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Abstract

The global increase in vector borne diseases has been linked to climate change. Seasonal

vegetation changes are known to influence disease vector population. However, the rela-

tionship is more theoretical than quantitatively defined. There is a growing demand for

understanding and prediction of climate sensitive vector borne disease risks especially in

regions where meteorological data are lacking. This study aimed at analyzing and quantita-

tively assessing the seasonal and year-to-year association between climatic factors (rainfall

and temperature) and vegetation cover, and its implications for malaria risks in Baringo

County, Kenya. Remotely sensed temperature, rainfall, and vegetation data for the period

2004–2015 were used. Poisson regression was used to model the association between

malaria cases and climatic and environmental factors for the period 2009–2012, this being

the period for which all datasets overlapped. A strong positive relationship was observed

between the Normalized Difference Vegetation Index (NDVI) and monthly total precipitation.

There was a strong negative relationship between NDVI and minimum temperature. The

total monthly rainfall (between 94 -181mm), average monthly minimum temperatures

(between 16–21˚C) and mean monthly NDVI values lower than 0.35 were significantly asso-

ciated with malaria incidence rates. Results suggests that a combination of climatic and veg-

etation greenness thresholds need to be met for malaria incidence to be significantly

increased in the county. Planning for malaria control can therefore be enhanced by incorpo-

rating these factors in malaria risk mapping.
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Introduction

Despite current gains in malaria reduction, the disease continues to have devastating health

and livelihood impacts especially in sub-Saharan Africa where 88% of global malaria cases and

deaths occur [1]. In Kenya, malaria accounts for about 18% of outpatient consultations and

6% of hospital admissions [2]. Nearly 75% of the Kenyan population live in malaria prone

zones, mostly in epidemic and seasonal transmission zones [3]. Epidemic transmission is influ-

enced by a complex of interacting factors including vector, parasite, climate, environmental

and socioeconomic factors [4]. Malaria prevention and control efforts in Kenya are biased

towards lake endemic and highland epidemic zones while seasonal transmission zones remain

largely neglected [5]. Malaria is among the most prevalent diseases in seasonal transmission

zones such as Baringo County [3].

Studies undertaken in East African region reveal trends of changing rainfall and temperature

[6,7]. For example, there was a warming of up to 0.6˚C in minimum temperature in some parts

of East Africa over the period 1939–1992 [6]. Similarly, increasing minimum and maximum

temperature trends were observed over the Greater Horn of Africa during the 1961–2010 period

[7]. A warming trend is also projected across all seasons and the entire region is anticipated to

warm by about 2˚C or more by the end of the 21st Century [8]. While models simulate more

rainfall for the region in the future, recent instrumental data show a declining trend–this incon-

sistency is referred to as the “East Africa climate paradox” [9]. For instance, a declining rainfall

trends have been observed in parts of Kenya [7]. However, models projected a more than 10%

increase in mean precipitation over the semi-arid areas of northern Kenya and a generally wet-

ter climate in the East African region during the mid-21st Century [10]. Earlier, an increase in

seasonal and annual precipitation (2–11%) was projected for the region by 2099 [11], though

some models showed decreasing rainfall during the long rains season [12].

In many tropical ecosystems, such as savannas, year-to-year variations in vegetation dynam-

ics are controlled primarily by changes in the frequency and timing of precipitation [13]. Vege-

tation cover offers shade that potentially reduces evaporation, minimizes sub-canopy wind

speed, and enhances near ground humidity [14]. Cumulatively, these factors enhance vector

population and longevity, and malaria transmissions are likely to increase with increased vector

survival [15]. This has been demonstrated in previous studies which showed that mosquito vec-

tor populations are likely to be high when vegetation growth is at its peak [16].

Moderate Resolution Imaging Spectroradiometer (MODIS) derived Normalized Difference

Vegetation Index (NDVI) has been used to assess, monitor or model land cover changes for

various applications ranging from drought early warning systems, health and epidemiology, to

biodiversity monitoring and conservation [17–19]. Remote sensing is an indispensable tool for

mapping spatial distribution and modelling malaria transmission risks. Climatic and environ-

mental variables are important parameters when modelling malaria transmission [4].

Although studies at various scales have used remote sensing in analyzing spatial and temporal

changes in malaria risks, these tools have not been adequately applied in planning for malaria

control in remote areas where meteorological data are lacking. This study assessed the seasonal

and year-to-year association between climatic factors (rainfall and temperature) and vegeta-

tion cover, and its implications for malaria risk in four ecological zones of Baringo County.

This study presents, a local scale analysis of climatic and vegetation dynamics using remotely

sensed data and further, analyses the relationship with malaria cases in the dryland areas of

Northern Kenya. Understanding these dynamics is central to effective control of malaria trans-

missions and its associated adverse ramifications and for design and implementation of evi-

dence-based risk reduction measures.

Climate variability and malaria risk
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Materials and methods

Study area

The mostly arid to semi-arid Baringo County lies between 00˚ 26’ and 00˚ 32’ North and 36˚

00’ and 36˚ 09’ East. For the purposes of this study, four ecological zones were identified as

highland (1500–2300 m a.s.l.), mid-altitude (1000–1500 m a.s.l.), riverine (Kerio valley, 1100–

1200 m a.s.l.) and Lake ecosystem (lowland, below 1000 m a.s.l.; Fig 1) based on altitude, vege-

tation types and climatic characteristics. The mean annual rainfall varies between 300-600mm

while mean annual minimum and maximum temperatures are 20˚C and 35˚C, respectively.

The dominant vegetation include the evergreen forest in the highland zone, deciduous bush-

land and thicket in the mid-altitude zone, woodland and riparian forest in the riverine zone

and semi desert grassland and shrub-land in the lowland zone. In the lowland zone, areas

around Marigat and Loboi are dominated by invasive Prosopis juliflora bushes.

Climate and environmental data

Land surface temperatures (Tmax and Tmin) for the period 2004 to 2015 were extracted from

the USGS LandDAAC MODIS dataset [20]. Observed climate data were available only for the

highland zone thus could not support analysis in other ecological zones. In addition, observed

rainfall data were incomplete and not up-to-date. Thus, only observed temperature (monthly

minimum and maximum temperatures) data for the highland zone obtained from Kabarnet

station for the 2005–2013 period were used to authenticate remotely sensed temperature data.

Missing records were filled using the mice package in R software [21]. The Climate Hazards

Group InfraRed Precipitation with Station Data (CHIRPS) time-series [22] was used to esti-

mate rainfall in the region over the same time period as for the temperature data. Daily precip-

itation data with a resolution of 0.05˚ were used to derive the total monthly and annual

precipitation for each zone. Sixteen day mean values of the NDVI was derived from MODIS

imagery from the Aqua Satellite for the 2004–2015 period [23]. The 16-day composites were

averaged into monthly and seasonal means for each year. All data sets (CHIRPS, MOD-

IS-NDVI and MODIS-land surface temperatures) were downloaded as per the ecological

zones. The data were grouped into seasons as follows: (1) “long” rains season—March, April,

May (MAM), (2) “short” dry season—June, July, August (JJA), (3) “short” rains season—Sep-

tember, October, November (SON) and (4) “long” dry season—December, January, February

(DJF).

Malaria data

Data on the number of clinical malaria cases were obtained from eight health facilities (Bar-

wessa and Keturwo dispensaries in the riverine zone; Kampi ya Samaki health center and Mar-

igat sub-county hospital in the lowland zone; Kipcherere dispensary and Kimalel health centre

in the mid-altitude zone, and Kabarnet and Kabartonjo hospitals in the highland zone) (Fig 1).

Patient-level data was not accessed since unique codes were used to replace names in the rec-

ords. Data on malaria cases was for the 2009–2012 period, this being the only period where

records were complete and available for all the named health facilities.

Data analysis

The Mann-Kendall (M-K) trend test with Sen’s slope estimator was used to assess trends in

minimum and maximum temperature, rainfall, and NDVI. Seasonal averages and trends were

estimated using Seasonal Mann-Kendall (SMK) for each zone at 5% significance level. Cross

correlation function (CCF) was used to determine the relationship between NDVI and lagged

Climate variability and malaria risk
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Fig 1. Map of Kenya showing Baringo County and the selected study area.

https://doi.org/10.1371/journal.pone.0199357.g001

Climate variability and malaria risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0199357 July 5, 2018 4 / 20

https://doi.org/10.1371/journal.pone.0199357.g001
https://doi.org/10.1371/journal.pone.0199357


(1, 2 and 3-month intervals) climate variables [24]. The temporal records of monthly NDVI

were first square root transformed to generate normally distributed data sets [25]. A linear

regression model was generated with NDVI as the response variable and rainfall and tempera-

tures as the predictor variables. This method has been employed in other similar studies

describing vegetation response to climate factors [19].

Since malaria cases and NDVI data sets were clustered, the continuous data (temperature,

rainfall, and NDVI) were discretized into categorical data. A generalized linear mixed model

(GLMM) was used with Poisson distribution to model the association between malaria cases,

climate (Tmin and rainfall), and NDVI (Eq 1). The Poisson model allows over-dispersion and

is commonly used in environmental epidemiology [26].

Ln gið Þ ¼ ln pð Þ þ b1X1 þ b2X2 þ b3X3 þ mi ð1Þ

Where:

gi = rate of malaria cases at time i
p = offset variable; here population size [27]

X = predictors (NDVI, Rainfall, Tmin)

b = coefficients.

mi = random effect.

Maximum temperature was excluded from the models due to high correlation with mini-

mum temperature (0.844). Studies have shown that minimum air temperature is primarily

linked to malaria transmission due to its influence on vector and parasite development rates

[28]. A simple regression model was fit to evaluate the crude effect of each of the predictors on

malaria incidence. Then a multiple regression model was fit to evaluate the adjusted effect of

the predictors on malaria incidence, as well as, seasonality, differences in ecological zones, and

year-to year variations in all variables. In the model, an offset variable was used to standardize

the source population to enable comparability of rates. The relative risk of malaria occurrence

was estimated using the incidence rate ratio (IRR = cases per unit population) [29]. All statisti-

cal analyses were performed in R version 3.2.2 software [30].

Results

Annual climatic and vegetation trends

Over the 2004 to 2015 period, the riverine zone had a statistically significant trend for remotely

sensed temperatures, marked by a decrease in Tmin (tau = -0.174; p = 0.0096). In the highland

zone, in situ temperature trends corroborated remotely sensed temperature data where a sig-

nificant decrease in mean annual Tmin was recorded (tau = -0.327; p<0.05). Fig 2 shows the

spatio-temporal variation in NDVI observed during the 2004–2015 period. The annual vegeta-

tion cover substantially declined in 2009, and regeneration occurred thereafter with peak vege-

tation greenness observed during 2012–2013 in all zones (Fig 3M–3P). High NDVI was

recorded in the highland zone and low NDVI in the lowland zone. During the study period,

there was a significant increase in NDVI in the riverine (tau = 0.144; p = 0.011) and mid-alti-

tude (tau = 0.119; p = 0.035) zones that is likely related to enhanced vegetation as a response to

the general increase in mean annual precipitation.

Seasonal trends

There were no change in seasonal trends in mean Tmin and Tmax across all zones during the

2004–2015 period. Fig 3A–3H show high seasonal temperatures trends in the lowland zone,

DJF season being warmest while JJA the coolest. In contrast, the highland zone received the

Climate variability and malaria risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0199357 July 5, 2018 5 / 20

https://doi.org/10.1371/journal.pone.0199357


Climate variability and malaria risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0199357 July 5, 2018 6 / 20

https://doi.org/10.1371/journal.pone.0199357


highest seasonal rainfall and showed maximum NDVI measurements compared to other

zones (Fig 3I–3P).

A strong positive relationship was observed between the short rainy season (SON) and the

corresponding growth of vegetation. More generally, NDVI values were higher during the

SON season compared to the MAM and JJA seasons in the highland and midland zones

(Table 1) indicating additive effects of rainfall from the previous seasons.

Monthly trends

The variation in mean Tmin and Tmax is shown in Table 2. In the riverine zone, a significant

decrease in Tmin was observed during the months of January and December in the 2004–2015

period (Fig 4A and 4B respectively). Similar significant decreases in Tmax were noted in the riv-

erine and mid-altitude zones during the months of January and October respectively (Fig 4C

and 4D respectively). In contrast, the lowland zone recorded significant increase in Tmax dur-

ing July (p = 0.010).

Trend analysis showed alternate decrease and increase in total monthly rainfall (Fig 5).

There was a significant decrease in mean monthly rainfall during January for the 2004–2015

period in the highland (tau = -0.561; p = 0.011), riverine (tau = -0.591; p = 0.007, mid-altitude

(tau = -0.561; p = 0.011), and lowland (tau = -0.606; p = 0.006) zones. Similar decreasing trends

were observed in March, April, and September, though the decreases were not significant. A

significant increase in total monthly rainfall was noted in the lowland zone in October

(tau = 0.455; p = 0.040; Fig 5).

The annual NDVI decreased between January and March, and steadily increased between

April and June (Fig 6). A subsequent decrease was observed between September and October

that was followed by an increase between November and December. A significant positive

NDVI trend was observed in the riverine zone during November (p = 0.0087) and December

(p = 0.033) suggesting that vegetation regeneration in riverine zone could be sensitive to

cumulated effects of rainfall from previous months.

NDVI at 1-month lag showed the strongest positive correlation with rainfall. A strong nega-

tive relationship was detected between NDVI and temperatures with no time lag for Tmin, and

with 1-month time lag for Tmax. In the riverine zone, minimum temperature had a significant

negative relationship with NDVI, suggesting that decreasing temperature could have had posi-

tive influence on the vegetation growth.

Malaria risk

Higher malaria cases were observed in the lowland and highland zones during the 2009–2012

period compared to the mid-altitude and riverine zones (Fig 7). Malaria trends showed a sea-

sonal pattern where, in the lowland zone, escalated malaria cases were recorded during the JJA

and SON seasons, except in 2011, when higher cases were observed during the MAM season.

However, there was no clear seasonal pattern in malaria trends in the riverine and mid-altitude

zones (Fig 8).

Reported malaria cases significantly reduced in the lowland zone (tau = -0.583; p<0.01)

during the 2009–2012 period. However, a significant increase was observed in the highland

(tau = 0.244; p = 0.015) and mid-altitude zones (tau = 0.246; p = 0.013). The decline observed

in the lowland zone, is attributed to disparate malaria intervention programs rolled out in the

Fig 2. Trend in NDVI change observed during 2004–2015 period. Values are: 1- January, 2—February, 3—March, 4—April, 5 –May, 6 –June, 7 –

July, 8, August, 9 –September, 10—October, 11—November, 12 –December.

https://doi.org/10.1371/journal.pone.0199357.g002
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Fig 3. Seasonal trends in Tmin (A-D), Tmax (E-H), rainfall (I-L), and NDVI (M-P).

https://doi.org/10.1371/journal.pone.0199357.g003
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area as opposed to other zones. In the riverine zone, a steady increase in malaria cases occurred

during 2009–2011 that was followed by a decline in 2012.

Correlation analysis showed that both minimum temperature and NDVI were significant

variables associated with high malaria incidence with a 1-month lag. The correlation between

rainfall and malaria cases was highest with a 2-month lag. Malaria cases had significant associ-

ation with NDVI and climatic factors in the simple regression model (p<0.05). However, on

adjusting for the effect of Tmin, rainfall, and seasons, there was a 29.7% increase in malaria risk

at Tmin between 16.2˚C—18.6 compared to those below 16.2˚C (Table 3). A significant

increase in malaria risk was noted at Tmin above 18.6˚C (IRR>1; p<0.05).

A reduction by 8.8% (p<0.05) in malaria risk occurred when there was moderate vegetation

cover compared to sparse vegetation cover (Table 3). Although a 7.6% increase in malaria risk

occurred when there was dense vegetation cover (NDVI above 0.57), this risk was not signifi-

cantly different from that of sparse vegetation cover (NDVI below 0.35).

In this study, monthly rainfall lower than 94 mm had no significant effect on malaria risk

while values above 181mm per month caused 45.5% reduction in malaria risk. Thus, a moder-

ate amount of rainfall (between 94-181mm in one month) was necessary for 25.3% increase in

Table 1. Influence of climatic factors on vegetation cover as observed across the four seasons.

Highland Mid-altitude Riverine Lowland

t p t p t p t p
Rainfall 3.720 0.00054� 4.3810 0.000068� 4.295 0.000089� 4.705 0.000024�

Tmin -1.185 0.242 -1.399 0.169 -2.974 0.00464� -1.858 0.0696

Tmax -0.134 0.894 0.403 0.689 1.672 0.101 0.433 0.667

MAM -2.713 0.00936� -1.607 0.115 -1.962 0.056 0.716 0.477

JJA -0.281 0.780 -0.047 0.963 1.069 0.099 -0.298 0.767

DJF 1.020 0.313 0.392 0.697 -0.603 0.550 0.904 0.371

Note: SON is the reference season;

� denotes significance level at 0.05

https://doi.org/10.1371/journal.pone.0199357.t001

Table 2. Monthly minimum and maximum temperature trends in the four zones during 2004–2015.

Highland Mid-altitude Riverine Lowland

Month Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax

tau tau tau tau tau tau tau tau

January -0.273 -0.273 -0.131 -0.217 -0.02� -0.02� -0.493 -0.337

February 0.583 0.583 0.784 0.681 0.493 0.583 0.273 0.337

March 0.337 0.1 0.784 0.583 0.411 0.273 0.493 0.891

April 0.217 0.217 0.273 0.337 0.273 0.273 0.891 0.891

May 0.217 0.337 0.337 0.493 0.681 0.891 0.411 -0.273

June 0.217 0.681 0.784 0.493 0.681 0.784 0.784 0.583

July 1 0.493 0.583 0.273 0.891 0.784 0.217 0.01�

August 0.784 0.583 0.583 0.784 0.891 0.681 0.583 0.337

September 0.891 0.217 0.493 0.337 0.584 0.891 0.493 0.17

October 0.981 0.493 0.1 -0.028� 0.273 -0.217 1 -0.17

November 0.583 0.583 0.784 0.784 0.337 0.337 0.681 1

December 0.411 0.891 0.131 0.891 -0.014� -0.055 0.493 0.131

� denotes significance level at 0.05

https://doi.org/10.1371/journal.pone.0199357.t002

Climate variability and malaria risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0199357 July 5, 2018 9 / 20

https://doi.org/10.1371/journal.pone.0199357.t001
https://doi.org/10.1371/journal.pone.0199357.t002
https://doi.org/10.1371/journal.pone.0199357


Fig 4. Trends in mean monthly Tmin and Tmax for selected months as examples. (A) January, (B) December, (C) January, and (D) October.

https://doi.org/10.1371/journal.pone.0199357.g004
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Fig 5. Total monthly rainfall in the four ecological zones during the period 2004 to 2015. A decreasing trend is observed during January while

an increasing trend is observed during October.

https://doi.org/10.1371/journal.pone.0199357.g005
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Fig 6. The annual cycle of NDVI for the years 2004 and 2015 as examples. Mean monthly values are indicated in

bold.

https://doi.org/10.1371/journal.pone.0199357.g006
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Fig 7. Monthly trends in malaria cases recorded per zone during 2009–2012 period.

https://doi.org/10.1371/journal.pone.0199357.g007
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Fig 8. Distribution of total malaria cases by seasons during 2009–2012 period.

https://doi.org/10.1371/journal.pone.0199357.g008

Climate variability and malaria risk
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malaria risk. Malaria risk was significantly higher during MAM, JJA and SON seasons com-

pared to DJF (IRR>1; p<0.05; Table 3). Tmin and NDVI accounted for 66% (29.9, 36.1 respec-

tively) of the total variation in malaria incidence explained by model. Differences between the

ecological zones and year-to-year variations in vegetation cover, rainfall and minimum tem-

perature had insignificant effects on malaria risk (p>0.05).

Discussion

Time series of monthly, seasonal, and annual patterns of rainfall, minimum and maximum

temperature, and NDVI were analyzed at four ecological zones in Baringo County. Significant

spatial variations in temperatures were observed. There was a decrease Tmin trends observed in

the riverine and highland zones. Studies have shown that minimum and maximum air temper-

ature trends are neither stable nor increasing but often depict fluctuations over varied tempo-

ral scales. While some studies found decreasing Tmin and Tmax trends [6,31], warming trends

were reported across different parts of Africa [32,33]. The short-term cooling episodes are not

unique to this study since similar decreasing minimum temperature trends been previously

reported in Serbia [34] and Northeast Brazil [35] during 2000–2010 and 1960–2011 respec-

tively. Suggested reasons for such cooling trends include the influence of large water body

causing alterations in meso-scale circulations [6,35], and decadal cooling of the Tropical

Pacific sea surface temperature (SST) [36]. The observed warming trends in the lowland zone

corresponds with studies in different locations in East Africa [6,32]. Although the recent global

warming has been largely attributed to anthropogenic effects [37], the reasons for the observed

local-scale temperature slowdown are indistinctive and merits further inquiry.

The observed rainfall during January and MAM season in all zones corroborate other stud-

ies over Kenya and other parts of East Africa [38]. While observations and simulated ensem-

bles suggest that decreasing long rains over the East African region is linked to the SST

anomalies [39] the increasing short rains has been attributed to the warming of the western

Indian Ocean [40]. The decreased rainfall observed during the MAM season is primarily

related to declines during the months of March and April whereas the observed increase in the

SON season is mainly due to increasing rainfall during the month of October.

This study shows that peak vegetation greenness occurred during the months of November

and December, coinciding with the increased short rains. The decreased vegetation cover

observed in 2009 is linked to the 2008–2009 drought experienced in the region. The altitudinal

Table 3. Effect of various ranges of rainfall, Tmin, and NDVI on malaria incidence rate.

Variables Categories Range IRR p
Intercept 0.018 0.0001

Sparse 0.26–0.41

NDVI Moderate 0.42–0.56 0.912 0.0001

Dense 0.57–0.72 1.076 0.219

Low 6.50–93.90

Rainfall (mm) Moderate 94.00–181.00 1.253 0.0001

Heavy 181.10–269.00 0.545 0.0001

Low 13.80–16.20

Tmin (˚C) Moderate 16.21–18.60 1.297 0.0001

High 18.61–21.00 1.685 0.0001

JJA 1.356 0.001

Season MAM 1.537 0.0001

SON 1.591 0.0001

https://doi.org/10.1371/journal.pone.0199357.t003
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variation in overall and annual vegetation greenness is an indication of the differences in

response among the vegetation types (mainly forest, woodlands, and shrubs) to rainfall effects.

For instance, the presence of evergreen P. juliflora bushes in the lowland zone may have con-

tributed to the non-significant changes in vegetation in the area. The persistent greenness

observed in the highland zone could be linked to dominant forest cover unique to this zone.

However, the observed increase in vegetation cover in the riverine and mid-altitude zones may

be due to the emergence of open deciduous shrubs that are highly responsive to slight increases

in rainfall. The observed annual increase in vegetation trends in all zones in Baringo contra-

dicts studies over Eastern and Central parts of Kenya that showed declining vegetation density

during 2001–2010 period [41]. The declining vegetation productivity over Eastern and Central

Kenya were attributed to significant decreases in annual rainfall [38]. In the semi-arid tropics,

high annual NDVI measurements often corresponds with high annual precipitation [42]. Con-

sequently, increasing vegetation greenness observed in Baringo could be due to the dominant

vegetation (woodland to bushland) response to increasing annual rainfall. A study in East

Africa showed that woody vegetation growth is a function of accumulated rainfall over multi-

ple months [43].

A positive relationship with one-month lag was observed between rainfall and vegetation-

NDVI in all zones. This suggests that vegetation growth response is controlled by the preced-

ing months’ rainfall. This study findings corresponds to those that found up to one-month lag

of peak vegetation to rainfall in western Kenya [44]. A non-significant relationship between

vegetation greenness and precipitation was reported in Mongolia, China [19], suggesting dif-

ferences in vegetation response in different geographic regions. Another study revealed that

vegetation growth over Sudanian region depended on the history of rainfall in that area [42].

Like drought, the rainfall lag effects on vegetation growth vary from months to years [42].

A negative response of vegetation to temperature occurred with up to 1-month lag. Tmin at

current time (lag 0) had significant negative association with vegetation in the riverine zone.

This may be attributed to the strong dependence of woody vegetation in the riverine zone to

soil moisture. The observed decrease in minimum temperature in the riverine zone may have

caused a reduction in evaporative demand consequently increasing soil moisture available for

vegetation growth. Further, the negative temperature-vegetation association could be the result

of positive precipitation effects on vegetation that cools the atmospheric air through evapora-

tion [45].

Mean monthly minimum temperature was positively associated with monthly malaria inci-

dence. Moderate to high minimum temperatures (16.2˚C—21.0˚C) were associated with high

malaria incidence rates likely due to increased parasite and mosquito development rates that

together enhance malaria transmission [46]. This temperature range was well within the range

suggested by studies in Ethiopian highlands [18] and Western Kenya [47] where greatest

malaria transmission was reported to occur at temperatures between 17˚C and 21˚C. Else-

where, studies have shown that maximum temperature is less significant in malaria transmis-

sion [28] and risk prediction [48] compared with minimum temperature. A recent model that

incorporated laboratory–based data indicated that temperatures from 16 to 34˚C are a poten-

tial temperature range for malaria transmission [49]. Certainly, mosquito growth and plasmo-

dium development rate reduce significantly at temperatures lower than 16˚C [47,50]. In

addition to tolerating higher temperatures (32˚C), densities of An arabiensis (the dominant

malaria vector in Baringo) significantly positively correlated with minimum temperature in

Kenya [51].

The high malaria risk observed when total monthly rainfall was in the moderate category

(Table 3: 94 -181mm) suggests optimal rainfall levels necessary for the occurrence of malaria

outbreak. Monthly rainfall amounts higher than 181mm was associated with decreased malaria
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incidence, indicating the indirect negative effect of high rainfall on mosquito survival [52].

Conversely, in Burkina Faso a significant increase in malaria incidence was reported when

total monthly rainfall was above 100 mm while levels below 90 mm did not have any effect on

malaria [50]. In the highlands of western Kenya, a threshold of 80mm to 130mm for total

monthly rainfall was associated with significant increase in malaria admissions [53]. Rainfall

has both direct and indirect impact on malaria outbreaks, moderate amounts of rainfall influ-

ence larval population though its effect on availability of breeding sites [50]. However, exces-

sive rainfall flushes out larvae from habitats reducing mosquito densities consequently

lowering malaria risk [52].

In the model, high malaria cases occurred at NDVI values below 0.35. These results were

agreeably within the range reported for increased malaria mortality in Western Kenya (0.3–

0.4) [44] and for increased malaria cases in Bangladesh [54]. However, a research in the high-

lands of Ethiopia reported lack of association between vegetation cover and malaria incidence

[18]. Lower NDVI values may indicate the onset of vegetation greening and an indicator of

surface water availability and near surface humidity [18]; factors that promote vector survival.

Further, studies have shown that mosquito vectors are attracted to particular vegetation types

due to variations in floral sugar content. For example, a study conducted in Mali found that

invasive Prosopis juliflora (dominating the lowland zone in Baringo) bushes supported high

Anopheles gambiae s.l. abundance thus increasing malaria transmission risks [55].

Mean monthly minimum temperature and NDVI indicated 1-month lagged effect on

malaria cases. These results were in agreement with studies in Anhui China [56]. Rainfall indi-

cated a two months lagged effects on malaria cases corresponding with studies that have

reported between 1–3 months rainfall lagged effects on malaria incidence [57]. Such lags are

related to the duration needed for mosquito growth and sporozoite development and the spe-

cific environmental settings.

Conclusions

A significant decrease in minimum temperatures was observed in the riverine zone while a

general warming trend was observed in the lowland zone, with a significant increase noted

during the month of July. A substantial increase in vegetation greenness linked to precipitation

occurred in the riverine and mid-altitude zones with 1-month lag. Further, the study confirms

that remotely sensed NDVI, rainfall, and minimum temperature are suitable indicators for

malaria risk prediction. Future climatic changes will likely alter these environmental condi-

tions increasing malaria risk. Therefore, these factors should be considered when planning for

malaria control and risk mapping.
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