

One adjustment that needs to be made is to recognize that the stochastic 

simulation will give a significant probability of approximately 26%, of there being  
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no liver cancer. Of course, the premise is that an outbreak did occur. To correct 

for this, we look not at the final simulated probability distribution but at the final 

simulated conditional probability distribution, that is, the distribution of possible 

numbers of infected given that there is at least one infected. One computes the 

conditional probability thus: 

P (k infected / 1 or more people are infected) = P (k infected)/P (1 or more people 

are infected) 

where the probability that one or more people are infected is 1-P (no susceptibility 

occurs)  

 

4.1 Disease Progression using stochastic Model 

 

The disease progression model simulate the transition from exposed to infected, to 

liver cancer, and also the transition from liver cancer to recovered in the model. 

The full structure of this module function, progress, is demonstrated in figure 7. 

Instead, both progression events are individual-level stochastic processes, in 

which there is a constant hazard of transition. The times spent in each disease 

compartment therefore follow a geometric distribution. The code here is for the 

transition between exposed to infected, to liver cancer states. For each susceptible 

person for transition, the event is modelled as a stochastic process following a 

Bernoulli distribution with the rate parameter, i.e. rate in R. Model 

parameterization was appropriately done.  

 

4.2 Simulation 

 

The model was simulated over 1000 time steps 10 times and is depicted in the 

figure 7 below.  

 
 

Figure 7. Simulation of the SIR model of HCC in western Kenya. 
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4.3 Model Comparison 

The comparison shows that the ODE and stochastic models have complementary 

strengths. The stochastic models account for individual interaction and provide 

the entire probability distribution output. For N individuals, the state space in the 

stochastic model has N+1 elements, the state space in the stochastic SIR model 

requires (N+1) (N+2)/2 elements.  

The two models, generally, to a greater extent generate the same trend and the 

same curve, which confirms that the ODE model is good enough for the 

progression of the liver cancer in such a case in the community. 

 

4.4 Model Comparison against the predictive stochastic model 

 

4.4.1 Comparing the accuracies of the two Models 

A statistical test was conducted to assess whether the model had a better accuracy 

than a more complex stochastic model using a 10-by-10 repeated cross-

validation t test. Predicted parameters were loaded as a data set then a cost matrix 

was created. Two ECOC templates were then created: one that uses linear SVM 

binary only and one that uses SVM binary equipped with the RBF kernel. 

C1(model 1) and C2 (model 2) are ECOC template objects. C1 is prepared for 

linear SVM. C2 is prepared for SVM with an RBF kernel. The null hypothesis 

was then tested that the model (C1) is at most as accurate as the more complex 

stochastic model (C2) in terms of classification costs. The 10-by-10 repeated 

cross-validation test was then conducted. Request to return p-values and 

misclassification costs was done. 

 

The following output was achieved using Matlab code. 

    Parameter Count Percentage (%) 

Susceptible rate 

Infection rate 

Recovery rate 

4 

4 

4 

33.33 

33.33 

33.33 

                

 

4.4.2 Explanation 

The empirical distribution of the classes is uniform, and the classification cost is 

slightly imbalanced. The p-value is slightly greater than 0.10, which indicates to 

retain the null hypothesis that the model is at most as accurate as the more 

complex stochastic model. This result is consistent for any significance level 

(Alpha) that is at most 0.10. e1 and e2 are 10-by-10 matrices containing 

misclassification costs. Row r corresponds to run r of the repeated cross 

validation. Column k corresponds to test-set fold k within a cross-validation run. 

Matlab code were used.  

 

4.4.3 Comparing the Predictive Accuracies Between the two Models 

The two models were tested to determine whether they have equal predictive 

accuracies. The top predictors were identified in terms of their importance. 
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Explanation 

In this case testckfold treats classification models as templates, and so it ignores 

all fitted parameters in C. That is, testckfold cross validates C using only the 

specified options and the predictor data to estimate the out-of-fold classification 

losses. 

h = 0 indicates to not reject the null hypothesis that the two models have equal 

predictive accuracies. This result favours the hybrid S.I.R + I.P.M model 

developed, though the results can vary and this shows that the models are 

sensitive in accurately predicting burden of liver cancer. 

 

5. Discussion 
 

In this study, a hybrid S.I.R-I.P.M model was developed for estimating liver 

cancer burden because there was only a small liver cancer data set to explore. The 

number of subjects who will develop HCC over time and at different recovery 

rates of the disease was estimated. It is worth noting that liver cancer starts from a 

segment of the liver and gradually spreads over time. The extent and severity of 

damage to the liver and effects on it’s functions depends on how severely the 

lobes of the liver are affected. Ordinarily, without intervention, the liver cancer 

will progress and the patient will die. Majority of liver cancer cases die because of 

lack of intervention and they also present late to the hospital for medical care.  

The model demonstrates that the future estimated burden of liver cancer, in table 

3, shows an increase of cases over time if there is no intervention. Such an 

increase might be convincing as liver cancer incidence in developing countries is 

expected to rise principally due to lack of  multiple intervention processes like 

lack of awareness in the public sector, lack of HBV vaccination for adults and 

long life patients with HIV have while on HAART [13, 14]. 

  

Quantitative descriptions of disease epidemiology, such as incidence, prevalence 

and mortality, by age and sex, are essential inputs for burden of disease studies 

and cost effectiveness analyses of interventions. Such studies serve as an 

important source of information for policy-making, planning, and research 

prioritization in health care. Estimation of disease burden due to liver cancer is 

therefore feasible by modeling methods.  

 

Making future prediction of liver cancer incidence in western Kenya is difficult 

due to the lack of population based liver cancer data and registry. In this study, we 

have used the data of liver cancer from subjects who were referred to the tertiary 

health facility from lower levels of health care service delivery for specialized 

care to estimate the future burden of disease in the next 1, 2 and 3 years 

respectively. It demonstrates that there is an exponential increase in burden of 

liver cancer. The projected rates indicate that liver cancer in western Kenya will 

be increasing over time unless it is controlled. Indeed, liver cancer is referred to as 

a recalcitrant cancer, which is defined as those cancers that have 5-year relative 
survival rates below 50%. HCC progression in this study was done over three years 
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because most patients with HCC die within 3-6 months of diagnosis [8, 17] 

especially where there is no intervention like Kenya. Adequate attention therefore 

needs to be given to liver cancer to reduce morbidity and mortality. This will need 

the attention of policy makers at the national and county governments to enact 

appropriate policies to manage HCC. I.P.M models have been used frequently 

both to supplement missing data and to study the agreement between different 

epidemiological data [1, 5, 9, 12]. 

Suffice it to mention that, while the cancer registry in KEMRI is not well 

managed and kept,   the health sector strategy plan 2015-2021 too has very 

minimal emphasis on management and prevention and liver cancer [10].  

In other contexts, mathematical models have been used to predict the outcome in 

cancer treatment. This was shown by researchers to be more accurate than doctors 

when predicting cancer treatment outcomes [21]. At present, prediction models 

are not used as widely as they could be by doctors [21]. Some studies have 

however suggested that some models lack clinical credibility while others have 

not yet been tested. For doctors to have confidence in models, they need to be 

available and easy to use. Many doctors still think that seeing a patient gives them 

information that cannot be captured in a model and a study conducted showed that 

it is very unlikely that a doctor can outperform a model [21].  

This study demonstrates the accurate predictive value of mathematical modeling 

to understand the burden of liver cancer cases in western Kenya. More focus 

needs to be put to have a sound scientific strategy and framework to manage liver 

cancer to improve the efforts from the research community in identifying and 

preparing for liver cancer management which claim more lives because patients 

come late for health care services. With the increasing number of cases of HCC, 

there is need to have a concerted effort from all stakeholders—scientists, 

researchers, policy makers, clinicians and the public to enable prevention, early 

diagnosis and management of liver cancer. The government will need to be 

engaged to avail treatment for both symptomatic and specific care of liver cancer. 

 

The sensitivity analyses of the models also show that the models can effectively 

be used to predict the number of liver cancer cases over time in a community. The 

prediction is helpful to understand and assess variation and trends of the disease 

over the years. This will impact positively on policy generation for management 

and prevention of HCC.  

Due to the limitation of the study design, this estimate may not exactly predict the 

way the population based future estimates would have. However, it provides 

useful information about the possible exponential increase in burden of liver 

cancer particularly in western Kenya. This estimation will help in planning for 

and allocating resources for liver cancer treatment and control in the region. 

 In conclusion, this study establishes the applicability and effectiveness of the 

hybrid S.I.R- I.P.M model for predicting burden of liver cancer. Liver cancer rates 

in western Kenya will increase over time unless controlled and this can inform 

management and prevention strategies.   
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6. Recommendations 
 

Population based liver cancer data is lacking and is important in planning for 

managegemnt of liver cancer in the community. It is therefore important to:  

i.) Generate a policy to support research in liver cancer in the community 

ii.)  Generate a policy to enable availability of treatment options for different   

stages of liver cancer  

iii.) To build capacity of the health care workers to early detect HCC and 

appropriately manage it, and   

iv.) Create awareness on the importance and value of using models in 

predicting the burden of liver cancer.  
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