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Abstract

The study of semi-continuity and optimization has garnered significant

attention from mathematicians for a prolonged period. While character-

ization of semi-continuity has been conducted in topological spaces and

Hilbert spaces, it has not been studied in Lp-spaces. Similarly, while

optimality conditions for convex optimization have been established in

Hilbert spaces, Hausdorff spaces and normed spaces, they have not been

determined in Lp-spaces. The aim of this study was to characterize semi-

continuous functions and convex optimization in Lp-spaces. The specific

objectives included: characterizing lower semi-continuous (lsc) functions

in Lp-spaces; characterizing upper semi-continuous (usc) functions in Lp-

spaces; and establishing conditions for convex optimization in Lp-spaces.

The research methodology involved the use of Fatou’s Lemma and Dini’s

theorem to characterize lsc functions, and Beer’s theorem which was used

in characterizing usc functions. Technical approaches included the use of

KKT conditions for optimality to establish conditions for convex opti-

mization in Lp-spaces. The study has shown that if the epigraph of an

Lp-space function is closed then , the function is lsc in the space. Addi-

tionally, it has been demonstrated that a function ϑ contained in a convex

subset of an Lp-spaces L is usc if it is convex. The study has further shown

that a Lipschitz-continuous function in a sequentially bounded subspace

of a convex Lp-space L is lsc and has a local minimizer. It has also been

proven that if ϑ(q) is Frechet differentiable in a convex Lp-space L, then

q is a stationary point of ϑ(q) and forms its local minimizer. These re-

sults have potential applications in mathematical analysis, particularly in

norm approximation which is useful in image and signal processing.
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Chapter 1

INTRODUCTION

1.1 Mathematical background

In the field of mathematics, semi-continuity is a property that verifies the

presence of minima or maxima within compact regions and determines

if they are global or local. This is done by considering whether a func-

tion is lower semi-continuous (lsc), which means it contains its greatest

lower bound and therefore has a local minimum. Convexity, on the other

hand, is used to guarantee that an optimization method will converges to

a global minimum or maximum. A function whose lower limit exists is lsc

while the one whose upper limits exist is said to be upper semi-continuous

(usc). Convex sets are those that contain all points on the line connecting

any two points within the set, while functions are convex if a line segment

connecting any two points on the function always lies above the graph of

the function. Global minimizers are the values of a function’s minimum

over the entire domain, while local minimizers are the values that take a

function to its minimum within a specific region.

Several mathematicians including Beer [5], Chen et al [12], Gool [22],
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Varagona [56], and Mirmostafaee [34], have studied semi-continuous func-

tions and their properties. Beer [5] characterized upper semi-continuous

functions in compact metric spaces and Hausdorff spaces and extended

Dini’s theorem to characterize sequences of upper semi-continuous func-

tions that converge point-wise to a continuous function that converges

uniformly. Gool [22] examined lsc functions in continuous lattices, and

appied the results in potential theory. Gool’s [22] work characterized lsc

functions whose domain is a continuous lattice in compact topological

spaces. Gool’s [22] showed that given a continuous lattice as a domain of

a lsc function, if its supremum exists, the the supremum is a lsc function.

Varagona [56] examined inverse limits with usc bonding functions and

indecomposability providing sufficient and necessary conditions for the

bonding functions (ψi) to be a decomposable/ indecomposable continuum.

Chen et al [12], introduced the concept of lsc functions from above and

provided a proof that Eklands’s [18] theorem holds under semi-continuous

functions and convex functions in real normed linear spaces and real re-

flexive Banach spaces.

In their work, Correa and Hantoute [15] characterized lower semi-continuous

convex relaxation functions in optimization. They demonstrated the re-

lationship between the argmin sets of a given function and its semi-

continuous convex hull using characterizations involving asymptotic func-

tions. Correa and Hantoute [15] provided explicit formulas for Fenchel

sub differential and the argmin sets of successful Legendre-Fenchel con-

jugates of a real-valued function. They focused on lower semi-continuous

convex relaxation in optimization on infinite-dimensional real locally con-

vex space and came up with explicit formulas for Fenchel sub-differential
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and the argmin sets of successful Legendre-Fenchel conjugates of func-

tions with real values.

Mirmostafaee [34] studied usc and lsc functions of multi-valued func-

tions in Baire spaces. Mirmostafaee’s research characterized lsc and

usc functions in Baire spaces, metrizable spaces and second countable

spaces. Hernández and López [25] characterized semi-continuous func-

tions in metrizable topological spaces. They showed that a function in a

metrizable topological space is lsc if its sub level set is closed and it is usc

if its sub level set is open. The graphical properties of semi-continuous

functions were also studied where it was proved that if the hypograph

of a finite function is closed then the function is usc and if a function’s

epigraph is open the function is lsc.

Optimization, also known as Mathematical programming, is the process of

finding the smallest or largest value possible for a specific problem, given

certain limitations or constraints. It has been applied in various fields

including finance, epidemiology, engineering, and more. In the past, op-

timization problems were mainly solved using classical calculus, but in

the recent decades it has become a vast independent field. Euler’s Cal-

culus of variations was one of the earliest tools for optimization, and

Lagrange Multipliers were useful in identifying conditions for optimality.

Hancock’s optimization method involved using calculus derivatives and

turning points of an objective function to find maxima and minima [24].

Ramsey[46] used derivative variations to study optimal economic growth

in his well-known optimal growth theory.

During World War II, researchers focused on optimization as a way to

solve large-scale planning and decision-making problems. The Simplex
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Method, a classical optimization algorithm that could solve large-scale

linear programming problems was developed by Dantzig. Karmarkar [28]

also made important contributions to the field of linear optimization, de-

veloping analytical methods called interior point methods that could solve

linear programming problems, as well as some non-linear optimization

problems such as convex, semi-definite, and second-order cone problems

arising in engineering and operations research.

Prior to the 1950s, researchers mainly focused on linear programming

to solve optimization problems, using techniques such as the Calculus of

Variations, duality theory, and interior point methods [39]. However, they

encountered difficulties in formulating some problems as linear programs

and realized that many real-world optimization problems are not linear

[47]. As a result, research in optimization shifted towards non-linear pro-

gramming in the 1950s. During this time, the all important classical KKT

optimality conditions were coined, which ably solved many NLOP s [33].

With the generalization of the Simplex method to non-linear programs by

use of the method of feasible directions, convex analysis became a popular

tool for optimization, and the differentiability hypothesis was no longer

widely used. Svanberg [54] used convergence of separable convex itera-

tions to solve NLOP s having multiple variables. The Barzilai-Borwein

[21] method was introduced as a way to solve QOP s with box constraints.

However, these methods did not consider optimization in general convex

functions in Lp−space or semi-continuity. In [21] the Barzilai-Borwein

method is discussed. This method solved, in large scale, quadratic prob-

lems that are convex and having box constraints. In minimizing convex

quadratic functions of many variables and having box constraints approx-
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imations are taken that lead to the minimizer for the QOP. Friedlander

et al [21] applied the Barzilai and Borwein’s optimization technique to

solve QOP s.

Moreau [38], Fenchel [20], and Rockafellar [49] are key figures in the de-

velopment of convexity theory. Rockafellar [48] was the first to publish a

textbook on convex analysis, which explored convexity of sets and func-

tions applying them to mathematical programming, as well as minimax

theorems, systems of inequalities, and Lagrange multipliers. Clarke [14]

developed the theory of non-differentiable optimization problems, which

was referred to as non-smooth optimization and the findings were applied

in control theory.

The growth and development of convex optimization has been driven by

demand for problem-solving and modeling in logistics and planning, ad-

vancements in computing technology, and the creation of duality theory

and simplex algorithm. In recent years, it has been widely used in fields

such as control systems, communication networks, signal processing, im-

age processing, and data analysis due to the effectiveness and depend-

ability of optimization methods, especially the interior point, in solving

COP s [8]. Nesterov [40] and Nemirovski [41] realized a major break-

through with the development of interior point methods that converge

quickly to a solution for convex optimization problems. These meth-

ods have been extended to handle finite-dimensional, non-differentiable

convex optimization problems, but do not account for semi-continuous

functions in optimization.

The authors Lobo, Maryam, and Boyd [31] focused on using relaxation

methods to solve financial optimization problems, specifically those re-
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lated to portfolio allocation. These problems were formulated as convex

problems with linear constraints, and the relaxation method allowed for

the calculation of global solutions by providing computable upper bounds.

Mitter [35] studied convex programming using duality concepts in infinite

dimensional Hausdorff locally compact spaces. Mitter [35] utilized convex

analysis techniques and the duality approach to investigate the conditions

that must be satisfied for the duality formalism to hold, including the re-

quirement for local compactness in the dual feasible set.

Boyd [10] worked on convex optimization problems involving the eigen-

values of graph Laplacian matrices. The study’s goal focused on deter-

mining the greatest or smallest value of a function that is dependent

on the eigenvalues of the graph Laplacian matrices while simultaneously

satisfying constraints such as non-negativity and constraints on the to-

tal value. Boyd [10] formulated these problems as convex functions and

derived interesting dual problems, sometimes providing analytical solu-

tions and always offering efficient numerical solutions. For medium-sized

problems, interior point methods were used, and for larger problems, sub-

gradient-based methods were employed, taking into account the structure

and symmetry of the problems.

Helou and De Pierro investigated the application of convex feasibility

and ϵ-sub-gradient techniques to tackle non-smooth COP s that were not

smooth in R1 in a paper published in [42]. They established a comprehen-

sive framework incorporating various methods for resolving CCP difficul-

ties using incremental sub-gradients. This framework allowed them to cre-

ate algorithms that could effectively resolve CCP problems in large quan-

tities, by utilizing approximate projections instead of exact Euclidean pro-
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jections. The algorithms were obtained from incremental sub-gradients

and aggregated incremental sub-gradients.

Zhu and Mart́inez [58] focused on solving multi-agent convex optimiza-

tion problems in topological spaces, which involved minimizing a global

objective function that was convex and subject to a convex constraint set.

The constraints, which were given by convex functions and known to all

agents, could be either inequalities or equalities. Zhu and Martínez [58]

devised two algorithms for this optimization problem that were imple-

mented over dynamically changing networks of topologies that were con-

nected and allowed the agents to converge to optimal values or solutions.

These algorithms used distributed primal-dual sub-gradients. For cases

without equality constraints, the Lagrangian relaxation method was used,

while for cases with identical local constraint sets, a penalty relaxation

approach was employed to eliminate the additional equality constraints.

Several researchers, including [1, 26, 4, 44, 43], et al have examined the

use of convex optimization in inner product spaces. Alexanderian [1] con-

ducted a study on convex optimization in Hilbert spaces. The study used

optimization tools that involve lower semi-continuous functions and con-

vex functionals. The work focused on determining minimizers for convex

programs in Hilbert spaces. The study applied the generalized Weierstrass

Theorem to present conditions required for minimizers to be attained for

Hilbert space convex problems. Since this assertion holds for a reflex-

ive space such as L2, which is a Hilbert space, it would be interesting

to see whether it holds for general Lp-spaces, where 1 ≤ p < ∞, which

was the aim of the current study. This study examined the applicability

Alexandrian’s findings to general Lp-spaces and sought to discuss prop-
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erties of convex optimization in Lp-spaces. Houska and Chachuat [26]

dealt with non-convex optimization problems and used a complete-search

algorithm to identify feasible solutions. Bay, Grammont, and Maatouk

[4] formulated interpolation problems as convex programs governed by

linear constraints in Hilbert spaces. They developed an algorithm that

approached a constrained interpolating function through the convergence

of approximate solutions. They formulated interpolating curves/surfaces

as general convex optimization problems in a Hilbert space whose con-

straints were given in form of linear inequalities. However, the study

was limited to inner product norms, whereas in the current research, the

norms were defined as Lp-norms. This change in norm structure provided

a new perspective on the behavior of the functions representing the opti-

mization problems and potentially offered new insights into determining

solutions for these problems.

Okelo [44] conducted a study on optimization in Hilbert spaces posing

the problems as convex functions. The results of the study showed that,

if a function ϖ : W → R is weakly sequentially lsc, then the function ϖ

attains a minimizer on the convex set W . It was also established that if

ϖ is closed, then the optimization problem Infq∈V ψ(W ) admits at least

one global minimizer. In his study, in order to find minimizers, Okelo [44]

employed the use of weak topologies. One of the key differences between

Hilbert spaces and Lp-spaces is that given a sequence that is bounded

it is easy to obtain a sub-sequence that converges weakly in a Hilbert

space, which is not the case in Lp spaces. Therefore, this study aimed to

establish optimization conditions for Lp-spaces using semi-boundedness

imposed by semi-continuous functions. Offia [43], minimized COP s op-
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erating on Hilbert spaces of infinite dimensional nature using ws − lsc

functions. All of these studies pertain to convex optimization in Hilbert

spaces, but none of them deal with convex optimization in Lp-spaces.

A small number of mathematicians, including Peypouquet [45] and De-

vore and Temlyakov [16], have looked into convex optimization in Banach

spaces. Peypouquet [45] studied the use of convex optimization in normed

spaces, particularly Banach spaces, and characterized properties such as

topological duals and linear functionals in these spaces. Concepts like or-

thogonality and projection were analyzed in relation to convex optimiza-

tion. Peypoquet [45] conducted a study on convex optimization in normed

spaces. The study used optimization tools such as linear functionals, and

topological duals, and the main methodology was weak topology and du-

ality approach. The study developed optimality problems for constrained

optimization in Hilbert spaces and general normed spaces. Peypoquet

[45] developed optimality conditions for constrained optimization general

linear spaces including Banach spaces but did not develop optimality con-

ditions for Lp spaces even if the Lp space is also a Banach space. The

current study therefore found the Lp space to be an interesting space to

establish conditions for convex optimization, especially considering the

underlying Lp-norm structures and the range of p i.e 1 ≤ p < ∞. Our

current study sought to address this challenge by investigating convex

optimization in Lp spaces, and aimed to close the gap left by Peypo-

quet other researchers who established optimality conditions in complete

normed spaces.

Devore and Temlyakov [16] examined the application of convex optimiza-

tion in Banach spaces using interior point methods and investigated recent
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advances in structural optimization. However, neither of these studies

considered convex optimization in Lp-spaces. Unser and Aziznejad [55]

worked on COP s expressing the solutions as component sums in Banach

spaces. To regularize the COP s, Unser and Aziznejad conducted penal-

ization of norms of the minima.

It is evident that limited research has been conducted on characterization

of lower semi-continuous functions in Lp spaces and characterization of

upper semi-continuous functions in Lp spaces. Moreover, it is clear that

conditions for convex optimization have not been established in Lp spaces.

1.2 Basic concepts and preliminaries

In this section, the concepts of convex sets, convex functions, semi-continuous

functions, global minimizers, and local minimizers are introduced. These

concepts form the foundation for the subsequent analysis and discussions

in this research. We have also presented fundamental preliminary results

key to this study.

Definition 1.1 ([29], Definition 1.4.1). Let {qn}n∈N be a sequence in an

Lp−space L. {qn} is said to converge to q ∈ L if for any ξ > 0 there is

Nξ ∈ Z+ such that ‖qn − q‖ < ξ whenever n > Nξ. The sequence {qn} in

L2−space is said to converge weakly to q if, limn→∞〈qn, u〉 = 〈q, u〉, ∀u ∈

L2.

Definition 1.2 ([44], Definition 2.2). Let L be a normed linear space.

A function ϑ : L → R is lsc if, given a sequence {qn} ∈ L, ϑ(q) ≤

lim infn→∞ ϑ(qn) for all sequences {qn} ∈ L such that for each q ∈ L,

qn → q strongly.
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Definition 1.3 ([17], Definition 1.5). Let L be a normed linear space.

A function ϑ : L → R is usc if, for any sequence {qn} ∈ L, ϑ(q) ≥

lim supn→∞ ϑ(qn) for all sequences {qn} ∈ L such that for each q ∈ L,

qn → q strongly.

Definition 1.4 ([15], Definition 1.7). Let L be a nonempty normed space.

A function ϑ : L → R is said to be semi-continuous if it is either lower

semi-continuous or upper semi-continuous.

Definition 1.5 ([36], Definition 3.3.1). A function that is both lower

semi-continuous and upper semi-continuous is said to be a continuous

function.

Example 1.6. The following are examples of functions that are contin-

uous:

(i) Trigonometric functions like sin x, cos x;

(ii) Polynomials;

(iii) Exponential functions

Definition 1.7 ([17], Definition 2.46). Let L denote a normed linear

space and Q 6= ∅ be a subset of L. If ∀q1, q2 ∈ Q, and 0 ≤ η ≤ 1 we have

ηq1 + (1− η)q2 ∈ Q then we say that Q is convex. A function ϑ : Q→ R

satisfying ϑ(ηq1+(1− η)q2) ≤ ηϑ(q1)+ (1− η)ϑ(q2) for each ∀q1, q2 ∈ Q,

and 0 ≤ η ≤ 1 is said to be convex.

Theorem 1.8 ([3], Theorem 3.11). Let ϑ : Q → R be convex on the

convex set Q. Given that the local minimum for ϑ(q) over Q is q∗ ∈ Q

then, q∗ is also the global minimum of ϑ(q) over Q.
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If we set a local minimum for ϑ(q) to be at q∗, it means that ϑ(q∗) ≤ ϑ(q)

throughout the neighborhood of q ∈ Q. Suppose a positive number p

satisfies q ∈ B[q∗; p] and ∃κ ∈ (0, 1] satisfies q∗+κ(w−q∗) ∈ B[q∗; p], ∀w ∈

Q : w 6= q∗. Now, q∗ + κ(w − q∗) ∈ B[q∗; p] ∩ L. Therefore, ϑ(q∗) ≤

ϑ(q∗ + κ(w − q∗)). Thus by Jensen’s inequality we have

ϑ(q∗) ≤ ϑ(q∗ + κ(w − q∗)) ≤ (1− κ)ϑ(q∗) + κϑ(w).

Hence κϑ(q∗) ≤ κϑ(w), so ϑ(q∗) ≤ ϑ(w) implying that the minimum q∗

is global.

Definition 1.9 ([3], Definition 2.8). The epigraph of a function ϑ denoted

as epi(ϑ) is the set of points which are greater or those that are equal to

the images of ϑ i.e epi(ϑ) = {(q, r) ∈ dom(ϑ)× R : r ≥ ϑ(q)}.

The hypograph of ϑ denoted as hypo(ϑ) is therefore given by hypo(ϑ) =

{(q, r) ∈ dom(ϑ)× R : r < ϑ(q)}.

Remark 1.10. The function ϑ is convex if and only if epi(ϑ) is convex

and a function is usc if and only if hypo(ϑ) is closed.

Definition 1.11 ([30], Definition 1.5). Let (L,X, µ) be a measure space

and a number p be given such that 1 ≤ p < ∞. Then an Lp space

which consists of measurable functions is defined as Lp(L,X, µ) = {ϑ :

ϑis measurable(and)
∫
L |ϑ|

pdµ < ∞}. The Lp-norm of ϑ ∈ Lp(L) is given

by

‖ϑ‖p =
(∫

L
|ϑ|pdµ

) 1
p

.

The following proposition asserts that (L, ‖.‖) is indeed an Lp(L,X, µ)-
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space.

Proposition 1.12. Let Lp(L,X, µ) denote an Lp-space on a measure

space (L,X, µ) with 1 ≤ p < ∞. Let ‖.‖p be an Lp norm. Then (L, ‖.‖p)

is an Lp(L,X, µ)-space on (L,X, µ).

Proof. We need to show that ‖.‖p is a norm on Lp(L,X, µ). Let ϑ be

a measurable function in L. From the definition of Lp norm, we have,

‖ϑ‖p =
(∫

L |ϑ|
pdµ

) 1
p . We proceed to show that ‖ϑ‖p satisfies the three

axioms for a norm below:

(i). ‖ϑ‖p ≥ 0 and ‖ϑ‖p = 0 ⇐⇒ ϑ = 0. By absoluteness property,

|ϑ|p ≥ 0 implying that
∫
L |ϑ|

pdµ ≥ 0, hence
(∫

L |ϑ|
pdµ

) 1
p ≥ 0 show-

ing that ‖ϑ‖p ≥ 0.

Let ‖ϑ‖p = 0, then
(∫

L |ϑ|
pdµ

) 1
p = 0 implying that |ϑ|p = 0 hence

ϑ = 0.

Conversely suppose |ϑ|p = 0, then
∫
L |ϑ|

pdµ = 0 implying that(∫
L |ϑ|

pdµ
) 1

p = 0. Thus, ‖ϑ‖p = 0.

(ii). ‖κϑ‖p = |κ|‖ϑ‖p, ∀κ ∈ K.Now ‖κϑ‖p =
(∫

L |κϑ|
pdµ

) 1
p =

(∫
L |κ|

p|ϑ|pdµ
) 1

p =

|κ|
(∫

L |ϑ|
pdµ

) 1
p . Thus, ‖κϑ‖p = |κ|‖ϑ‖p.

(iii). ‖ϑ + φ‖p ≤ ‖ϑ‖p + ‖φ‖p, ∀ϑ, φ ∈ L. Let ϑ, φ ∈ L, then ‖ϑ +

φ‖p =
(∫

L |ϑ+ φ|pdµ
) 1

p . So by Minkowski’s inequality we have(∫
L |ϑ+ φ|pdµ

) 1
p ≤

(∫
L |ϑ|

pdµ
) 1

p +
(∫

L φ|
pdµ

) 1
p , ∀p ≥ 1. This is

equivalent to ‖ϑ+ φ‖p ≤ ‖ϑ‖p + ‖φ‖p.

Since all axioms have been satisfied we conclude that ‖.‖p is a

norm on Lp(L,X, µ) and therefore the ordered pair (L, ‖.‖p) is an
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Lp(L,X, µ)-space on (L,X, µ).

Remark 1.13. Without loss of generality,

(i). This study takes (L, ‖ϑ‖p) to be an Lp-space.

(ii). Throughout this study L denotes an Lp-space unless it is stated

otherwise.

Definition 1.14 ([44], Definition 2.5). A point q∗ ∈ Rn is termed as

a global minimizer of the program minq∈Q ϑ(q), for Q ⊆ Rn if ϑ(q∗) ≤

ϑ(q), ∀q ∈ Q and q∗ ∈ Q.

Definition 1.15 ([44], Definition 2.6). A point q∗ ∈ Rn is termed as a

local minimizer of the program minq∈Q ϑ(q), for q
∗ ∈ Q and there exists

ξ > 0 such that ϑ(q∗) ≤ ϑ(q), ∀q ∈ Q whenever q ∈ Q satisfies ‖q− q∗‖ ≤

ξ.

Definition 1.16 ([2], Definition 4.3.2 ). Let a ∈ Rn be a vector and L 6= ∅

be a set. Then a is a feasible direction at q ∈ L if ∃η0 > 0 satisfying

(q + ηa) ∈ L, ∀η ∈ [0, η0].

Definition 1.17 ([37], Definition 2.20). Let Q ⊆ L denote a set of con-

straints where L is an Lp−space. Letting Q be regular, the function

ϑ : L → R∪ (−∞,∞) is said to be Lipschitz-continuous if ∃F ∈ K : ∀r ∈

L, ‖ϑ(q + r)− ϑ(q)‖ ≤ F‖(q + r)− q‖.
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Definition 1.18 ([6], Definition 3.1). Let (L, ‖.‖p) be an Lp-space.

Suppose G ⊆ L is open. Then ϑ : G → R is Gâteaux differentiable at

q ∈ G if ∀r ∈ G, ϑ′(q, r) = limκ→0
ϑ(q+κr)−ϑ(q)

κ
, ∀κ ∈ K. Here, ϑ′(q, r) is

termed as Gâteaux-variation of q with respect to r.

Given that ∀r ∈ L, ϑ′(q, r) = limκ→0
ϑ(q+κr)−ϑ(q)

κ
is uniform in q ∈ G then

ϑ is uniformly Gâteaux differentiable on G.

Definition 1.19 ([6], Definition 3.2). A function ϑ from a subset G of

an Lp−space L is Fréchet differentiable at q ∈ G if a bounded oper-

ator P : L → L exists that satisfies lim∥κ∥→0
∥ϑ(q+κr)−ϑ(q)−Pκ∥p

∥κ∥p = 0.

We define the Fréchet derivative of q with respect to r by ϑ′(q, r) =

limκ→0
ϑ(q+κr)−ϑ(q)−Pκ

κ

Definition 1.20 ([20], Definition 3.7). A convex function ϑ from a normed

linear space Q to the extended real line R is called proper if ϑ(q) >

−∞, ∀q ∈ Q or ϑ(q0) < +∞ for some q0 ∈ Q.

Definition 1.21 ([13], Definition 4.3). A function ϑ from a normed linear

space Q to the extended real line R is called coercive if ϑ(q) → +∞ as

‖q‖Q → +∞ for every q ∈ Q. If the limit of a continuous function ϑ is

given as lim∥q∥→∞ ϑ(q) = ∞ then, ϑ is coercive.

Remark 1.22 ([13], Definition 4.4). A coercive function acting on a

closed set must attain a global minimum.

In this study we considered convex optimization problems (COP s) in

the following functional form:

Minq∈Qϑ(q) (1.2.1)
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subject to

φi(q) ≤ 0, 1 ≤ i ≤ t (1.2.2)

ϱj(q) = 0, 1 ≤ j ≤ v, (1.2.3)

where q ∈ Q is the optimization variable and the set Q is convex;

the COP 1.2.1 is convex;

the inequality constraints 1.2.2 are convex functions

and the equality constraints 1.2.3 are convex functions.

A solution to the COP 1.2.1 satisfying 1.2.2 and 1.2.3 is any point q∗ ∈ Q

attaining

inf{ϑ(q) : q ∈ Q}.

An optimization variable q ∈ Rn is feasible only if q ∈ Q satisfies all

constraints in 1.2.2 and 1.2.3

A feasible solution q∗ is termed as globally optimal if ϑ(q) ≥ ϑ(q∗) holds

for every feasible q. A vector q is said to be locally optimal if it is feasible

and if ∃η ≥ 0 : ϑ(q) ≥ ϑ(q) for any feasible q satisfying ‖q − q‖ ≤ η.

Definition 1.23. Let Q be a directed set and let ≤ be a partial order

relation in Q such that ∀q1, q2 ∈ Q, there is p ∈ Q such that q1 ≤ p and

q2 ≤ p. Then a Moore-Smith sequence is a function which assigns every

element q ∈ Q a unique number qj for each j ∈ Q.

In the following section the problem of the study is stated.
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1.3 Statement of the problem

Characterization of lower semi-continuous functions and upper semi-continuous

functions has been done in variuous spaces for instance topological spaces,

Hilbert spaces and normed spaces. However, limited research on lsc and

usc functions in Lp-spaces has been done in terms of their characteriza-

tions. Hernández and López [25] characterized semi-continuous functions

in metrizable topological spaces. They showed that a function in a metriz-

able topological space is lsc if its sub level set is closed and it is usc if its

sub level set is open. Hernández and López [25] left an open problem for

research in characterization of upper and lower semi-continuous functions

in real valued function spaces which include the Lp spaces. Hence, this

formed the basis of this study. While Gool [22] used continuous lattices in

characterizing lsc functions in topological spaces this study employed the

use of Moore-Smith sequences in characterizing upper and lower semi-

continuous functions in Lp-spaces. Convex optimization conditions in

Hilbert spaces and general normed spaces have been established. Peypou-

quet [45] established conditions for convex optimization in normed spaces

and showed that if a convex function is lsc then it attains a minimizer

on a bounded set in a normed space. Peypoquet [45] used Lagrange mul-

tipliers and Fenchel conjugates to establish optimality conditions, while

this study employed the use of KKT optimality conditions. Since scanty

research has been directed to establishing conditions for convex optimiza-

tion in Lp spaces, the Lp-space therefore formed an interesting space for

convex optimization since we used measurable functions instead of vectors

and the finite Lp norm structures of these functions presented excellent

boundedness property appropriate for constrained optimization. Thus, in
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this study we considered semi-continuous functions and convex optimiza-

tion in Lp spaces.

1.4 Objectives of the study

1.4.1 Main objective

The main objective of this study is to characterize lower and upper semi-

continuous functions and convex optimization in Lp-spaces.

1.4.2 Specific objectives

The specific objectives of the study include:

(i) Characterize lower semi-continuous functions in Lp spaces.

(ii) Characterize upper semi-continuous functions in Lp spaces.

(iii) Establish conditions for convex optimization in Lp spaces.

1.5 Significance of the study

Results from this study are a contribution of knowledge in the field of

functional analysis particularly in measure theory. They may also be

applicable in mathematical analysis specifically in norm approximation

which plays a vital role in noise reduction in communication channels,
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image and signal processing, data compression and storage. In addition

it will form a basis for future research.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

We review literature on semi-continuous functions, linear optimization,

non linear optimization and convex optimization.

2.2 Semi-continuous functions

Many Mathematicians have investigated lsc and usc functions including

[5], [12], [15], [22] and [34]. Beer [5] applied Stone Approximation of usc

mappings on metric spaces and investigated the compactness property

in metric spaces. He extended Dini’s theorem to characterize sequences

of usc functions that converge uniformly. Beer [5] illustrated that, for

an interior point z, (z, α) forms the epigraph of ϱ whenever α > ϱ(z).

This showed that the interior of the convex function ϱ is usc throughout

its domain. It was proved that, the supremum of the sequence of affine

functions represent a lsc convex function. Below are some of Beer’s main
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findings:

Lemma 2.1 ([5], Lemma 1.3). If a function g is usc on a compact metric

space (M,d). Let U(M) denote the set of all bounded usc functions on

M and g denote the closure of the function g. Define an upper λ-parallel

function of g as g+λ (z) = sup z : (z, r) ∈ Bλ(g), ∀z ∈ M, ∀r ∈ R. Then

∀z ∈M, λ > 0, the function g+λ is in U(M).

Lemma 2.1 Beer [5] characterized upper semi-continuity in compact met-

ric spaces but this study characterized semi-continuity of functions in Lp

spaces.

Theorem 2.2 ([5], Theorem 1). Let Ω be a lattice of usc functions andM

be a compact metric space. Define a metric d3 by d3 = D(hypoψ, hypoΩ).

(i). For a usc function ψ, ∃{ψn} ∈ Ω tending to ψ from above in the

metric d3

(ii). The sequence {ψn} can only converge uniformly to ψ if ψ is a con-

tinuous function.

Theorem 2.2 characterizes upper semi-continuous functions in terms of

sub-lattices that are upper dense on compact metric spaces. Beer [5]

characterized upper semi-continuous functions in compact metric spaces

and Hausdorff spaces using Dini’s theorem and Stone Approximation the-

orem. Sequences of upper semi-continuous functions were characterized

in terms of sub-lattices. The current study characterized lower and upper

semi-continuous functions and the sequences were in terms of the Moore-

Smith sequences.
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Gool [22] studied lower semi-continuity and continuous lattice. The re-

sults obtained extended some analytical properties of lsc functions to lsc

functions whose domain is a continuous lattice. Some results were ap-

plied in potential theory to describe solutions of systems of differential

equations through generalizing semi-continuity of such functions. Some

of Gool’s findings are:

Theorem 2.3 ([22], Theorem 4.4). For a topological space (Y, τ), if a

continuous lattice T ⊂ Y exists, then:

(i) if T ⊂ lsc(Y ), then the supremum of T is lsc in Y.

(ii) if ψ and ϱ are lsc functions then ψ ∧ ϱ is lsc in Y .

Theorem 2.3 characterizes lsc functions in a topological space. It shows

that the supremum of a lattice of lsc functions in a topological space is

lsc.

Lemma 2.4 ([22], Lemma 5.2). Let Y be a topological space and lsc(Y )

denote a collection of all lower semi-continuous functions on Y. Let NUM(Y )

be a collection of functions on Y and let T ⊂ Y be a continuous lattice.

Suppose lsc(Y ) = {NUM(Y ) : g = sup{h ∈ Y : h ≤ g}}. Then Y is

completely regular when T 6= 1.

Lemma 2.4 gives an investigation on lsc functions in topological spaces

using continuous lattices.

In [15] Correa and Hantoute related the argmin sets of a given func-

tion and its semi-continuous convex hull using characterizations involving
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asymptotic functions. They came up with explicit formulas for Fenchel

sub-differential and the argmin sets of successful Legendre-Fenchel con-

jugates of functions with real values. The two results below represent

Correa and Hantoute’s work:

Proposition 2.5 ([15], Proposition 1). Let V be a real Hausdorff locally

convex space (HLCS.) Given a function ψ : V → R, v ∈ V and L ⊂ V ∗

be given. Then, ∂rLψ(v) = L ∩ ∂ψ(v) in each of the following:

(i) If ∃F ∗ ∈ cl(L ∩ domψ∗), then it holds that

ψ(v) ≤ lim inf
z⇀v

(ψ(z)− 〈z − v, F ∗〉)

(ii) L = V ∗, int(domψ∗) 6= ∅, and ψ is weakly lsc.

Proposition 2.5 characterizes lower semi-continuous convex relaxation in

optimization on infinite-dimensional real locally convex space.

Theorem 2.6 ([15], Theorem 3). Let a function ψ : V → R̄ be a positively

homogeneous such that V ∗ ∈ =(ψ). Then for every v∗ ∈ V ∗ the statements

below hold:

(i) ∂ψ∗(v∗) = co((∂rψ)−1(v∗));

(ii) if int(domψ∗) 6= ∅, and ψ is weakly lsc, then ∂ψ∗(v∗) = co((∂rψ)−1(v∗));

(iii) if in (ii) we assume V = Rn then ∂ψ∗(v∗) = co((∂ψ)−1(ψ∗)).

Theorem 2.6 characterizes semi-continuity with respect to positive homo-

geneity and boundedness of a function. This result is limited to infinite
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dimensional real locally convex spaces and not general Lp spaces. Correa

and Hantoute [15] investigated lower semi-continuous convex relaxation

in optimization on infinite-dimensional real locally convex space but this

study carried out a characterization of lower and upper semi-continuous

functions in Lp spaces. Convex conjugates and sub-differentials were used

but this study employed the use of Lp norms

Mitter [35] studied convex lower semi-continuous functions in Hausdorff

spaces. The following proposition represents key notions of Mitter’s op-

timization using lower semi-continuous functions as a tool:

Proposition 2.7 ([35], Proposition 2). Let V be a HLCS and ψ : V →

R be lsc function that is convex. Define the recession function ψ∞ by

ψ∞ = supr∈Domψ∗〈z, r〉, ∀z ∈ Domψ. Then,

(i). ψ∞(z) = min{r ∈ R : (z, r) ∈ (epiψ)∞}

(ii). ψ∞(z) = supa∈Domψ supt>0[ψ(a+ tz)− ψ(a)]/t

(iii). ψ∞(z) = supt>0[ψ(a+ tz)− ψ(a)]/t ∀a ∈ Domψ

(iv). ψ∞(z) = supa∈Domψ[ψ(a+ z)− ψ(a)]

(v). ψ∞(z) = supw∈Domψ∗〈z, w〉.

In (i)., since the set {(epiψ)∞} is closed, then ψ∞(z) attains its minimum

if epiψ)∞ 6= +∞.

Proposition 2.7 gives an investigation semi-continuous functions and con-

vex optimization in Hausdorff locally convex infinite dimensional spaces
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and not semi-continuous functions and convex optimization in Lp spaces.

Mitter’s [35] involved characterization of lsc functions in Hausdorff spaces

and applying the result in convex optimization in Hausdorff spaces. The

current study characterized lower and upper semi-continuity of functions

in Lp-spaces and used the result in establishing conditions for convex

optimization in Lp-spaces.

2.3 Optimization

In Mathematics optimization is the process of finding the optimal value

(minimum or maximum) of a function which represents the best solution

of a given problem depicted by the function. It simply refers to finding

the minimizer or maximizer of the function.

2.3.1 Linear optimization

Linear programming has been studied by many mathematicians including

[24] and [28]. It involves minimizing a linear function representing an op-

timization problem while considering linear inequalities constraints and

linear equalities constraints. Most methods and algorithms that are used

to solve non-linear optimization problems and convex programs were first

developed to solve LP problems. Dantzig’s Simplex method that solved

LP problems in a large scale was later extended to solve a variety of

NLOP s. Hancock [24] studied maxima and minima and linear optimiza-

tion but did not consider convex optimization nor use convex analysis

tools in optimization.
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A defining milestone in linear optimization was the invention of polynomial-

time algorithm by Karmarkar [28]. It emerged to be better than the el-

lipsoid algorithm in terms of running time. The following are some of

Karmarkar’s main results:

Theorem 2.8 ([28], Theorem 2). Either (i) CT z(k+1) = 0

or (ii) ψ(z(k+1)) ≤ ψ(z(k)) − δ such that δ depends on σ. A particular

selection that works: If σ = 1
4
, then δ ≥ 1

8
.

Theorem 2.8 shows how the polynomial time interior-point method for

LP , developed by Karmarkar [28], represents underlying conceptual se-

quence of operations in solving linear optimization problems.

Theorem 2.9 ([28], Theorem 3). Let Ω′ be a null space. Define Ω′′ to

be the transformed space of Ω′ by Ω′′ = {α : B(q0 − α) = 0}. Then

∃b′ ∈ B(q0, αr) ∩ Ω′′ :

either (i) C ′T b′ = 0

or (ii) ψ′(b′) ≤ ψ′(q0)− δ where δ is a constant.

Theorem 2.9 proves the existence minimizers for a linear optimization

problem. These interior point methods developed by Karmarkar [28] to

solve linear optimization problems were widely applied in engineering and

operations research. Later these methods were later extended to solving

convex optimization problems. Karmarkar’s work was exclusively on lin-

ear optimization, and it was only the finite dimensional real spaces that

were considered. It was the interest of our study to establish conditions

for convex optimization in Lp-spaces.
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2.3.2 Non-linear optimization

Non-linear optimization involves minimizing (or maximizing) optimiza-

tion problems with non linear objective functions. A key development

in non-linear optimization was realized through the coining of Kurush-

Kuhn-Tucker KKT optimality conditions for non-linear programming by

Kurush, Kuhn and Tucker.

Sharma and Hunachew [53] generalized the Simplex Method to non-linear

programs by presenting the methods of feasible directions and devel-

oped an algorithm method of finding feasible directions at each iteration,

and optimizing along the feasible direction. Sharma and Hunachew [53]

worked on methods of finding the feasible directions in solving non-linear

optimization particularly quadratic programming using improving direc-

tions. Their main findings include:

Lemma 2.10 ([53], Lemma 1.2). Suppose z minimizes the NLOP

min ψ(z)

subject to ‘Cz ≤ d and Pz = p.

Supposing CT can be decomposable into (CT
1 , C

T
2 ) and that dT is decom-

posable into (dT1 , d
T
2 ), let C1z = d1 and C2z < d2. Then there is vector

a 6= 0 forming the feasible direction at z iff C1a ≤ 0 and Pa = 0. Fur-

thermore, a is said to be an improving feasible direction if ∇ψ(z)Ta < 0.

Lemma 2.10 shows that at each iteration in finding feasible directions, the

Zoutendijk method generates an improving feasible direction and then

optimizes along that direction. The optimization problem under consid-

eration is quadratic.
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Lemma 2.11 ([53], Lemma 1.3). Suppose z minimizes the NLOP , min

ψ(z); subject to Cz ≤ d and Pz = p.

Let z is a feasible solution satisfying C1z = d1 and C2z = d2 such that

CT = (CT
1 , C

T
2 ) and d

T = (dT1 , d
T
2 ), then z is a KKT point if and only if

infz ψ(z) = 0.

Lemma 2.11 shows that if the minimal objective function value is zero,

then z is a KKT point. This objective function is quadratic. In our study

we considered convex objective functions.

Sharma and Hunachew [53] compared the functionality of the Zoutendijk’s

algorithm and the Successive Quadratic Programming (SQP ) technique

to solve NLOP s but this study considered COP s in Lp−spaces.

Svanberg [54] worked on non-linear optimization and introduced special

class of methods of optimization with global limits. In this way a variety of

inequality-constrained NLOP s were efficiently solved. The optimization

methods were applicable to problems consisting of very many variables

even when the Hessian matrices forming the NLP functions and the fea-

sible set are dense because of the use of separable approximations. It

was observed that each iteration point that it generated yields minima

strictly lower than the Karush-Kuhn-Tucker points. The following are

some important findings obtained by Svanberg [54]:

Lemma 2.12 ([54], Lemma 7.3). ∀i = 0, 1, ...,m, ∃ρmaxi < ∞ satisfying

ρ
(r)
i ≤ ρmaxi for any outer iteration r.

In Lemma 2.12 it is observed the iterations are of finite number. This

method is used to find solutions to inequality constrained non-linear op-

timization problems but not convex optimization problems whose con-
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straints are convex functions.

Svanberg [54] therefore worked on approximations of COP s that are con-

servatively separable. Global convergence was theoretically proved and

these methods were demonstrated to work numerically.

However, Svanberg’s [54] researched focused on solving NLOP s using

Hessian matrices but not the study of semi-continuous functions and con-

vex optimization in Lp spaces as in the current study.

Friedlander, Martinez and Raydan [21] used the method developed by

Barzilai and Borwein in minimizing convex quadratic functions of many

variables and having box constraints. The main optimization problem

which was solved was stated in the form:

Minψ(z) ≡ 1

2
zTAz − bT z.

The work of Friedlander, Martinez and Raydan [21] includes the result

given below:

Lemma 2.13 ([21], Lemma 2.1). Consider the optimization problem min

ψ(z) = 1
2
zTAz − bT z where A is a positive definite square matrix and

b ∈ ran(A). Then ẑ is a minimizer of ψ(z) if and only if there is αj, 1 ≤

j ≤ ℓ− 1, satisfying

ẑ = α1v1 + ...+ αℓ−1vℓ−1 +
βℓ
λℓ

+ ...+
βn
λn
vn

where βℓ, ℓ ≤ j ≤ n are defined by b = βℓvℓ + βℓ+1vℓ+1 + ...+ βnvn.

Lemma 2.13 characterizes the minimizers of the convex quadratic func-
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tion ψ(z). This result is based on convex quadratic functions only but not

the general convex functions.

Friedlander, Martinez and Raydan [21] solved convex quadratic optimiza-

tion problems which are box constrained but not general convex functions

in Lp spaces. Barzilai-Borwein Method was used and not semi-continuous

functions.

2.3.3 Convex optimization

In convex optimization the objective functions together with constraint

sets must be convex. Convexity guarantees that a global optimum co-

incides with a local optimum thus the convex optimum value is unique.

Again the minimum/maximum of convex problems is convex. Many op-

timization problems can easily be formulated as convex functions. Con-

vex optimization is now prevalent in use compared to other optimization

methods owing to the fact that it is easy to attain a global or local min-

imum (or maximum) of its function. Thus many studies have been con-

ducted in convex optimization.

Rockafeller [50] characterized convexity in relation to continuity and dif-

ferentiability of functions that are convex. Systems of inequalities, La-

grange multipliers and minimax theorems were investigated in relation to

convexity. Rockafeller [50] defined inner products of convex sets as the

external points of the duality theorem. This established a basis for a gen-

eralization that convex bi-functions are similar to linear transformations.

The results Rockafeller obtained are summarized as follows:
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Theorem 2.14 ([49], Theorem 7.1). If ψ : Rn → R is a function, then

the following conditions are equivalent:

i). ψ is lsc throughout Rn.

ii). {z ∈ ψ(z) ≤ η, ∀z ∈ Rn} is closed ∀η ∈ R.

iii). The set epi(ψ) is a closed set in Rn+1.

In Theorem 2.14 lsc functions are applied in the study of convexity of

functions. The functions were acting on n−tuples of real numbers.

Theorem 2.15 ([49], Theorem 16.3). Let P : Rn → Rm be a linear

transformation. For a convex function ψ ∈ Rn, we have

(Pψ)∗ = ψ∗P ∗.

For any function φ ∈ Rm, one has

((φ)P )∗ = (P ∗φ∗).

If ∃z : Pz ∈ ri(domφ), then

(φP )∗(z∗) = inf{φ∗(w∗) : P ∗w∗ = z∗},

reaching the infimum at z∗.

Theorem 2.15 shows that with functional operations two linear transfor-

mations become dual to each other.

Rockafellar [49] investigated convexity of sets and functions operating on

Rn. Rockafellar devoted this work towards convex analysis in real spaces.

Boyd [10] worked on convex optimization of graph Laplacian eigenval-
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ues. The optimization objective involved choosing the edge weights of a

graph and then minimizing/maximizing some function of the eigenvalues

the Laplacian matrix associated with it. The constraints of these weights

included non negativity and given total values. Boyd [10] equivalently

posed this problem as concave functions maximized over a convex set.

Fundamental optimality conditions were presented and interesting dual

problems derived. In some cases analytical solutions to the problems were

given and in all cases numerical solutions were efficiently computed. For

medium sized optimization problems interior point methods were em-

ployed and for larger problems sub-gradient-based methods were used

while putting into consideration the structure and symmetry of the prob-

lems in solving them.

Boyd [10] worked on COP using eigenvalues of Laplacian matrices. The

COP s that were considered were represented as concave functions. The

current study solved COP s in Lp-spaces which were formulated as convex

functions.

Mitter [35] worked on convex programming using duality concepts. Con-

ditions for the duality formalism to hold were set. One essential condition

was that the dual feasible set must satisfy local compactness. The convex

sets which are locally compact have a non-empty interior that corresponds

to polar sets. Mitter [35] used convex analysis techniques and duality ap-

proach in Hausdorff locally compact spaces(HLCS). Some of Mitter’s

findings are as follows:

Theorem 2.16 ([35], Theorem 2). Suppose ψ : L → R is a convex func-

tion on (L) such that ∀z0 ∈ L, ψ(z0) <∞. Then the statements below are

equivalent:
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(i). ∂ψ(z0) 6= ∅.

(ii). ∃o-nbhdN : infz∈N ψ
′(z0; z) > −∞.

(iii). ∃o-nbhdN , η > 0 satisfying infz∈N
ψ(z0+rz)−ψ(z0)

r
> −∞ for any

0 < r < η.

(iv). limz→0 inf ψ
′(z0; z) > −∞.

(v). limz→0+
ψ(z0+rz)−ψ(z0)

r
> −∞.

Theorem 2.16 examines continuity and boundedness of convex functions

in Hausdorff locally convex spaces and not convex optimization in Lp

space.

Theorem 2.17 ([35], Theorem 6). Suppose Y0 = Y (z0) ≥ infz0 supz ℓ(z0, z)

is finite. Define Q0 by Q0 = Y ∗(z0) where Y
∗(z0) = supz{〈z0, z〉− Y (z)}.

Then the statements below are equivalent:

(i). Q0 has solutions.
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(ii). ∂Y (z0) 6= ∅.

(iii). ∃ẑ ∈ G : Y0 = 〈z0, ẑ〉 − Y ∗(−G∗ẑ, ẑ)

Should Y (.) be convex, then each statement above is equivalent to:

(iv). ∃o-nbhdN : infz∈N Y
′(z0; z) > −∞

(v). lim infz→0 Y
′(z0; z) > −∞

(vi). limz→0+ infr→0
Y (z0+rz)−Y0

r
≡ supN=o−nbhd infr>0 infz∈N infe∈U

Q(e,Le+z0+rz)−Y0
r

>

−∞

If PY (.) is convex and L is a normed space, then the above are equivalent

to:

(vii). There exists ε > 0,M > 0 : Q(e, Le + e0 + z) − Y0 ≥ −M |z|∀z ∈

U, |z| ≤ ε.

Moreover if (1) is true then ŷ solves D0 if and only if q̂ ∈ ∂(z0), and ê is

a solution for Y0 if and only if there is a q̂ satisfying any of the conditions

(1′), (3′) below. The following statements are equivalent:

(i). ê solves Y0, q̂ solves Q0, and Y0 = Q0
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(ii). F (û, Lû+ x0 = 〈z0, q̂〉)−G∗(−L∗q̂, q̂).

(iii). (−L∗q̂, q̂) ∈ ∂(ê, Lê+ z0).

Theorem 2.17 summarizes results on duality approach to solving convex

optimization problems. This work was centered on Hausdorff locally con-

vex spaces and not in Lp spaces and not study convex optimization in Lp

spaces.

Mitter [35] conducted a study on convex optimization in Hausdorff lo-

cally convex spaces. This study utilized the duality approach and the

optimization tools were conjugate functions. The findings proved that

the optimal value changed as constraints’ perturbations changed follow-

ing feasible directions. This holds if conditions for duality, compactness

are met by the feasible set which is convex. Our current study on convex

optimization took into account the semi-continuity aspect and is based

on Lp spaces. Instead of the duality approach and conjugate functions,

our study focused on the use of semi-continuous functions and Lp-norms

to investigate the properties of convex optimization in these spaces.

Neto and De Pierro [42] worked on non-smooth convex optimization in Eu-

clidean spaces using methods for convex feasibility together with ϵ−sub-

gradient methods. A new Unified framework that solved constrained

COP s was developed involving incremental sub-gradients. Applying this

unifying framework method new algorithms which easily computed large-

scale optimization problems especially the ones in tomographic imaging
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were developed and proved. Approximate projection was used in place of

Euclidean projection in order to efficiently handle large-scale optimization

problems. The algorithms were derived from incremental sub-gradients

and also from aggregated incremental sub-gradients. The convergence

properties for these algorithms were proved. The convex optimization

problem was stated as below:

Find z ∈ Rq :

z ∈ argminψ(z) =
m∑
i=1

ψi(z) : z ∈ M,

An algorithm for the above problem was given as:

zk+ 1
2
= Oψ(ηk, zk);

zk+1 = FM(zz+ 1
2
),

The following are some of the results obtained:

Proposition 2.18 (42, Proposition 2.2). Suppose the sequence {ηk} sat-

isfies ηk → 0, η ≥ 0,
∑∞

k=0 ηk = ∞, then we have

lim
k→∞

inf ψ(zk) ≤ inf
z∈M

ψ(z).

Neto and De Pierro [42] studied constrained convex optimization in Eu-

clidean spaces and not constrained convex optimization in Lp spaces. In-

cremental sub-gradient methods and property of boundedness were used

and not semi-continuous functions in Lp spaces.
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Zhu and Mart́inez [58], the multi-agent COP s are solved in topological

spaces. Specifically, they minimized a function that is convex as a global

program and subject to a set of convex constraints. These inequality and

equality constraints, however, are known to the whole set of agents. The

authors consider two main cases: one in which there is no equality con-

straint, and another in which all agents have identical local constraint sets.

To solve these optimization problems, Zhu and Martínez [58] propose two

algorithms that can be implemented over a network of agents with dy-

namically changing topologies. Both algorithms make use of distributed

primal-dual sub-gradients to characterize the minimizers as points of the

Lagrangian dual value functions. For the case whose equality constraint

set is empty, the authors use a Lagrangian relaxation method, while for

the case with identical local constraint sets, they adopted a relaxation

of penalty type to do away with the extra constraint. The optimization

problem was thus defined as:

Minq∈Rn

L∑
j=1

ξj(q),

Zhu and Mart́inez [58] focused on the optimization of multi-agent systems

in topological spaces and not in Lp spaces. To achieve this, they used tech-

niques such as primal-dual sub-gradients, rather than semi-continuous

functions that we have employed. The main methods employed in their

research were the use of Lagrangian relaxation and penalty relaxation

approaches. This study focused on convex optimization in Lp-spaces em-

ploying the use of KKT optimality conditions to establish convex opti-

mization conditions in Lp-spaces.
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There has been a significant amount of research focused on optimization

in Hilbert spaces, with notable contributions from studies such as [26], [4]

and [44]. Alexanderian [1] focused on determining the real Hilbert space

minimizers for convex functionals. The study employed use of lsc func-

tions and convex functions in optimization. Some of the main findings

that Alexanderian obtained from his study include:

Theorem 2.19 (1, Theorem 3.3). Let χ be a Hilbert space and ϖ : χ→ R

be a function. Then ϖ ∈ ws− lsc(χ) ⇐⇒ epi(φ) is weakly sequentially

closed.

Theorem 2.19 establishes a connection between lower semi-continuity and

convex optimization in Hilbert spaces, but not in Lp spaces. It states that

the properties of lower semi-continuity and convex optimization in Hilbert

spaces are related in some way to L2 spaces when the 2-norm is defined

in terms of inner products, but it does not necessarily apply to convex

optimization in general Lp spaces where p 6= 2.

Theorem 2.20 ([1], Theorem 5.5). Let χ be a Hilbert space. If a convex

subset D ⊆ χ is bounded and strongly closed in χ, and a function ϖ :

D → R is strongly lsc and convex, then ϖ is bounded below and has a

minimum on D.

Theorem 2.20 means that if ϖ on D satisfies the conditions of weak se-

quential lsc or strong lsc and if D bounded and is weakly or strongly

sequentially closed, then a lower bound for ϖ exists and ϖ has a mini-

mum value on the set D.

Alexandrian [1] conducted a study on convex optimization in Hilbert
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spaces. The study used optimization tools that involve lower semi-continuous

functions and convex functionals. The work focused on determining min-

imizers for convex programs in Hilbert spaces. The study applied the

generalized Weierstrass Theorem to present conditions required for min-

imizers to be attained for Hilbert space convex problems. Since this as-

sertion holds for a reflexive space such as L2, which is a Hilbert space, it

would be interesting to see whether it holds for general Lp-spaces, where

1 ≤ p <∞, which was the aim of the current study. This study examined

the applicability Alexandrian’s findings to general Lp-spaces and sought

to discuss properties of convex optimization in Lp-spaces.

In their research, Houska and Chachuat [26] developed the famous complete-

search algorithm for Hilbert space optimization. Two theorems given be-

low represent the main results obtained by Houska and Chachuat:

Theorem 2.21 ([26], Theorem 1). For any ξ ∈ χ,

sup
q∈D

|〈ξ, q − Pi(q)〉| ≤ RD(i, ξ), ∀i ∈ N

Theorem 2.22 ([26], Theorem 2). Let B0
i (S), D

0
i (S) be bounds and 4i(S)

be computable for any feasible pair (i, S) ∈ N × Si+1. Then number of

iterations before termination is at most
∑

where

∑
≤ sup

0≤n≤N

∑
(

εP

K(ξ + 1)
, n)

with K = L supk∈N ‖Φk‖.

Houska and Chachuat [26] developed an algorithm that solved optimiza-
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tion problems in Hilbert spaces. This study considered convex optimiza-

tion in Lp-spaces in general.

In their research, Bay, Grammont and Maatouk [4] focused on optimiza-

tion of general COP s. They developed an algorithm that approached a

constrained interpolating function through the convergence of approxi-

mate solutions.

Theorem 2.23 ([4], Theorem 1). Let (q, r)χN = CT
q Γ

−1
N (Cr), with Cq =

(q(tN , 0), ..., q(tN , N))T and Cr = (r(tN , 0), ..., r(tN , N))T . Then

∀z′, z ∈ [0, 1], KN(z
′, z) =

N∑
i,j=0

K(tN,itN,j)φN, j(z)φN, i(z
′).

Lemma 2.24 ([4], Lemma 2). Let q1 ∈ χ ∩D ∩N and q0 ∈ χ̂ ∩D ∩N.

Define qr = (1 − r)h0 + rq1 ∈ χ, ∀r ∈ [0, 1]. Then qt → q1 as r → 1,

∀r < 1, qr ∈ χ̂ ∩D ∩N.

Bay, Grammont, and Maatok [4] performed a study on convex optimiza-

tion in Hilbert spaces. They formulated interpolating curves/surfaces as

general convex optimization problems in a Hilbert space whose constraints

were given in form of linear inequalities. However, the study was limited

to inner product norms, whereas in the current research, the norms were

defined as Lp-norms. This change in norm structure will provide a new

perspective on the behavior of the functions representing the optimization

problems and potentially offer new insights into how these problems can

be solved.

Okelo [44] examined previously established principles of optimizing convex
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functionals within the context of Hilbert spaces. He utilized techniques

from convex analysis and functions that are lower semi-continuous. Okelo

[44] provided thorough demonstrations of classical theorems related to

convex optimization. In addition, he presented a primary condition for

optimal performance and provided a comprehensive example of how con-

vex optimization can solve the problem posed by Dirichlet. The key

outcomes of his research include:

Theorem 2.25 ([44], Theorem 3.1). Let χ be an infinite dimensional

real separable Hilbert. Suppose D is a bounded weakly sequentially closed

subset of χ. Let ϖ : D → R be weakly sequentially lsc. Then ϖ has a

lower bound and its minimizer belongs to D.

Theorem 2.25 shows that a weakly sequentially lsc function in a Hilbert

space achieves a minimizer on a weakly sequentially closed bounded set.

Theorem 2.26 ([44], Theorem 3.3). Let ϖ : D → R be a strictly convex

function on D ⊆ χ. If ϖ is strictly convex on a Hilbert space χ then ϖ

must achieve a unique minimizer on an infinite dimensional Hilbert space

χ.

Theorem 2.26 asserts that all strictly convex functions in infinite di-

mensional real Hilbert spaces have minimizers on a weakly sequentially

bounded set. This assertion was proved to be true even for convex func-

tions in Lp spaces.

Theorem 2.27 ([44], Theorem 3.5). If ϖ : Rn → R is differentiable at

the point q∗ ∈ Rn. If q∗ is a local minimizer of ϖ, then ∇ϖ(q∗) = 0.
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Okelo’s research in [44] focused on the study of local minima of differen-

tiable functions in infinite dimensional real Hilbert spaces and how they

minimize convex functions thereof, as outlined in Theorem 2.27. Okelo

[44, examined the conditions for convex optimization in Hilbert spaces,

however, his work did not cover the specific area of convex optimization

in Lp spaces.

Okelo [44] conducted a study on optimization in Hilbert spaces posing

the problems as convex functions. The results of the study showed that,

if a function ϖ : W → R is weakly sequentially lsc, then the function ϖ

attains a minimizer on the convex set W . It was also established that if

ϖ is closed, then the optimization problem Infq∈V ψ(W ) admits at least

one global minimizer. In his study, in order to find minimizers, Okelo [44]

employed the use of weak topologies. One of the key differences between

Hilbert spaces and Lp-spaces is that given a sequence that is bounded it

is easy to obtain a sub-sequence that converges weakly in a Hilbert space,

which is not necessarily the case in Lp spaces. Therefore, this study aimed

to establish optimization conditions for Lp-spaces using semi-boundedness

imposed by semi-continuous functions.

Peypouquet [45] conducted research in the field of convex optimization

in normed spaces. Conditions for general convex optimization in normed

spaces were established, with a particular emphasis being put on linear

functionals and the topological dual. The results of this research mainly

focused on the compactness and closure of the weak topology. Conditions

required for a convex function to attain minimizers in reflexive spaces

were also presented. The following are some of the key findings from

Peypouquet’s research:
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Proposition 2.28 ([45], Proposition 2.17). Let (X, ‖.‖) be a normed lin-

ear space. Let ω : X → R ∪ {+∞} be a function, then the following

statements hold:

(i) If ω is lsc, then ω is ws− lsc.

(ii) If ω is ws− lsc, then ω is s− lsc.

(iii) If ω is lsc, then ω is s− lsc.

Peypouquet’s [45] research in convex optimization in normed spaces led to

the establishment of the relationship between lsc and s− lsc, as outlined

in Proposition 2.28. This serves as a useful tool for convex optimization

in normed spaces.

Proposition 2.29 ([45], Proposition 3.1). Let ω : X → R ∪ {+∞} be a

proper function. Then ω is convex and lsc, if and only if, a collection of

affine functions (ωi)i∈I that are continuous on X and satisfy ω = sup(ωi).

Corollary 2.30 (45, Corollary 3.57). Let ω : X → R∪{+∞} be a proper

function. Then, ω∗∗ is the greatest lsc and convex function of (ωi)i∈I .

Proposition 2.31 ([45], Proposition 3.6). If (X, ‖.‖) is a complete normed

space and suppose a convex mapping ω : X → R ∪ {+∞} is lsc. Then ω

is continuous on int(Dom(ω)).

Peypoquet [45] conducted a study on convex optimization in normed

spaces. The study used optimization tools such as linear functionals, and

topological duals, and the main methodology was weak topology and du-

ality approach. The study developed optimality problems for constrained
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optimization in Hilbert spaces and general normed spaces. Peypoquet [45]

noted that developing optimality conditions for constrained optimization

in Lp spaces is made complex due to the intricate underlying Lp-norm

structure and the infinite range of p i.e 1 ≤ p < ∞. Our current study

sought to address this challenge by investigating convex optimization in

Lp spaces, and aimed to find a solution to the complexities posed by Pey-

poquet in his research.

In [16] DeVore and Temlakov presented a variety of applications of E-

greedy algorithms to convex optimization, including those that rely solely

on evaluations of convex functions, as well as algorithms that utilize evalu-

ations that give exact values and those that incorporate evaluations whose

values are approximated. The study demonstrated that the upper bounds

are dependent on the smoothness of the point in a convex space X which

achieves a minimum point. It is worth noting that the research carried out

by DeVore and Temlakov [16] on E-greedy algorithms and convex opti-

mization has contributed valuable insights and tools for solving optimiza-

tion problems and has the potential for further developments. Among

the main results obtained by DeVore and Temlakov two key findings are

presented below:

Theorem 2.32 ([16], Theorem 1.1). Let Q∗ = infq∈P1(T )Q(q) be a feasible

set.

(i) If the set Q is uniformly smooth on P1(T ), then the Relaxed E-

Greedy Algorithm (REGA) converges such that:

lim
r→∞

Q(Gr) = Q∗.
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(ii) Moreover, given {ρ(Q,P1(T )) : a ≤ Γax, 1 < x ≤ 2}, one has

Q(Gr)−Q∗ ≤ B(x, γ)r1−x,

where the constant B(x,Γ) is positive.

Theorem 2.32 examines the rate at which the specific Relaxed E-Greedy

Algorithm (REGA(co)) converges, utilizing the modulus of smoothness.

It is noted that the point at which the minimum is achieved, Q∗, satisfies

a sparsity constraint.

Theorem 2.33 ([16], Theorem 1.2). Let T be uniformly smooth on X

and T ∗ := infq∈X T (q) = infq∈D0 T (q).

(i) The EGAFR(co) converges

lim
r→∞

T (Gr) = inf
q∈X

T (q) = inf
q∈D0

T (q) = T ∗

(ii) If the inequality ξ(T, a) ≤ Γax, 1 < x ≤ 2 is satisfied by the modulus

of smoothness of T, then the EGAFR(co) satisfies the inequality

T (Gr)− T ∗ ≤ D(T, r,Γ)εr,

where εr := inf{ε : P (ε)xr1−x ≤ ε}.

Theorem 2.33 describes the convergence property of the E-Greedy Al-

gorithm with Free Relaxation (EGAFR(co)) algorithm. It is used for

the convex minimization of uniformly smooth sets. The current study,
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however, aims to expand this analysis by considering convex optimiza-

tion on Lp-spaces from the perspective of semi-continuity. DeVore and

Temlakov [16] proposed E-greedy algorithms, which utilize function eval-

uations, exact evaluations, and approximate evaluations, to solve general

convex optimization problems. However, their research did not cover the

application of these algorithms to convex optimization in Lp spaces. The

current study utilized semi-continuous functions to identify the minimum

and maximum points of a COP which was not the case in [16].

Based on this review, a clear research gap exists on the characterization

of upper and lower semi-continuous functions in Lp spaces and the devel-

opment of optimality conditions for convex optimization in these spaces.

This gap in the current literature indicates that there is a great opportu-

nity for further research in these areas to improve our understanding of

the properties of lower and upper semi-continuous functions in Lp spaces

and apply it to solve convex optimization problems in Lp spaces.
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Chapter 3

RESEARCH

METHODOLOGY

3.1 Introduction

For effective completion of this research, a strong understanding of func-

tional analysis, operator theory, and norm structures was essential. In

this chapter, we have summarized and restated important principles and

results related to semi-continuity and convex optimization that were uti-

lized in the research, such as the Dini’s Theorem, Beer’s Theorem and

Fatou’s Lemma. Additionally, classical inequalities, such as the Cauchy-

Schwarz inequality and the Minkowski’s inequality, were invoked in the

findings. The technical methodology involved use of the KKT conditions

for optimality.
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3.2 Fundamental Principles

In this section we state classical results and important mathematical prin-

ciples that we used in this research.

Theorem 3.1 (Hahn-Banach Separation Theorem). [[45], Theorem

1.10] Let t P and R be nonempty disjoint convex subsets of a normed

space (Q, ‖.‖), then

(i) If the set P ⊆ Q is open, ∃F ∈ Q∗ \ {0} : 〈F, q1〉 < 〈F, q2〉, ∀q1, q2 ∈

P.

(ii) If the set P is compact and R is closed, ∃F ∈ Q∗ \ {0} and ξ > 0 :

〈F, q1〉+ ξ ≤ 〈F, q2〉, ∀q1 ∈ P and ∀q2 ∈ .R

Proposition 3.2 (45, Proposition 2.17). Let Q 6= ∅ be a convex set and

ϑ : Q → R be a function. If ϑ is convex then the following are equivalent:

(i) ϑ is w − lsc.

(ii) ϑ is ws− lsc.

(iii) ϑ is s− lsc.

(iv) ϑ is lsc.

Proposition 3.3 ([45], Proposition 2.3). Let ϑ : Q → [R ∪ {+∞} be a

function, then the following statements are equivalent:

(i) ϑ ∈ lsc(L).
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(ii) the set epi(ϑ) is closed in Q× R.

Theorem 3.4 (Dini’s Theorem, [7], Theorem 2.1). Let Q be a compact

set in a metric space (X, d). Let ϑj be a sequence of continuous functions

that converge pointwise to a continuous function ϑ. If ϑ1(q) ≥ ϑ2(q)... ≥

ϑn(q) ≥ ... ∀q ∈ Q, then {ϑj} converges uniformly to ϑ.

Theorem 3.5 (Beer’s Theorem). [[5],Theorem 2] Given η > 0 define

ϑ+
η (q) = sup{λ : (q, λ) ∈ Bη[hypo(ϑ)]}. Then ϑ+

η is a bounded usc function

and |ϑ+
η − ϑ| = η. Moreover, |ϑ− φ| ≤ η ⇐⇒ ϑ ≤ φ+

η and φ ≤ ϑ+
η .

Lemma 3.6 (Fatou’s Lemma). [[52], Section 1 inequality 1.1] Let

{ϑj}∞j=1 be a sequence of nonnegative measurable functions on a set L.

If lim infj→∞ ϑj(q) = ϑ(q) for each q ∈ L, then, lim infj→∞
∫
L ϑj(q)dµ ≥∫

L ϑ(q)dµ.

3.3 Known Inequalities

Proposition 3.7 (The Cauchy-Schwarz Inequality). [45, Proposi-

tion 1.34] Let (Q, 〈., .〉) be an inner product space and define the norm

of q by ‖q‖ = (〈q, q〉) 1
2∀q ∈ Q then:

|〈q1, q2〉| ≤ ‖q1‖‖q2‖∀q1, q2 ∈ Q. (3.3.1)

Theorem 3.8 (Minkowski’s Inequality). [51, Theorem 4.3] Let 1 ≤

p <∞, then ∀q, w ∈ Rn we have,

(∫ b

a

|qi + wi|p
) 1

p

≤
(∫ b

a

|qi|p
) 1

p

+

(∫ b

a

|wi|p
) 1

p
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3.4 Technical Approach

The technical approach involved the use of Karush-Kuhn-Tucker Opti-

mality Conditions to characterize conditions for convex optimization in

Lp-spaces.

Karush-Kuhn-Tucker (KKT ) Optimality Conditions

The KKT conditions for optimality are necessary for q∗ to be a local

optimal solution for the convex optimization problem below:

Minq∈Qϑ(q) (3.4.1)

subject to

φi(q) ≤ 0, 1 ≤ i ≤ t (3.4.2)

ϱj(q) = 0, 1 ≤ j ≤ v, (3.4.3)

where q ∈ Q is the optimization variable and the set Q is convex; the

COP 3.4.1 is convex; the inequality constraints 3.4.2 are convex functions

and the equality constraints 3.4.3 are convex functions.

The KKT optimality conditions are given by:

φi(q
∗) ≤ 0, ∀i = 1, ..., t (3.4.4)

ϱj(q
∗) = 0, ∀j = 1, ..., v (3.4.5)

η∗i ≥ 0, ∀i = 1, ...,m (3.4.6)

η∗iφi(q
∗) = 0, ∀i = 1, ..., t (3.4.7)

∇φ0(q
∗) +

p∑
i=1

η∗iφ1(q
∗) +

p∑
j=1

∇ϱj(q∗) = 0. (3.4.8)

50



The first two conditions (3.4.4 and 3.4.5) are primal feasibility conditions

of q∗.

Condition 3.4.6 represents the dual feasibility condition for q∗.
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Chapter 4

RESULTS AND

DISCUSSION

4.1 Introduction

We give results on characterizations of lower semi-continuous functions

and upper semi-continuous functions in Lp spaces. We also establish

conditions for convex optimization in Lp spaces. We denote the collection

of all lsc functions in an Lp-space L by lsc(L) and usc(L) denotes the

collection of all usc functions in an Lp space L.

4.2 Lower Semi-continuous functions in Lp

Spaces

In this section, characterization of lower semi-continuous functions in Lp

spaces is discussed. We begin with the following proposition in which
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lower semi-continuity is characterized using convex conjugates and bi-

conjugates. We show that if a conjugate is convex in Lp spaces L then

it is weak∗− lower semi-continuous in an Lp space and a convex bi-

conjugate is weak lower semi-continuous in an Lp space.

Proposition 4.1. Suppose ϑ is a function in an Lp-space L. Then ϑ∗,

ϑ∗∗ are convex functions, and

(i) ϑ∗ is w∗ − lsc.

(ii) ϑ∗∗ is w − lsc.

(iii) ϑ∗∗ ≤ ϑ.

Furthermore, if ϑ1, ϑ2 are convex functions satisfying ϑ1 ≤ ϑ2, then

ϑ∗
1 ≥ ϑ∗

2.

Proof. Let the convex function ϱ ∈ L∗ : ϱ→ 〈q, ϱ〉, ∀q ∈ dom(ϑ) be weak∗

continuous function. Then, ϱ → 〈q, ϱ〉 is w∗ − lsc for all finite or infinite

function ϑ(q). Define ϑ∗ as ϑ∗ = sup{q : q ∈ lsc(L)}. Since the supremum

of any collection of lsc(L) is a lsc function, then ϑ∗ supremum is a convex

and weak∗ − lsc function. Now, the function q 7→ 〈q, ϱ〉 is convex and

weakly lsc. Define ϑ∗∗ as ϑ∗∗ = sup{q : q 7→ 〈q, ϱ〉}∀ϱ ∈ L∗. Then ϑ∗∗ is

convex and weakly lsc. For each q ∈ dom(ϑ), 〈q, ϱ〉−ϑ∗(ϱ) ≤ ϑ(q). Hence

∀q ∈ dom(ϑ), ϑ∗∗(q) = sup{(〈q, ϱ〉 − ϑ∗(ϱ))} ≤ ϑ(q) this implies that

ϑ∗∗ ≤ ϑ. Let ϑ1 ≤ ϑ2, then, ϑ
∗
2(ϱ) = sup{(〈q, ϱ〉 − ϑ2(q))} ≤ sup{(〈q, ϱ〉 −

ϑ1(q))} = ϑ∗
1(ϱ) and this clearly shows that ϑ∗

1 ≥ ϑ∗
2.

In the next lemma we have characterized lsc functions using Moore-Smith

sequences. A function ϑ : Q → R whereQ ⊆ L is lower semi-continuous if
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given a Moore-Smith sequence {(qj)}j∈N ∈ Q, the inverse ϑ−1(q,∞), ∀q ∈

R is open.

Lemma 4.2. Let L be an Lp-space and lsc(L) denote the collection of

all lsc functions. Let ϑ be a measurable function and {(qj)}j∈N ∈ dom(ϑ)

be a Moore-Smith sequence. Then ϑ ∈ lsc(L), if and only if,
∫
L ϑ(q) ≤

lim inf
∫
L ϑ(qj), ∀q ∈ dom(ϑ) whenever qj → q.

Proof. Let ϑ ∈ lsc(L). Assume {(qj)j∈N} is a Moore-Smith sequence

converging to q ∈ dom(ϑ). If r < ϑ(q), ∀r ∈ R, then ϑ−1(r,∞) is open

since ϑ ∈ lsc(L). Now, ∀q ∈ ϑ−1(r,∞) and qj → q, ∃jr ≤ j satisfy-

ing qj ∈ ϑ−1(r,∞). So given j ≥ jr we have ϑ(qj) > r implying that

lim inf ϑ(qj) ≥ r. Now ∀r < ϑ(q) we obtain lim inf ϑ(qj) ≥ ϑ(q). Hence,

equivalently ϑ(q) ≤ lim inf ϑ(qj). Given that ϑ is measurable over L and

qj → q, then by Lemma 3.6 we have
∫
L ϑ(q) ≤ lim inf

∫
L ϑ(qj).

Conversely, for each Moore-Smith sequence qj → q let
∫
L ϑ(q) ≤ lim inf

∫
L ϑ(qj).

Then ϑ(q) ≤ lim inf ϑ(qj). Let Ω = ϑ−1(−∞, r], ∀r ∈ R. If q ∈ Ω and

given qj → q, then {qj} ∈ Ω. Since Ω = ϑ−1(−∞, r], we deduce that

ϑ(qj) ≤ r for each j and so ϑ(q) ≤ r. Hence q ∈ Ω, implying that Ω

is closed and so the complement of Ω (Ωc = ϑ−1(r,∞)) is open, showing

that ϑ ∈ lsc(L).

The next theorem shows that if two lower semi-continuous functions are

such that neither takes the value −∞, then their sum yields a lower semi-

continuous function and the product of either of such functions with a

positive scalar is also a lower semi-continuous function.

Theorem 4.3. Let L be an Lp space and Q be a nonempty convex set

. Suppose two functions ϑ : Q → R and ϱ : Q → R are lsc in L such
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that ϑ > −∞, ϱ > −∞, then their sum ϑ+ ϱ is lsc in L and furthermore

∀λ > 0, λϑ ∈ lsc(L), ∀ϑ ∈ lsc(L).

Proof. Let {(qj)j∈N} ⊆ Q be a Moore-Smith sequence converging to q ∈

Q, then by Lemma 4.2 we have,

(ϱ+ ϑ)(q) ≤ lim inf ϱ(qj) + lim inf ϑ(qj)

≤ lim inf(ϱ(qj) + ϑ(qj))

= lim inf(ϱ+ ϑ)(qj)

Thus (ϱ + ϑ)(q) ≤ lim inf(ϱ + ϑ)(qj), implying that
∫
L(ϱ + ϑ)(q) ≤

lim inf
∫
L(ϱ+ ϑ)(qj) by Lemma 3.6 meaning that ϱ+ ϑ ∈ lsc(L).

It also follows that,

(λϑ)(q) = λϑ(q)

≤ λ lim inf ϑ(qj)

= lim inf λϑ(qj)

= lim inf(λϑ)(qj)

Hence, (λϑ)(q) ≤ lim inf(λϑ)(qj) yields
∫
L(λϑ)(q) ≤ lim inf

∫
L(λϑ)(qj)

showing that λϑ ∈ lsc(L).

The following theorem shows that if a sequence of lsc functions {ϑn},

with each of the functions being finite, converges uniformly to ϑ then, ϑ

is also lsc.

Theorem 4.4. Let {ϑn} be a finite sequence of lower semi-continuous

functions in an Lp-space L. If {ϑn}kn=1 converges uniformly to ϑ then
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ϑ ∈ lsc(L).

Proof. Uniform convergence of {ϑn} implies that given a small positive

real number ξ an integerNξ exists yielding |ϑn(q)−ϑ(q)| < ξ, ∀n ≥ Nξ, q ∈

dom(ϑ). So |ϑn(q)−ϑ(q)| ≤ sup{|ϑn(q)−ϑ(q)| < ξ : ∀q ∈ dom(ϑ)andn ≥

Nξ}. Define η by η = sup{|ϑn(q) − ϑ(q)| : q ∈ dom(ϑ)}. Hence −η ≤

ϑn(q) − ϑ(q) ≤ η implies that ϑ(q) ≤ η + ϑn(q). Now since {ϑn} are

lsc functions, and given a Moore-Smith sequence {(qj)}j∈N converging

strongly to q, we have ϑn(q) ≤ lim inf ϑn(qj), thus

ϑ(q) ≤ η + lim inf ϑn(qj). (4.2.1)

Since {ϑn} converges uniformly to ϑ, limn→∞ (lim inf ϑn(qj)) = lim inf ϑ(qj)

thus if we take limits as n tends to infinity inequality 4.2.1 becomes

ϑ(q) ≤ η + lim inf ϑ(qj). Choosing ξ ≥ η we have ϑ(q) ≤ ξ + lim inf ϑ(qj).

This holds for all ξ > 0. Hence, we get ϑ(q) ≤ lim inf ϑ(qj) showing that

ϑ ∈ lsc(L).

In the following result, we express lower semi-continuity of functions using

the concept of the epigraph of a function.

Theorem 4.5. Let Q be a convex set. A function ϑ : Q → R in Lp space

L is lsc if and only if epiϑ ⊆ Q× R is closed.

Proof. Let ϑ ∈ lsc(L) and ∀q ∈ Q, ∀κ ∈ R assume (qi, κi) ∈ epiϑ, con-

verges to (q, κ) ∈ Q×R. Then qi → q and κi → κ. By Lemma 4.2 we have

ϑ(q) ≤ lim inf ϑ(qi) ≤ lim inf κi = lim κi = κ. Thus, ϑ(q) ≤ κ implies that

(q, κ) ∈ epi(ϑ). This shows that epi(ϑ) is closed.
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Conversely, let epi(ϑ) be closed. Then ∀κ ∈ R, the set (Q×{κ})∩epi(ϑ) =

{(q, κ) : κ ≥ ϑ(q)} ⊂ Q × R is closed. This implies that ϑ−1(−∞, κ] as

a subset of L is closed but ϑ−1(κ,∞), ∀q ∈ Q), is open. Since this holds

true ∀κ ∈ R, then ϑ ∈ lsc(L).

A function taking a finite value at any point in its domain is termed as

proper. The next proposition shows that if a convex lsc function can take

−∞ value at any point in its domain then it is infinite everywhere such

that, should there exist a point at which the function is proper then it

does not admit the value −∞ at any other point in its domain.

Proposition 4.6. Let Q be a convex set. Let a convex function ϑ :

Q → R in Lp space L be lower semi-continuous. If there exists some

q0 ∈ Q : ϑ(q0) = −∞, then ϑ(q) = −∞ ∀q ∈ Q.

Proof. Assume q ∈ Q implies −∞ < ϑ(q) < ∞. Let q0 ∈ Q satisfy

ϑ(q0) = −∞. Since ϑ is convex, we have ϑ((1−η)q+ηq0) ≤ (1−η)ϑ(q)+

ηϑ(q0) = −∞, ∀η ∈ (0, 1] hence ϑ((1− η)q + ηq0) = −∞, ∀η ∈ (0, 1].

Since ϑ ∈ lsc(L), we obtain ϑ(limη→0(1 − η)q + ηq0) ≤ lim infη→0 ϑ((1 −

η)q + ηq0), and hence ϑ(q) ≤ −∞, which is a contradiction. Thus, q ∈

Q : −∞ < ϑ(q) <∞ does not exist, implying that ∀q0 ∈ Q : ϑ(q0) = −∞

we have, ϑ(q) = ∞, ∀q ∈ Q as desired.

The next lemma shows that lower semi-continuity implies weak lower

semi-continuity.

Lemma 4.7. Let Q be a convex set. If a function ϑ : Q → R in an

Lp-space L is lsc then, ϑ is weakly lower semi-continuous.
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Proof. The cartesian productQ×R is locally convex sinceQ is convex and

R is locally convex. Therefore, Qv×R forms a weak topology on L. Hence,

weak closure in Q×R implies closure in Qv×R. A convex subset of Q×R

is always closed in Qv×R as well as the whole domain of Q×R. From the

hypothesis ϑ ∈ lsc(L), so by Theorem 4.5 ϑ ∈ lsc(L) ⇔ epiϑ ⊆ Q× R is

closed. Therefore, epi(ϑ) is closed implying that ϑ ⊆ Qv×R. is w−lsc.

Proposition 4.8 below shows that given a sequence of continuous functions

that are Lebesgue integrable on Q ∈ [0, 1], if ϑ is lsc then it is the least

upper bound for the sequence.

Proposition 4.8. Let L be an Lp-space. Let Q be a nonempty set. De-

note a collection of continuous functions that are integrable on Q ∈ [0, 1]

by C(ϑ). Given ϑ ∈ lsc(L), ∀ϑ ≥ 0 then ϑ = sup{φ : φis continuous, ∀φ ≤

ϑ}.

Proof. Suppose φ ∈ C(ϑ) : φ ≤ ϑ. Since C(ϑ) is nonempty let L =

ϑ−1(−∞, ϑ(q)− ξ], ∀q ∈ Q, ξ > 0. Now, Q\L = ϑ−1(ϑ(q)− ξ,∞) is open,

so L is closed. Therefore, q is not an element of L. Hence, a function

ρ : Q → [0, 1] that is continuous exists, satisfying ρ(L) = 0 and ρ(q) = 1.

Assuming ϑ(q)− ξ ≤ 0 then, given ρ ≥ 0 and ϑ ≥ 0, (ϑ(q)− ξ)φ ≤ ϑ. If

we let ϑ(q)− ξ > 0 and w ∈ Q, then (ϑ(q)− ξ)φ(w) ≤ (ϑ(q)− ξ) ≤ φ(w)

when w /∈ L and (ϑ(q)− ξ)φ(w) = 0 when w ∈ L. Thus (ϑ(q)− ξ)φ ≤ ϑ

and continuity of (ϑ(q) − ξ)φ imply that (ϑ(q) − ξ)φ ∈ C(ϑ). Thus, we

obtain (sup(C(ϑ))(q))) ≥ (ϑ(q) − ξ)φ(q) = ϑ(q) − ξ where sup(C(ϑ)) =

sup{φ : φis continuous, ∀φ ≤ ϑ}. Since ξ was arbitrary we therefore have

(sup(C(ϑ)) (q)) ≥ ϑ(q) (4.2.2)
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and since q was also arbitrary we have

sup(C(ϑ)) ≤ ϑ. (4.2.3)

Therefore from 4.2.2 and 4.2.3 we have ϑ = sup(C(ϑ)).

The next theorem shows that a lsc function in an Lp-space must attain

an absolute minimum on a compact set.

Theorem 4.9. Let ϑ be a function in an Lp-space L. Let q be a member

of a compact subset B of Rn. If ϑ ∈ lsc(L) then, ϑ(q) ≥ ϑ(q), ∀q ∈ B, q =

lim{br}.

Proof. By way of contradiction suppose that ϑ has no lower bound. Then

there is qr ∈ B, ∀r ∈ N satisfying ϑ(qr) < −r. Compactness of B implies

that a sub sequence {qrk} of {qr} exists which converges to q0 ∈ B. Lower

semi-continuity of ϑ means that ϑ ∈ lsc(L) at every point {q0 ∈ B}

in the convergent sequence {qr} tending to q0. Thus, by Lemma 4.2,

lim infk→∞ ϑ(qrk) ≥ ϑ(qr). This shows a contradiction, since lim inf ϑ(qrk) 6=

−∞. Hence, ϑ is bounded below. Suppose F = inf{ϑ(q) : q ∈ B}. Then,

F ∈ R because ϑ(q) is not empty and is bounded below.

Let the sequence {br} ∈ B be such that {ϑ(br)} converges to F . Then

since B is compact, there is {brk} a sub sequence of {br} whose limit is

q ∈ B. Now, F = limk→∞ ϑ(brk) = lim infk→∞ ϑ(brk) ≥ ϑ(q) ≥ F . This

shows that F = ϑ(q). Therefore, ϑ(q) ≥ ϑ(q), ∀q ∈ B.

The next theorem proves that if a proper function is convex and lsc its

lower bound is a functional that is continuous.
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Theorem 4.10. Suppose ϑ is a convex function in an Lp-space L. If

ϑ ∈ lsc(L) then, ∃ρ ∈ L∗, r ∈ R satisfying ϑ ≥ ρ+ r.

Proof. The epi(ϑ) ⊆ L × R is convex given that ϑ is convex. Now, for

each r0 ∈ dom ϑ we have ϑ(r0) > −∞, by the fact that ϑ is proper.

Given ϑ ∈ lsc(L), it follows from Theorem 4.5 that epi(ϑ) ⊆ L × R is

closed. So, epi(ϑ) forms a closed convex set. Therefore, for each r0 ∈dom

ϑ we have (r0, ϑ(r) − 1) /∈ epi(ϑ) guaranteeing convexity of the compact

set {(r0, ϑ(r0)− 1)}. Then, ∃σ ∈ (L×R)∗ and a function Γ ∈ R yielding

σ(ρ, r) < Γ < σ(r0, ϑ(r0)− 1), ∀(r, ρ) ∈ epiϑ. There exists ρ ∈ L∗, σ ∈ R∗

satisfying σ(r, ρ) = σρ + σr, ∀(ρ, r) ∈ L∗ × R. Therefore by Theorem 3.1

σ(ρ + r) < Γ < σr0 + σ(ϑ(r0)− 1), ∀(ρ, r) ∈ epiϑ. For (r0, ϑ(r0)) ∈ epiϑ,

we have σ(ρ + r) < σr0 + σ(ϑ(r0) − 1) implying that σ < 0. Now, for

r ∈ epi(ϑ), ϑ(r) > − 1
σ
ρr + 1

σ
ρr0 + ϑ(r0) − 1. Since σ < 0 it follows that

ϑ ≥ ρ+ r.

This theorem gives rise to the following two important corollaries:

Corollary 4.11. Let the convex function ϑ in an Lp space L be lsc. Then

ϑ <∞, if and only if, ϑ∗ <∞.

Proof. Let the convex function ϑ be proper. Thus, by Theorem 4.10, ∃ρ ∈

L∗, ∃r ∈ R satisfying ϑ ≥ ρq+ r, ∀q ∈ dom(ϑ). Now, each η ∈ L∗ satisfies

ϑ∗(η) = supt∈dom(ϑ)(ηq − ϑ(q)) ≤ supq∈L(ηq − ρq − r), hence ϑ∗(ρ) =

−r < ∞, implying that dom ϑ∗ 6= ϕ. There also exists q0 ∈ dom(ϑ) such

that ϑ(q0) 6= ∞, resulting to supq∈dom(ϑ)(ηq− ϑ(q)) ≥ ηq0 − ϑ(q0) > −∞.

It thus follows that ϑ∗(η) > −∞, ∀η ∈ dom(ϑ∗). Hence ϑ∗ is proper.

Conversely, let the convex function ϑ∗ be proper. Let q ∈ dom(ϑ). Since
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ϑ∗ is proper, η ∈ dom(ϑ∗) satisfies ϑ∗(η) < ∞. By Theorem 3.1 we get

ϑ(q) ≥ 〈q, η〉 − ϑ∗(η) > −∞. Therefore, ∀q ∈ dom(ϑ), ϑ(q) > −∞, hence

ϑ is proper.

Corollary 4.12. Let ϑ be a convex function in an Lp-space L. If ϑ ∈

lsc(L), and ∀q0 ∈ dom(ϑ), ∃r0 > 0 such that infq∈B(q0;r0) ϑ(q) > −∞,

then ∃r ∈ R satisfying ϑ(q) > ρ(q) + r.

Proof. Suppose infq∈B(qz0,r0) ϑ(q) > −∞, then, there is r ∈ R : ϑ(q) >

r+1 for each q ∈ B(q0, r0). Clearly (q0, r) /∈ epi(ϑ). Since epi(ϑ) is convex

and closed, ∃ρ ∈ dom(ϑ∗) : ρ(q0)+αr < ρ(q)+αϑ(q), ∀q ∈ dom(ϑ), α ∈ K.

Therefore, ϑ(q) > − 1
α
ρ(q) + 1

α
(ρ(q0) + αr), ∀q ∈ dom(ϑ), α > 0. Hence,

ϑ(q) > ρ(q) + r ∀q ∈ dom(ϑ).

Theorem 4.13. Let Q 6= ∅ be a set and L be an Lp-space. Let the

functional Ω : Q → K in L be convex. Then, a convex function ϑ exists

to satisfy ϑ(r) = ϑϱ(r) = infϱ(q)=r Ω(q), ∀r ∈ K, q ∈ Q.

Proof. Let r1, r2 ∈ K and 0 ≤ υ ≤ 1. Then we have,

ϑ(υr1 + (1− υ)r2) = inf
ϱ(q)−υr1+(1−υ)r2

Ω(q), ∀q ∈ Q

= inf
ϱ(q1)=r1,ϱ(q2)=r2

Ω(υq1 + (1− υ)q2), ∀q1, q2 ∈ Q

≤ inf
ϱ(q1)=r1,ϱ(q2)=r2

υΩ(q1) + (1− υ)Ω(q2)

= (1− υ) inf
ϱ(q)=r2

Ω(q) + υ inf
ϱ(q)=r1

Ω(q)

= υϑ(r1) + (1− υ)ϱ(r2),

so ϑ is convex on K. Thus, since ϑ(r0) = −∞ for some r0 ∈ K, we have,

ϑ(r) < +∞. From property of convex functionals and R = [−∞,+∞] it
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follows that ϑ ≡ −∞. If ϑ > −∞ then, since dim R = 1 < +∞, ϑ is

continuous on K and ϑ(r) = ϑϱ(r) = infϱ(q)=r Ω(q), ∀r ∈ K, q ∈ Q.

Proposition 4.14. Let a convex functional Ω : Q ⊂ Rn → R be continu-

ous in an Lp-space L. Suppose Y ⊆ L is bounded and satisfies inf Ω(q) <

supΩ(q), ∀q ∈ Q, ∀q0 ∈ Y , then we have q0 ∈ ϑ(Ω) if and only if

∃φ0 ∈ L′
, φ0 6= 0 : φ0(q0) = supq∈Q φ0(q),Ω(q) ≤ supΩ(Y ).

Proof. Suppose that q0 ∈ ϑ(Ω). Let M = {q ∈ Q : Ω(q) ≤ supΩ(Y )}

where M ⊆ L. Then M is convex and IntM = {q ∈ Q : Ω(q) <

supΩ(Y ) 6= ϕ}. Now, since q0 ∈ ϑ(Ω) then q0 /∈ IntM. Thus, there is

φ0 ∈ L′
with φ0 6= 0, satisfying: φ0(q0) ≥ supφ0(M). But q0 ∈ Y ⊂ M

implies that φ0(q0) ≤ supφ0(M) also holds hence we have, φ0(q0) =

supq∈Q φ0(q). Conversely, suppose that ∀q0 ∈ Y, there is φ0 ∈ L′
: φ0 6= 0

satisfying φ0(q0) = supq∈Q φ0(q),Ω(q) ≤ supΩ(Y ). Then, q0 /∈ IntM

where M is a set defined by M = {q ∈ Q : Ω(q) ≤ supΩ(Y )}. Therefore,

since IntM = {q ∈ Q : Ω(q) < supΩ(Y ) 6= ϕ} and q0 ∈ Y ⊂ M, we get

q0 ∈ ϑ(Ω) as required.

Theorem 4.15. Let Q be a proper subset of Rn. Assume that a function

ϑ : Q → R in an Lp-space L is convex. If ϑ is lsc then for each q0 ∈ Q,

and convex function φ : Q → R, ϑ(q0) = supφ infq∈Q{ϑ(q)−φ(q)+φ(q0)}.

Proof. By definition of ϑ∗ we deduce, φ(q0)−ϑ∗(φ(q0)) = φ(qo)−sup(φ−

ϑ) Thus φ(q0) − ϑ∗(φ(q0)) = infq∈Q{ϑ(q) − φ(q) + φ(q0)}(∀φ ∈ Q∗).

Since ϑ ∈ L, we have ϑ∗∗(q0) = ωϑ(q0). Therefore, ϑ(q0) = ϑ∗∗(q0) =
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supφ∈Q∗{φ(q0)− ϑ∗(φ)}

ϑ(q0) = ϑ∗∗(q0) = sup
φ∈Q∗

{φ(q0)− ϑ∗(φ(q0))}

= sup
φ∈Q∗

inf
q∈Q

{ϑ(q)− φ(q) + φ(q0)}.

The following corollary characterizes the notion of lsc to the almost

lsc concept. A function ϑ : Q → R is said to be almost lsc if a sequence

{qn} ⊆ Q converging to q0 ∈ Q one has ϑ(q0) ≤ lim infn→∞ ϑ(qn).

Proposition 4.16. Let Q be a convex and bounded set. Let ϑ : Q → R

be a function in an Lp-space L. Then ϑ is said to be almost lsc if and

only if it is convex lsc.

Proof. Let a convex set Q ⊆ R be bounded. Suppose ϑ : Q → R is almost

lsc. Let {qn} and {q′n} be two Moore-Smith sequences in Q converging

to q and q′ respectively such that q, q′ ∈ Q. Since ϑ is almost lsc, it is lsc

at q and q′. Then ϑ(q) ≤ lim infn→∞ ϑ(qn) and ϑ(q
′) ≤ lim infn→∞ ϑ(q′n).

So ∀η ∈ [0, 1] we can obtain

ϑ(ηq + (1− η)q′) ≤ lim inf
n→∞

(ηϑ(qn) + (1− η)ϑ(q′n))

≤ η lim inf
n→∞

ϑ(qn) + (1− η) lim inf
n→∞

ϑ(q′n)

≤ ηϑ(q) + (1− η)ϑ(q′)

This shows that ϑ is convex lsc.
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Conversely, let ϑ be convex lsc. Then ∀qn → q and ∀q′n → q′ we have

ϑ(ηq + (1− η)q′) ≤ ηϑ(q) + (1− η)ϑ(q′).

Therefore, ϑ is lsc at q and q′. Since Q is bounded, it follows that, ϑ is

almost lsc.

4.3 Upper Semi-continuous functions in Lp

Spaces

In this section, we have characterized upper semi-continuity in Lp-space.

We let ϑ ∈ usc(L) to be an usc function and we define the δ-parallel

function of ϑ as ∀δ > 0, ϑ+
δ (q) = sup{α : (q, α) ∈ βδ|ϑ|}. We have used

Busc(L) to denote a set containing all bounded usc functions on the Lp-

space L while Cusc(L) denotes a set comprising of all continuous usc

functions on this space.

We start with the following proposition which characterizes usc functions

of dense sets.

Proposition 4.17. Let L be an Lp-space. Let {ϑn} ∈ L be a convergent

sequence of continuous functions whose limit is an usc function ϑ. Then

there exists a dense set D such that ∀q ∈ D, ϑ(q) is a sub-sequential limit

of {ϑn(q)}.

Proof. Let m ∈ Z+ and k > 0 then the set Sm,k = {q : ϑ(q) − k} ≥

{ϑn(q), ∀n ≥ m} is closed and nowhere dense. Assume q ∈ int(Sm,k), then
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∃{qn} → q as n → ∞ satisfying ϑ(q) = lim infn→∞{ϑn(qn)}. If ∃M ∈ Z+

then, ∀n > M , {ϑn(qn)} > {ϑ(q) − k
2
} and {ϑ(qn)} < {ϑ(q) + k

2
}. This

implies that {ϑn(qn)} > {ϑ(q) − k
2
} > {[ϑ(qn − k

2
] − k

2
} = {ϑ(qn) − k}.

Clearly this is a contradiction to our assumption that {qn} ∈ Sm,k. Now,

for any m,n ∈ Z+ suppose Em,n = Sm, 1
n
. Since L is an Lp-space, it is

complete and so each Cauchy sequence existing in L must have its limit

in L. Thus G = ∩∞
m=1,n=1(Em,n)

c is a dense Gδ set. Then a sub-sequence

of Gn say {ϑnm} exists satisfying ∀q ∈ G, ϑnm(q) > ϑ(q) − 1
k
. Therefore,

∀q ∈ L, lim supm→∞ ϑnm(q) ≤ ϑ(q).

The next theorem shows that an usc function ϑ(φ) is equal to the Lebesgue

integral of a convex function φ with respect to a Borel measure µ.

Theorem 4.18. Let L be an Lp-space. Let ϑ be a function in L and let

the function φ be integrable with respect to a Borel measure µ. If ϑ(φ) =∫
L φdµ such that φ is measurable, then ϑ is usc.

Proof. Let {φn}n∈N be sequence in usc(L) whose limit is φ ∈ usc(L).

For any positive integer r we have qr = φ+
1
r

. Clearly each qr ∈ usc(L).

Now, since {qr} forms a monotonic sequence of limits that approach φ,

ϑ(qr) = ϑ(φ). We see that ϑφ) < ∞ since φ is bounded above and

µ(L) < ∞. Choose r such that ϑ(qr) < ϑ(φ) + ε, ∀ε > 0. Because {φn}

converges to φ, then ∃N ∈ Z+ : ∀n > N, |φn − φ| ≤ 1
r
. By Theorem 3.5

φn ≤ qr so that ϑ(φn) ≤ ϑ(qr) < ϑ(φ) + ε showing that ϑ ∈ usc(L).

The corollary below follows from Theorem 4.18.

Corollary 4.19. Let L be an Lp-space and ϑ ∈ L be a Lebesgue integral

induced by a Borel measure µ. Suppose the sequence {φn} ∈ usc(L)
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converges to a measurable function φ ∈ usc(L). Define ϑr(φn) = ϑ[(φn)
+
1
r

]

such that ϑr : {φn : n ∈ Z+} → R, ∀r ∈ Z+. Then, limn→∞ϑ(φn) = ϑ(φ)

⇐⇒ {ϑr} converges uniformly to ϑ on {φn}.

Proof. Let z = {φ} ∪ {φn}. Since limn→∞ϑ(φn) = ϑ(φ), ϑ is continuous

on z and φ is its unique limit point. Suppose ϑr(φ) = ϑ(φ+
1
r

). Then, ϑ is

usc and forms a decreasing sequence. Therefore, for any a ∈ z, ϑ1(a) >

ϑ2(a) ≥ ... ≥ ϑr(a) hence limr→∞ ϑr(a) = ϑ(a). So by Theorem 3.4, it

follows that, {ϑr} is uniformly convergent on {φn}. On the converse, let

limr→∞ ϑr(a) 6= ϑ(a). Because ϑ ∈ usc(L) at φ we know that, |φn−φ| ≤ 1
r

and ϑ(φn) < ϑ(φ)− ε.

Now, (φn)
+
1
n

> φ implies that

ϑr(φn) ≥ ϑ(φ) > ϑ(φn) + ε.

Thus {ϑr} cannot converge uniformly to ϑ on {φn}. Hence limr→∞ ϑr(a) =

ϑ(a).

The next theorem characterizes upper semi-continuity in terms of the

hypo-graph of a function.

Theorem 4.20. If φ is a usc function in an Lp-space L, then ∀δ > 0 :

βδ|hypo(φ)| = hypo(φ)+δ .

Proof. If (q, υ) ∈ ηδ|hypoφ| there is (s, η) ∈ hypoφ yielding δ ≥ d[(q, υ), (s, η)].

Now, d[(s, φ(s)), (s, υ+φ(s)−η] = d[(s, η), (q, υ)] implying that υ+φ(s)−

η ≤ φ+
δ (q). From this inequality we see that υ ≤ υ + φ(s) − η showing

that (q, υ) ∈ hypo(φ)+δ . On the converse assume that (q, υ) ∈ hypo(φ)+δ .
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Then, ∃{sn} ∈ L : d[(q, φ+
δ (q)), (sn, φ(sn))] ≤ δ + 1

n
, ∀n = 1, 2, ... Since

{φ(sn)} ∈ B(L) we assume that the sub-sequence {(sn, φ(sn))} converges

to (s, η). Since φ ∈ usc(L), then hypoφ is closed and (s, η) ∈ hypoφ.

Clearly d[(q, φ+
δ (q)), (s, η)] ≤ δ. Therefore, (q, φ+

δ (q)) ∈ ηδ[hypoφ]. More-

over, (q, υ) ∈ ηδ[hypo(φ)] since υ ≤ φ+
δ (q).

The corollary below follows from Theorem 4.20.

Corollary 4.21. Let L be an Lp-space and suppose ϑ ∈ usc(L). Then

∀δ > 0 ∈ Z+, a function ϑ+
δ is upper semi-continuous in L and bounded.

Proof. We need to show that ϑ+
δ ∈ usc(L) and is bounded below. Assume

ϑ+
δ is not bounded below. Then ∃{qn, hn} ∈ (hypo(ϑ)+δ )

c such that hn <

−n, ∀n. The distance between {qn, hn} and each point of hypo(ϑ is greater

or equal to δ.We assume that an → a. Thus, (qn, ϱn) is arbitrarily close to

the half line {(q, ϑ) : ϑ(q) ≥ q, } as n→ ∞. Hence {(q, ϑ) : q ∈ ϑ(q)} is a

subset of the hypo-graph of ϑ which is a contradiction to our assumption.

Therefore ϑ+
δ is bounded below. To show that ϑ+

δ ∈ usc(L) we apply

Theorem 4.20. Since ϑ+
δ closed and bounded, we have βδ|hypo(ϑ| =

hypo(ϑ+
δ , because parallel bodies of closed sets are closed. Therefore, for

every δ > 0, we have, ϑ+
δ ∈ usc(L).

Proposition 4.22. Let Q be a convex and bounded set. Let d = max{d(r1, r2), |α1−

α2|} define the distance between two points (r1, α1) ∈ Q and (r2, α2) ∈ Q.

If ϑ : Q → R and ϖ : Q → R are usc functions in an Lp-space L, then

d1(ϑ,ϖ) ≥ d2(ϑ,ϖ) ≥ d3(ϑ,ϖ).

Proof. Assume d1(ϑ,ϖ) = δ. Then, ∀r ∈ Rn, d[(r, ϑ(r)), (r,ϖ(r))] ≤

δ implies ϑ ∈ βδ[ϖ] and ϖ ∈ βδ[ϑ]. βδ[ϖ] is a closed set hence ϑ ⊂
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βδ[ϖ]. Also βδ[ϑ] is closed implying that ϖ ⊂ βδ[ϑ]. Therefore, d2(φ,ϖ) ≤

d1(ϑ,ϖ). Now, let βδ[ϑ] ⊃ ϖ and βδ[ϖ] ⊃ ϑ. Then ∀r ∈ Rn we have,

ϑ+
δ (r) ≥ ϖ(r). Thus by Theorem 4.20, βδ[hypoϑ] = hypoϑ+

δ ⊃ hypoϖ. In

the same manner βδ[hypoϖ] ⊃ hypoϑ, hence, d2(ϑ,ϖ) ≥ d3(ϑ,ϖ).

The theorem below presents a characterization of usc functions in terms

of Moore-Smith sequences.

Theorem 4.23. If {φn} ∈ usc(L) in an Lp-space L, then {φn} converges

to φ if

(i) lim supn→∞ φn(qn) ≤ φ(q), ∀q ∈ Q ⊂ Rn whenever {qn} → q.

(ii) A Moore-Smith sequence {qn} converging to q exists satisfying ∀q ∈

Q, lim supφn(qn) ≥ φ(q).

Proof. Let lim supn→∞ φ(qn) ≤ φ(q), ∀q ∈ Q whenever {qn} → q. Then,

∀ξ > 0, there is an integer Nq and a function g(q) ∈ (0, ξ) satisfying

φn(s) < φ(q) + ξ, ∀n ≥ Nq whenever d(q, s) < g(q). Pick {q1, ..., qk} ⊂ Q

for which Q ⊂ ∪ki=1{s : d(qi, s) < g(qi)}. Suppose N = max{Nt, ..., Nzk}

and for any arbitrary q ∈ Q choose qi satisfying d(q, qi) < g(qi) < ξ.

Then, d[(q, φn(q)), (qi, φn(q) − ξ)] = ξ. Now if we let n > N , then φn ⊆

βξ[hypoφ] because (qi, φn(q)− ξ) ∈ hypoφ. Suppose now that a sequence

{qn} exists converging to q satisfying ∀q ∈ Q, lim inf φn(qn) ≥ φ(q). Let

ξ > 0 and for every q ∈ Q choose g(q) < ξ
2
such that d(s, q) < g(q) implies

φ(s) < φ(q) + ξ
2
. Select q1, ..., qk to satisfy Q ⊂ ∪ki=1{s : d(s, qi) < g(qi)}.

For n ≥ N, a sub-sequence {qn, ..., qnk
} ⊂ Q satisfying ∀i = 1, .., k, φ(qi)−

φn(qni
) < ξ

2
and d(qni

, qi) < g(q). For arbitrary q ∈ Q, pick qi satisfying

d(qi, q) < g(qi). Clearly d(q, qni
) < ξ and thus φ(q) < φn(qni

) + ξ. Hence
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(q, φ(q)) ∈ βξ[hypoφn], ∀n ≥ N. Thus hypoφ ⊂ βξ[hypoφn]. This shows

that {φn} converges to φ. Conversely, assume {φn} converges to φ. If

{[qn} → q, then, ∃(sn, βn) ⊂ hypoφ : [(sn, βn), (qn, φn(qn))] → 0. Given

that φ ∈ usc(L) and {sn} → q, lim supn→∞ φn(qn) = lim supn→∞ βn ≤

lim supn→∞ φ(sn) ≤ φ(q). Thus we have proved (i). In the same manner

there exists {qn, αn} ∈ hypoφn such that d[(qn, αn), (q, φ(q))] → 0. Given

that {qn} → q and {αn} → φ(q), then ∀n, φn(qn) ≥ αn. It thus follows

that

φ(q) = lim
n→∞

αn ≤ lim inf
n→∞

φn(qn)

hence proving (ii).

Theorem 4.24. Let L be an Lp-space and let a nonempty convex set G

form the domain of a function ϑ ∈ L. Then ϑ ∈ usc(L) ⇐⇒ ϑ is convex.

Proof. Let ϑ ∈ usc(L). Let g, q ∈ G. Given that G is an open set and from

upper semi-continuity of ϑ an open set H = {g ∈ G : ϑ(g) < φ(q) + 1} =

G ∩ ϑ−1(−∞, ϑ(q) + 1) exists. Now ∀g ∈ G, ϑ(g) < ϑ(g) + 1 implying

that ϑ is bounded on G. So G is a neighborhood of g. Boundedness from

above property of ϑ implies that ϑ is continuous at g. Let ϑ at a point

g ∈ G be continuous and q ∈ G be another point. Then ϑ→ g+ϑ(q− g)

is continuous. Since G is open, a line passing through g to q is contained

in G for some length beyond q i.e ∃ϱ > 1 : g + ϱ(q − 1) ∈ G. Picking

ϱ = g + ϑ(q − g) we deduce

ϱ = (1− ϑ)g + gq

q = (1− 1

ϑ
)g +

1

ϑ
ϱ

q = αg + (1− α)ϱ
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for all 0 < α < 1 with α = 1− 1
q
. Since ϑ is continuous at g, then ∀ε > 0

an open neighborhood S of 0 exists satisfying |ϑ(q)− ϑ(g)| < ε whenever

q ∈ g+S and taking g+S ⊆ G. There is some M yielding ϑ(h) ≤M for

h ∈ g + S.

∀g ∈ S, αh = αg + (1− α)ϱ+ αh = α(g + S) + (1− α)ϱ

where g+S ∈ G and ϱ ∈ G. Since G is convex, then z+αh ∈ G implying

that q + αh ⊆ G. Since ϑ is convex,

ϑ(q + αh) = ϑ(α(g + h) + (1− α)ϱ)

≤ αϑ(g + h) + (1− α)ϑ(ϱ)

≤ αM + (1− α)ϑ(ϱ), ∀h ∈ S

implying that ϑ is bounded above by αM +(1−α)ϑ(ϱ) on g+αh. Hence

ϑ is continuous at q and at each point in G.

Corollary 4.25. Let G be a compact convex subspace of L. If ϑ ∈ usc(L),

then there exists an extreme point of G which is a maximizer of ϑ.

Proof. Let G be compact and ϑ be usc function. Then H = {y ∈ G :

ϑ(y) = supq∈G ϑ(q)} where H ⊆ G is nonempty. Now H is an extreme

set of G given by the convexity of G and ϑ. Clearly, G being compact

and H ⊆ G is closed, H is also compact. Consequently H ⊆ G being

an extreme set that is compact in G, there exists an extreme point in

y ∈ H ⊆ G such that ϑ(y) ≥ ϑ(q), ∀q ∈ G.
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4.4 Conditions for Convex Optimization in

Lp-spaces

In this part we have developed and examined the requirements necessary

for convex optimization in Lp-spaces. The first Propositions 4.26 and 4.27

below show that if a function in a strongly sequentially bounded convex

sub-space of a convex Lp-space taking a convex closed set to the extended

real line is Lipschitz continuous and lsc then it must attain minimizers in

its domain.

Proposition 4.26. Let the sub-space Q ⊂ L of a convex Lp-space L be

strongly sequentially bounded. If a function ϑ : G → R, where G is a

convex closed set, is Lipschitz continuous in G, then ϑ is lsc and attains

a minimizer on G.

Proof. Let {qn}n∈N ∈ G be a sequence converging strongly to q. Since Q is

bounded (from hypothesis), a subsequence {qnk
} of {qn} exists converging

strongly to q. Closure of G implies that q ∈ G. Now, since ϑ is given

to be Lipschitz continuous and {qnk
} converges to q, we have ϑ(q) ≤

lim inf ϑ(qnk
). Clearly ϑ ∈ lsc(L). We proceed to show that a minimizer

exists in Q. Given that the sequence {qn} is convergent, we have ϑ(qn) →

inf ϑ(q) for each q ∈ G. This shows that {qn} is minimized on G by ϑ.

Since Q is strongly sequentially bounded and closed, there exists a sub-

sequence {qnk
} of {qn} ∈ G converging strongly to q ∈ G. Furthermore, if

α is a minimizer on G, since ϑ ∈ lsc(L) we obtain ϑ(q) ≤ lim inf ϑ(qnk
) =

limϑ(qnk
) = α. Therefore, ϑ(q) = α is the required minimizer on G.

Proposition 4.27. Let Q ⊂ L be a strongly sequentially bounded subspace
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of a convex Lp-space L. Let G be a a nonempty convex closed set. If a

function ϑ : G→ R is Lipschitz continuous in Q then, ϑ is weakly lsc in

Q and attains a minimizer on G.

Proof. Take a convergent sequence {en}, ∀e ∈ G to approach e strongly.

Since G is strongly sequentially bounded and closed, e ∈ ϑ(e). So 〈e −

ϑ(e), en − ϑ(e), r − ϑ(e)〉 ≤ 0, ∀r ∈ G, n ∈ N. Therefore,

〈e− ϑ(e), en − ϑ(e)〉 ≤ 0

‖e− ϑ(e)‖2 = 〈e− ϑ(e), q − ϑ(e)〉

Since en → e we obtain, limn→∞〈e − ϑ(e), en − ϑ(e)〉 = 〈e − ϑ(e), en −

ϑ(e)〉 = 0. Hence, ‖e − ϑ(e)‖ = 0, thus e = ϑ(e), showing that G is

weakly sequentially closed. Since ϑ : G → R is convex and Lipschitz

continuous, then by Proposition 4.26 ϑ ∈ lsc(L) and has a minimizer in

G.We now need to show that ϑ is weakly lsc function in Q. Clearly epi(ϑ)

is convex since ϑ was given as convex. Strong lower semi-continuity of ϑ

implies strong closure of epi(ϑ). Therefore,epi(ϑ) is wsc indicating that

ϑ is w − lsc.

The following lemma characterizes solvability property for unconstrained

convex program with a w − lsc coercive objective.

Lemma 4.28. Let (L, ‖.‖p) be an Lp-space and G be a convex set. As-

sume a function ϑ : G → R in L satisfying ϑ 6= +∞ is w − lsc and

coercive. If ϑ(q) = infq∈G ϑ(q) is a convex optimization problem, then,

ϑ(q) attains a solution q∗ ∈ G.
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Proof. Suppose q∗ = infq∈G ϑ(qn) and assume ϑ minimizes a convergent

sequence {qn}n∈N in G to ϑ(qn) → q∗ as n → ∞. Since ϑ is coercive and

q∗ < +∞, then {qn} is a bounded sequence. Therefore, ∃{qnk
} : qnk

→

q∗ ∈ G strongly. Furthermore, since ϑ is w−lsc, ϑ(q) ≤ infq∈G ϑ(qn) = q∗.

Hence ϑ(q) = q∗.

Theorem 4.29. Suppose a finite function ϑ : G → R is convex and

coercive in an Lp-space L. Assume that ϑ is w− lsc. If ϑ(q) = infq∈G ϑ(q)

is a convex optimization problem, then, ϑ(q) attains a solution q∗ ∈ G.

Furthermore, strict convexity in ϑ guarantees a unique solution q∗.

Proof. Let ϑ(q) = infq∈G ϑ(q) be a convex optimization problem. Since

ϑ ∈ lsc(L) is convex and coercive (from hypothesis), then ϑ(qn) → ϑ(q)

as ‖qn‖ → q ∀n ∈ N (by Lemma 4.28). Thus ϑ(q) attains an optimal

solution q∗ ∈ G. To prove uniqueness of this solution assume q∗1 6= q∗2

two optimal solutions for the unconstrained convex optimization problem

ϑ(q) = infq∈G ϑ(q). Then we have, ϑ(1
2
(q∗1 + q∗2)) <

1
2
ϑ(q∗1) +

1
2
ϑ(q∗2) =

infq∈G ϑ(q
∗). This is a contradiction. Thus q∗1 = q∗2 = q∗.

The next theorem establishes that if a function ϑ : G→ R is Gateaux-

differentiable over a convex set G of constraints, then for q ∈ G to min-

imize ϑ, the Gateaux-derivative of ϑ with respect to q is a necessary

condition.

Theorem 4.30. Let a function ϑ < +∞ in an Lp-space L be Gateaux-

differentiable over a convex set G. If the Gateaux-derivative of ϑ is given

by ϑ′(q) : q ∈ G then, 〈ϑ′(q), r〉 = 0, ∀r ∈ G is necessary for q ∈ G to

minimize ϑ.
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Proof. Let q ∈ G minimize ϑ then, ϑ(q ± κr) ≥ ϑ(q), ∀κ ≥ 0, r ∈ G,

hence, 〈ϑ′(q), r〉 ≥ 0. Take 〈ϑ′(q), r〉 = 0. Now, since G is convex we have,

ϑ(q + κ(r − q)) = ϑ(κr + (1− κ)q)

≤ κϑ(q) + (1− κ)ϑ(q)

So

0 = 〈ϑ′(q), r − q〉

w = limκ→0
ϑ(q + κ(r − q))− ϑ(q)

κ

≤ ϑ(r)− ϑ(q).

The findings in the following propositions and theorem show the condi-

tions for existence of minimizers in sequentially bounded and compact

regions.

Proposition 4.31. Let G be a sequentially bounded and compact set. Let

ϑ : G → [−∞,+∞] be a lsc function in an Lp-space L. If the convex set

{ϑ(q) ≤ Q, ∀q ∈ G, ∀Q ∈ R} is compact then, there is a local minimizer

q of minq∈Gϑ(q)

Proof. Suppose η = infq∈R ϑ(q). Since ϑ(q) is bounded, then ∃{qn} :

ϑ(qn) → η. As n becomes sufficiently large, we have ϑ(qn) ≤ Q, im-

plying that {qn} is in a compact set. Since the bounded sequence {qn}

is compact, ∃{qnk
} tending to q for some q ∈ G. Since ϑ ∈ usc(L),
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η ≤ ϑ(q) ≤ lim infn→∞ ϑ(qn) = η showing that the global minimizer of

ϑ(q) is q. Hence, q is also the local minimizer because ϑ(q) is convex.

Theorem 4.32. Let G be a sequentially bounded and compact set. Let

ϑ 6= ∅ : G→ [−∞,+∞] be a lsc function in an Lp-space L. If ϑ meets the

compactness and convexity conditions, then the set of all local minimizers

of minq∈Gϑ(q) is compact.

Proof. Given that the set of constraints G is sequentially bounded and

compact, then by Proposition 4.31 and convexity of ϑ local minimizers of

minq∈Gϑ(q) exist and they lie in the level set {ϑ(q) ≤ Q, ∀Q ∈ R.} This

shows pre-compactness. It now suffices to prove the closedness property.

Since ϑ ∈ lsc(L), then ∀q in the closure of G we obtain,

η ≤ ϑ(q) ≤ inf
q∈R

ϑ(q) ≤ η.

Proposition 4.33. Let the constraint set G be sequentially bounded and

compact. Let ϑ 6= ∅ : G → [−∞,+∞] in an Lp-space L be a Fréchet-

differentiable linear function. Supposing that the local minimizer of minq∈Gϑ(q)

is q then, ϑ′(q) = 0.

Proof. Let ϑ(q) → minq∈G be a convex optimization problem whose local

minimizer is q. For each r ∈ G and η ∈ R+, ϑ(q+ηr)−ϑ(q) ≥ 0 holds true

as η approaches zero. Therefore, ϑ(q)r = limq↓0
ϑ(q+ηr)−ϑ(q)

η
≥ 0, ∀r ∈ G.

Linearity of ϑ(q) gives us 0 ≤ ϑ(q)(−r) = −ϑ(q)r ≤ 0 implying that

ϑ′(q)r = 0, ∀r ∈ G.
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The next proposition shows a condition for optimality in convex opti-

mization using the notion of Fréchet-differentiability.

Proposition 4.34. Let L be an Lp-space and ϑ ∈ L be a convex func-

tion from a convex set G to the extended real line R. If ϑ is Fréchet-

differentiable then it satisfies ∂ϑ(q) = {ϑ′(q)} at q ∈ G.

Proof. If g ∈ ∂ϑ(q) define linear functionals in L∗ then, ∀κ > 0 and

∀r ∈ G,

ϑ(q + κr)− ϑ(q)

κ
≥ 〈g, r〉

ϑ(q − κr)− ϑ(q)

κ
≥ −〈g, r〉.

Thus, as κ → 0, 〈g, r〉 ≤ ϑ′(q)r ≤ 〈g, r〉, ∀r ∈ G. This shows that g =

ϑ′(q) in L∗ hence ∂ϑ(q) = {ϑ′(q)}.

The following results presented by Lemma 4.35, Theorem 4.36 and The-

orem 4.37 establish convex optimality conditions for twice continuous

Fréchet-differentiable functions.

Lemma 4.35. Let G be a convex constraint set for a convex optimization

problem minq∈Gϑ(q). Let ϑ : G → [−∞,+∞] n an Lp-space L be twice

continuous Fréchet-differentiable. If ϑ′(q) = 0, ∀q ∈ G and ϑ′′(q)〈r, r〉 ≥

κ‖r‖2 for each r ∈ G and κ 6= r ∈ R+ then, q forms a local minimizer of

ϑ.

Proof. The Taylor expansion of ϑ(r) yields

ϑ(r) = ϑ(q) + ϑ′(q)〈r − q〉+ 1

2
ϑ′′(q)〈r − q, r − q〉+ 0(‖r − q‖2).
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This is true in the whole neighborhood of q. Assume there exists a δ > 0

satisfying

ϑ(r) ≥ ϑ(q) + ϑ′(q)〈r − q〉+ 1

2
ϑ′′(q)〈r − q, r − q − κ

4
‖r − q‖2

such that ‖r − q‖ < δ.

Substituting ϑ(q) = 0 and applying the positive definiteness property,

ϑ′′(q)〈r, r〉 ≥ κ‖r‖2, we obtain ϑ(r) ≥ ϑ(q)+ κ
4
‖r−q‖2 leading to ‖r−q‖ <

δ. Therefore, ϑ(r) > ϑ(q) if r 6= q. Hence q is a local minimizer.

Theorem 4.36. Let the set G be sequentially bounded. Let a set S ⊆ G

be closed. Define a tangential cone at q ∈ G by TS(q) = {g ∈ G :

∃ξ > 0, ∀κ ∈ [0, ξ], ∃g(κ) ∈ G : ‖q + κs − g(κ)‖ = O(κ)}. Let ϑ : G →

[−∞,+∞] in an Lp-space L be twice continuous Fréchet-differentiable. If

q minimizes ϑ(q) locally in S then, ϑ′(q)s ≥ 0, ∀s ∈ TS(q).

Proof. For each s ∈ TS(q) and 0 ≤ κ ≤ ξ we get,

ϑ(g(κ)) = ϑ(q + κs) +O(κ)

= ϑ(q) + κϑ′(q)s+O(κ).

Suppose ϑ′(q)s < 0 then, as κ approaches zero we have

ϑ(y(κ)) ≤ ϑ(q) + wϑ′(q)s− κ

2
ϑ′(q)s < ϑ(q).

This contradicts our assumption that q is a local minimizer. Therefore,

ϑ′(q)s ≥ 0, ∀s ∈ TS(q) as required.

Theorem 4.37. Let G be a sequentially bounded set and S ⊆ G be closed
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and convex. Let ϑ : G→ [−∞,+∞] in an Lp-space L be twice continuous

Fréchet-differentiable. Then q ∈ S forms a local minimizer of ϑ(q) in S if

it satisfies ϑ′(q)s ≥ 0, ∀s ∈ TS(q) and ϑ
′′(q)〈s, s〉 ≥ η‖s‖2, ∀s ∈ TS(q), η >

0.

Proof. Let ‖y − q‖ → 0, for each y ∈ S. Since S is convex, we have

q + ws ∈ S, ∀0 ≤ w ≤ 1 : s = y − q. If s = TS(q) we get

ϑ(y) ≥ ϑ(q) + ϑ′(q)s+
1

2
ϑ′′(q)〈s, s〉 − κ

4
‖s‖2

for ‖s‖ → 0. Hence, ϑ(y) ≥ ϑ(q) + κ
4
‖s‖2 > ϑ(q), ∀y ∈ S such that

‖y − q‖ → 0. Thus, q forms a local minimizer of ϑ(q) in S.

Theorem 4.38. Let the set G be a convex constraint set for the convex

optimization problem minq∈Gϑ(q). If a function ϑ : G → [−∞,+∞]

in an Lp-space L is convex, then, every single local minimum forms a

global minimum and moreover, q ∈ G forms a minimizer for ϑ(q) ⇐⇒

0 ∈ ∂ϑ(q).

Proof. Assume that q ∈ G minimizes ϑ(q) locally and not globally. So

∃y ∈ G : ϑ(y) < ϑ(q). Convexity of G yields qκ = κy + (1 − κ)q ∈

G, ∀κ ∈ [0, 1]. Also, claiming convexity of ϑ we deduce ϑ(qκ) = κϑ(y) +

(1− κ)ϑ(q) < ϑ(q) for qκ → q as κ→ 0. This contradicts the assumption

of q minimizes ϑ(q) strictly locally. Hence q is a global minimizer.

Now, suppose 0 ∈ ∂ϑ(q). Then, ∀h ∈ G,

ϑ(h) ≥ ϑ(q) + 〈0, h− q〉

= ϑ(q)
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showing that q is a global minimizer.

Conversely, assume q minimizes ϑ(q) globally and let 0 /∈ ∂ϑ(q). Then

ϑ(h) < ϑ(q) + 〈0, h− q〉 = ϑ(q) implying that q is not a minimizer. This

is a contradiction. Hence, 0 ∈ ∂ϑ(q).
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Chapter 5

CONCLUSION AND

RECOMMENDATIONS

5.1 Introduction

In the final chapter of this study, a conclusion is drawn based on the

three specific objectives that were established at the beginning of the

research and the findings that were obtained during the course of the

investigation. Additionally, we propose a number of directions for future

research that may be useful for scholars and practitioners in this field.

These recommendations are based on the gaps that were identified in the

current literature and the areas where further investigation is needed in

order to deepen our understanding of the topic.
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5.2 Conclusion

It is gratifying to report that all of the results of this research met our

three specific objectives. This suggests that the methodology used was

effective in achieving the goals of the study. It is important to note, that

the findings of this research should be considered within the context of the

Lp-space, however, befitting generalizations can be made appropriately.

Future research may seek to replicate or extend these findings in order to

build upon the knowledge that has been gained through this study.

The first objective of this study was to characterize lsc functions in the

context of Lp spaces. Specifically, to establish a characterization of func-

tions that map elements of an Lp space L to real numbers in the range

of [−∞,∞]. Lemma 4.2, Theorems 4.3 and 4.4 analyze lsc functions us-

ing Moore-Smith sequences. Theorem 4.3 showed that Lp-spaces preserve

lower semi-continuity property under point-wise operations and multipli-

cation by scalars; so if two functions ϑ and φ are lsc, then their sum,

ϑ+φ is lsc and so is tϑ : t ∈ R+. If a finite sequence of lsc functions {ϑn}

converges uniformly to a function ϑ ∈ L, then ϑ is lower semi-continuous.

In Theorem 4.5, the known fact that a function ϑ is lower semi-continuous

if and only if its epigraph is closed was verified to hold in Lp-spaces. Con-

vexity property of lsc functions is characterized and found to be key as

it guarantees exactly one minimum point and ensures stability when we

take a point-wise minimum. In Lemma 4.7 we have shown that if ϑ is

a convex function then ϑ is lsc if and only if it is w − lsc. It has been

proved in Theorem 4.10 that a lsc function in an Lp-space attains an

absolute minimum on a compact set. In Proposition 4.16 we proved that
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a function is almost lsc on a convex and bounded set if and only if it is

convex lsc.

The second objective of this study was to characterize usc in Lp spaces.

We have shown by Theorem 4.18 that if an integrable function satisfies

ϑ(φ) =
∫
L φdµ then ϑ is usc. In Theorem 4.20 upper semi-continuous

functions in Lp spaces have been characterized in terms of the hypograph

of a function and proved that ∀δ > 0 we have βδ|hypo(φ)| = hypo(φ)+δ .

If a function ϑ is usc, then a bounded function ϑ+
δ is also usc whenever

a positive integer δ exists. We further proved in Theorem 4.24 that a

function ϑ from a convex Lp-space to the extended real line is convex if

it satisfies the condition for upper semi-continuity. Additionally, it was

shown by Corollary 4.25, that any extreme point of a compact convex

Lp-space, if it exists, forms a maximizer for any usc function.

The third objective was to establish the optimality conditions necessary

for convex optimization in Lp-spaces. Propositions 4.26 and 4.27 es-

tablish that objective functions that are both Lipschitz-continuous and

lsc or even weakly lsc attain minimizers on an Lp-space: If a function

ϑ is Lipschitz-continuous, then, ϑ ∈ usc(L) achieves a minimizer on

R ⊆ L; Also, if a convex Lipschitz-continuous function ϑ is weakly lsc

its minimizer is always attained on R ⊆ L. Theorem 4.30 links Gateaux-

differentiability with inner products of convex functions to the existence

minimizers. We further illustrated how compactness and convexity con-

cepts impact on existence of minimizers: If {ϑ(q) ≤ T, ∀q ∈ R, T ∈ R+}

is convex and compact then, q minimizes ϑ(q) → minq∈R locally; If a

non empty compact and convex function ϑ is lsc then, ϑ(q) → minq∈R is

compact. In Proposition 4.34, Lemma 4.35 and Theorem 4.36 we have dis-
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cussed the conditions of Frechet-differentiability in convex optimization

and shown that these conditions are necessary for Lp-space lsc functions

to attain minimizers. Additionally, in Theorem 4.36 and Theorem 4.37 we

illustrated the condition of sequential boundedness together with double

Frechet-differentiabilty in locating optimum points that meet the KKT

optimality conditions.

5.3 Recommendations

The results obtained in this study are specific to Lp−spaces. In this sec-

tion we recommend areas of further research relating to this study.

The main focus of the study was to understand how these functions behave

in Lp−spaces and how they can be utilized in optimization. However, the

study suggests that it would be interesting to investigate the properties

of lsc functions in other spaces such as Sobolev spaces. Additionally, the

study suggests that it would be fascinating to investigate whether convex

lsc functions can attain minimizers under smooth function spaces with

compact Riemann manifolds.

Our findings in this study were focused on characterizing upper semi-

continuous (usc) functions in Lp spaces, specifically, convex and sequen-

tially bounded usc functions. However, there is potential for further re-

search to be done on non-convex usc functions or cases where the functions

are unbounded. Additionally, it would be interesting to investigate the
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characterization of usc functions in other spaces such as Sobolev spaces

or function spaces on manifolds.

This study obtained important results that focused on conditions for con-

vex optimization in Lp spaces. However, there is potential for further

research to be done on convex optimization conditions in Lp spaces to en-

sure that they also satisfy the second-order conditions for optimality. In

this study, we applied the use of lower semi-continuous (lsc) functions that

were compact, bounded, and coercive to guarantee the attainment of min-

imizers for convex problems in Lp spaces. We recommend exploring other

methods such as gradient descent method, conjugate gradient methods, or

interior-point methods. Our study focused on convex optimization in Lp

spaces. However, it would be interesting to investigate convex optimiza-

tion in other spaces like Sobolev spaces and function spaces on manifolds.

Additionally, it would be valuable to study non-convex optimization in

Lp spaces and other spaces such as Banach spaces and Hilbert spaces.

These spaces have different properties and it is expected that non-convex

optimization would have different characteristics in these spaces. This

research would provide a deeper understanding of the properties of non-

convex optimization problems and how they can be solved in different

settings.
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