

1

NETWORK ARCHITECTURE DEFENSE: HOLISTIC SECURITY

PATTERN-BASED MODEL

Castro Auma Yoga

A Thesis Submitted to The Board of Postgraduate Studies in Partial Fulfillment of The

Requirement for The Award of The Degree of Doctor of Philosophy in Information

Technology Security and Audit of Jaramogi Oginga Odinga University of Science and

Technology

©2024

i

DECLARATION AND APPROVAL

Declaration

This is my own work and has not been presented for any award in any other university or

institution

Signature: ___________________________ _________________

Castro Yoga Date

I162/4608/2014

Approval

This proposal/thesis has been submitted with our approval as the university supervisors.

Signature: ___________________________ _________________

Prof. Anthony J. Rodrigues, Date

Department of Computer Science and Software Engineering.

School of Informatics and Innovative Systems.

Jaramogi Oginga Odinga University of Science and Technology

Signature: ___________________________ _________________

Prof. Silvance Abeka, Date

Department of Information Systems Technology.

School of Informatics and Innovative Systems.

Jaramogi Oginga Odinga University of Science and Technology

ii

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to all those who have contributed to the

completion of this thesis. This journey would not have been possible without the support and

encouragement of numerous individuals.

First and foremost, I am profoundly thankful to my supervisor, Prof. Anthony Joachim

Rodrigues and Prof. Silvance Onyango Abeka, whose guidance and expertise have been

invaluable throughout the entire research process. Your insightful feedback and unwavering

commitment to my academic development have been instrumental in shaping this work.

I am grateful to my family for their unconditional love and encouragement. Your unwavering

support has been a constant source of motivation, and I am truly blessed to have you by my

side.

Special thanks go to my friends and colleagues who provided valuable insights and a

supportive environment. Your camaraderie has made the challenges more manageable and the

successes more meaningful.

This thesis is a testament to the collective effort of those mentioned above, and I am sincerely

thankful for the impact each has had on this academic endeavor.

iii

DEDICATION

Dad, Mom, Dave, Jerry & Rodger thanks for the encouragement and support I hope I have

made you proud

Caro, I do not take for granted your sacrifice for all those years

Imani, Manuella, CJ, & Adrian you guys are the reason for all this

Angie, I wish you were here to see this.

iv

ABSTRACT

Network security experts face numerous challenges in protecting networks despite

implementing defense strategies. The complexity of networks, coupled with a scattered

approach to security implementation, adds to the difficulties. Currently, different security

solutions employ distinct mechanisms without a cohesive approach to the entire system.

Although similar problems exist at each level of security, a holistic strategy is lacking,

resulting in different models being applied in various parts of the network architecture. To

effectively secure a network, a coordinated and holistic approach is essential. The study's

primary goal was to develop a holistic security pattern-based model for defending network

architecture. To achieve this the study looked at the techniques and threats employed in

attacking the network architecture, assessed the models, frameworks and artifacts that guide

in the design and development of a secure network architecture. Overall, the study was guided

by pattern theory, the constructs employed in the development of the model included the OSI

network architecture model, the cisco three-layer hierarchical model, CAPEC attack pattern

Repository, STRIDE threat Model and Risk Management Framework. The study adopted

Simulation research design approach to design and conduct experiments to obtain results. To

test the model the study utilized a secondary dataset UNSW-NB15 which was subjected to

Kaggle machine learning platform. For ease of testing, the model was split into three stages

with their respective input, process and output component, with each output serving as an

input to the subsequent stage. The first stage was to determine the attacks per surface of the

network architecture this involved classifying and clustering attacks according to the layers,

for classification a stacking ensemble approach composed of select KBest feature selection

algorithm, a KNeighbors, RandomForest and GaussianNB classifiers and Logistic regression

Meta learner was utilized, for clustering KMeans clustering algorithm was utilized. The

second stage was to identify relevant attacks while third was to generate defense patterns. The

findings reveal that a significant percentage of attacks targeted the Host layer (50.5%),

followed by the User layer (30.5%) and the Media layer (19%). The distribution of attacks is

categorized by types, with exploits constituting the majority (48%), followed by generic

attacks (22.7%), fuzzers (12.2%), reconnaissance (7.69%), DoS (Denial of Service) (5.02%),

backdoor (3.01%), analysis (0.6%), shellcode (0.33%), and worms (0.11%). Additionally, the

study identified and evaluated two attack patterns (worms and backdoors) not present in the

CAPEC repository. The evaluation was based on their forces and the STRIDE model. Overall,

the research emphasizes the importance of a holistic approach to network security and presents

a model that integrates various frameworks and constructs to enhance defense against cyber

threats.

v

TABLE OF CONTENTS
DECLARATION ... i

ACKNOWLEDGEMENT ... ii

DEDICATION ... iii

ABSTRACT ... iv

TABLE OF CONTENTS ... v

LIST OF FIGURES .. xi

LIST OF TABLES .. xiii

LIST OF ABBREVIATIONS AND ACRONYMS. .. xv

CHAPTER ONE .. 1

INTRODUCTION .. 1

1.1. Background Information. .. 1

1.2. Statement of the problem. ... 6

1.3. Objectives of the Study .. 7

1.3.1. Main Objective of the Study .. 7

1.3.2. Specific Objectives. .. 7

1.4. Significance of the Study. .. 7

1.5. Scope of the Study .. 8

1.6. Assumption of The Study .. 8

1.7. Rationale of the Study .. 8

CHAPTER TWO ... 10

LITERATURE REVIEW .. 10

2.1. The History of Patterns .. 10

2.1.1. The Notion of Patterns ... 12

2.1.2. Describing and documenting patterns.. 14

2.1.2.1. GoF format .. 14

2.1.2.2. Alexandrian format ... 15

2.1.2.3. POSA format ... 16

2.1.2.4. Coplien format ... 17

2.1.3. Elements of patterns .. 18

2.1.4 Challenges for Creation of Patterns .. 19

2.1.5. Benefits Accrued from Development of Patterns .. 21

2.1.6. Inadequacies of Patterns .. 22

vi

2.2. Design Patterns. ... 24

2.3. Anti-patterns .. 26

2.4. Attacks on Networks and Havoc Caused. .. 26

2.4.1. Techniques Employed in Attacking Networks .. 29

2.4.2. Havoc of Network Attacks ... 30

2.5. The OSI Model and Its Roles in Securing Networks .. 31

2.5.1. The OSI Model. .. 32

2.5.2. Necessity of Having Security at Each Layer of the OSI Model. 36

2.5.3. OSI Layers Threats .. 36

2.5.3.1 Physical Layer Security threats .. 36

2.5.3.2. Data Link Layer Security Threats (Switch Security) .. 37

2.5.3.3. Network Layer Security Threats (Router Security) .. 38

2.5.3.4. Transport Layer Threats. ... 39

2.5.3.5. Session Layer Threats. .. 40

2.5.3.6. Presentation Layer Threats. ... 41

2.5.3.7. Application Layer Threats. .. 41

2.6. Network Security Architecture Role in Securing Networks. .. 43

2.7. Network Security Design. ... 44

2.8. Frameworks Guiding Security of Networks. .. 46

2.8.1. NIST Security Framework .. 46

2.8.2. COBIT Security Framework .. 46

2.8.3. ISO/IEC Standards framework .. 46

2.8.4. HITRUST Cybersecurity Framework (CSF). ... 47

2.8.5. Internet of Things (IoT) Cybersecurity Alliance (IOTCA). 47

2.8.6. MITRE ATT&CK. ... 48

2.9. Threat Model and Threat Modeling. .. 48

2.9.1. Threat Modeling Approaches. .. 50

2.9.1.1. LINDDUN ... 51

2.9.1.2. OCTAVE ... 52

2.9.1.3. STRIDE ... 54

2.9.1.4. DREAD.. 56

2.9.1.5. PASTA. .. 57

2.9.1.6. CVSS.. 59

vii

2.9.1.7. TRIKE. .. 60

2.9.1.8. Attack Trees. ... 62

2.10. Security Risk Assessment and Network Security. .. 63

CHAPTER 3 ... 66

METHODOLOGY ... 66

3.1. Research Design .. 66

3.2. Phase 1: Model Development .. 66

3.2.1. Literature Review .. 66

3.2.2. Conceptualization of holistic security pattern-based model 66

3.3 Phase 2: Simulation .. 66

3.3.1 Selection of Simulation Tools ... 66

3.3.2 Scenario Design ... 66

3.3.3 Implementation of the Model ... 67

3.3.4 Metrics Definition.. 67

3.4 Ethical Considerations ... 67

3.5. Dataset .. 67

3.6. The Study Test Environment .. 69

3.6.1. Kaggle Test Bed .. 69

3.6.2. Python.. 69

3.7. Performance Metrics ... 69

CHAPTER FOUR .. 71

MODEL FORMULATION ... 71

4.1. Introduction. .. 71

4.2. Extending the OSI model .. 72

4.3. Model Development .. 75

4.3.1. Attack Context Checking... 75

4.3.1.1. Three Layer Network Security Domain (TNLSD) Component 75

4.3.1.2. Anti-Goal Identification. .. 76

4.3.2. Attack Surface Identification. ... 78

4.3.3. CAPEC Repository .. 80

4.3.3.1. Attack Patterns ... 81

4.3.3.2. Retrieving Relevant Attack Patterns Component. .. 83

4.3.4. Risk Assessment Component... 86

viii

4.3.5. Network Architecture Security Pattern Based Model .. 90

CHAPTER 5 ... 91

MODEL TESTING AND RESULTS ... 91

5.1. Model Testing ... 91

5.1.1. First Stage of Model. .. 91

5.1.2. The Second Stage of the Model. .. 92

5.1.3. Third Stage of the Model. .. 93

5.2. Study Data Set -UNSW-NB_15 ... 94

5.2.1. Dataset Description .. 94

5.2.2. UNSW-NB15 Features Categories. ... 96

5.2.3. UNSW-NB15 Data Types... 97

5.2.4. UNSW-NB15 Attack Type Categories .. 97

5.3. Machine Learning Testbed. ... 98

5.3.1. Importation of Machine Learning Libraries and Modules 98

5.3.2. Data Preprocessing ... 99

5.3.3. Importation of Dataset ... 99

5.3.4. Renaming of Columns Headers. ... 100

5.3.5. Boolean Filtering of Malicious Logs ... 100

5.3.6. Merging the Dataset. .. 102

5.4. Analysis of the Malicious Combined Dataset .. 102

5.4.1. Malicious Count Within the Dataset .. 102

5.4.2. Identification of Missing Values. ... 103

5.4.3. Protocol Distribution in the Malicious Traffic .. 104

5.4.3.1. Top Three Malicious Protocols ... 104

5.4.4. Attack Distribution. ... 108

5.4.5. Targeted Ports Per Attack ... 111

5.4.6. Main Dependency Protocols Timings Per State .. 112

5.4.7. Mean Of Time Distribution in Malicious Packets ... 113

5.4.8. Attack Category Time Duration in The Malicious Dataset 113

5.4.9. Attack Category Time Duration For TCP, UDP, UNAS And Others. 113

5.4.10. Mean Duration of Attacks Per Protocol ... 114

5.5. Data Cleaning ... 115

5.5.1. Identification And Filtering of Missing Values. .. 115

ix

5.5.2. Filling of the Missing Values ... 116

5.5.3. Filling Missing Values with The Median .. 116

5.5.4. Forward Filling of Missing Values ... 117

5.5.5. Backward Filling of Missing Values. .. 117

5.5.6. Filling Of Missing Values in The Mal Dataset with Created Values 117

5.6. Machine Learning algorithms ... 118

5.6.1. Feature Selection -SelectKBest Algorithm ... 118

5.6.2. Base Learners -KNeighbors, Random Forest, GaussianNB 118

5.6.3. Meta-Learner (Logistic Regression) ... 119

5.6.4. K-means Clustering ... 119

5.6.5. Feature Scaling ... 119

5.7. Ensemble Technique Approach .. 120

5.7.1. Stacking Ensemble ... 121

5.7.2. Feature Selection .. 121

5.7.3. Base Learners ... 122

5.7.4. Meta Learner .. 123

5.7.5. Clustering Algorithm Based on KMeans ... 124

5.7.6. Performance Metric ... 126

5.8. Feature Engineering and Feature Selection ... 126

5.8.1. Training and Testing Splitting .. 126

5.8.2. The Select KBest Feature Selection Algorithm ... 127

5.8.3. Importation of the Machine Learning Algorithms. .. 129

5.8.4. Preparation for the Machine Learning Algorithms. ... 129

5.8.5. Analysis of Attacks to Their Surfaces. ... 131

5.8.6. Visualization of Attacks to Their Surface. ... 132

5.9. Identification and Retrieval of Stride Based Attacks from CAPEC Repository. 133

5.9.1. Filtering Of UNSW-NB_15 Attacks from CAPEC. .. 133

5.9.2. Merging of Attacks In UNSW-NB_15 Found In CAPEC. 136

5.9.3. Mapping UNSW-NB_15 Attacks Identified CAPEC To STRIDE Threat Model137

5.10. Mapping Process of CAPEC Attacks to STRIDE ... 137

5.11. Risk Analysis of the Filtered Attacks. .. 139

5.11.1. Quantitative Risk Analysis. ... 140

5.11.2. Qualitative Risk Analysis... 143

x

5.12. Defense Mechanism for the Attacks ... 144

CHAPTER 6 ... 148

DISCUSSIONS AND FINDINGS ... 148

6.1. Summary of Findings ... 148

6.2. Generation of Worms and Backdoor Patterns for CAPEC Repository. 150

6.2.1. General Worm Pattern .. 151

6.2.2. General Backdoor Attack Pattern .. 155

6.3. Qualitative Analysis of Worms and Backdoor Patterns. .. 158

6.3.1. Evaluating Worm and Backdoor Patterns on The Basis Of Their Forces 159

6.3.2. Evaluation of Worm and Backdoor Patterns Based On STRIDE. 160

CHAPTER 7 ... 162

CONCLUSION AND RECOMMENDATIONS ... 162

7.1. Conclusions. .. 162

7.2. Contribution of the Research. ... 162

7.3. Recommendations. ... 163

REFERENCES. .. 164

APPENDIX ... 195

Appendix 1. Code Boxes .. 195

Appendix 2: Machine learning libraries and modules .. 212

Appendix 3: Board of Postgraduate Research Approval ... 215

Appendix 4:Ethical approval .. 217

xi

LIST OF FIGURES
Figure 2. 1.Interaction of pattern elements source. adapted from (Noble, 1998)................................ 13

Figure 2. 2.The relation between the pattern elements (Barhoom, 2015). .. 18

Figure 2. 3.Relationship between Patterns. (Author). ... 19

Figure 2. 4.Depicts the number of incidence attacks in relation to the year 28

Figure 2. 5.Showing the media and host layersSource: http://www.cables-solutions.com/wp-

content/uploads/2016/06/OSI-Model.png ... 34

Figure 2. 6.The OSI Layers Data Flow ... 35

Figure 2. 7.OSI Models and Attacks. (Manninen, 2018) .. 36

Figure 2. 8.OSI Addressing Security at Each Layer. (Holl, 2003) .. 42

Figure 2. 9.Linddun Phases. .. 51

Figure 2. 10.Octave Process. ... 53

Figure 2. 11.Three-step technique to evaluating organizational threat profiles 54

Figure 2. 12.Summary of DREAD threat model ... 56

Figure 2. 13.Stages of PASTA .. 59

Figure 2. 14.Categories of CVSS. ... 60

Figure 2. 15.TRIKE methodology .. 61

Figure 4. 1.OSI and User Interaction .. 73

Figure 4. 2.Extended OSI Model. ... 74

Figure 4. 3.Three-layer network Security domain (TLNSD). ... 76

Figure 4. 4.Attack surface Identification. .. 80

Figure 4. 5.The method for developing abuse cases based on Microsoft threat modeling and attack

patterns. ... 82

Figure 4. 6.Identifying existing attack pattern. ... 83

Figure 4. 7.Retrieving Relevant Attack Pattern and Deriving Alternative Attack Pattern. 86

Figure 4. 8.Risk Management Process .. 87

Figure 4. 9.Risk Management process model ... 88

Figure 4. 10.ISSRM process (Mayer, 2009) ... 89

Figure 4. 11.Information System Security Risk Management (ISSRM) metamodel 89

Figure 4. 12. Network Architecture Security Pattern Based Model. ... 90

Figure 5. 1.First stage of the model ... 92

Figure 5. 2.Second Stage of the Model. .. 93

Figure 5. 3 Third Stage of the Model. ... 93

Figure 5. 4.UNSW-NB15 Dataset Description. .. 94

Figure 5. 5.The Testbed Visualization for UNSW-NB15. .. 95

Figure 5. 6.Architecture for Generating UNSW-NB15 Data Set. ... 96

Figure 5. 7.Percentage of malicious log in Un_1 Un2 Un3 and Un4. ... 102

Figure 5. 8.Distribution of Normal vs. Malicious Traffic. .. 103

Figure 5. 9.Top Ten Malicious Protocol Count. ... 104

Figure 5. 10. Distribution of Malicious Protocol. ... 107

Figure 5. 11. % distribution of malicious protocol ... 108

Figure 5. 12. Treemap Visualization of Attack Distribution. .. 109

Figure 5. 13. Attack Distribution UDP Protocol. .. 109

xii

Figure 5. 14. Attack distribution TCP protocol. .. 110

Figure 5. 15. Attack Distribution UNAS Protocol .. 110

Figure 5. 16. Attack Distribution Other Protocol. ... 111

Figure 5. 17.Stacking Ensemble Approach ... 121

Figure 5. 18. Meta learner prediction flows .. 123

Figure 5. 19. KMeans Clustering flow. ... 125

Figure 5. 20. Attack Distribution for Each Surface of Attack. .. 132

Figure 5. 21. CAPEC/STRIDE database Schema. .. 138

xiii

LIST OF TABLES
Table 1. 1.Difficulties in defending against attacks. .. 2

Table 2. 1.Well-known pattern forms. (Author). .. 14

Table 2. 2.GOF pattern Format. Adapted from (Gamma et al., 1995) .. 15

Table 2. 3.Alexandrian pattern Format. Adapted from (Alexander 1979) .. 16

Table 2. 4.POSA format .. 17

Table 2. 5.Coplien pattern format. Adapted From (Coplien,2002) ... 17

Table 2. 6.STRIDE Threat Categories definition and property violated. .. 55

Table 2. 7.Summary Threat Modeling Methods Features. .. 63

Table 3. 1.Dataset properties and their value ranges (Ring et al., 2019) 68

Table 3. 2.Study dataset selection criteria .. 68

Table 5. 1.Data Set Statistics ... 96

Table 5. 2.Feature Attributes. .. 97

Table 5. 3.Data Types. .. 97

Table 5. 4.Attack type categories .. 98

Table 5. 5.Output of .head() on the dataset showing column headers with no name. 100

Table 5. 6.Dataset with New Column Headers. .. 100

Table 5. 7.Sample of malicious logs from un_1 ... 101

Table 5. 8.Sample of malicious logs from un_2 ... 101

Table 5. 9.Sample of malicious logs from un_3 ... 101

Table 5. 10.Sample of malicious logs from un_4 ... 102

Table 5. 11.Missing Values in The Malicious Dataset. .. 104

Table 5. 12.Sample Filtering malicious TCP traffic. .. 105

Table 5. 13.Sample Filtering malicious UDP traffic. .. 105

Table 5. 14.Sample Filtering malicious Unas traffic. ... 105

Table 5. 15.Output of the top 3 significant malicious protocols. .. 106

Table 5. 16.Low significant malicious protocols. ... 106

Table 5. 17.Other Protocols. ... 107

Table 5. 18. Protocol Distribution of Tmalpt and Nunas. ... 107

Table 5. 19. Percentage of Attack Distribution within the Malicious Traffic. 108

Table 5. 20. Sample of Ports with 100 Attacks and Above... 112

Table 5. 21. Statistics of the Malicious Logs per Protocol.. 112

Table 5. 22. Main dependency protocols timings per state ... 112

Table 5. 23. Mean of Time Distribution in Malicious Packets. .. 113

Table 5. 24. Attack Category Time Duration in the Malicious Dataset. ... 113

Table 5. 25. Attack category time duration for TCP UDP UNAS. ... 114

Table 5. 26. Mean Duration of Attacks per Protocol .. 114

Table 5. 27. Missing values in malicious dataset. ... 115

Table 5. 28. Missing values statistics. ... 116

Table 5. 29. Sample Missing values filled with Median. .. 117

Table 5. 30. Performance metrics scores... 126

Table 5. 31. Columns with the object data type .. 127

Table 5. 32. Confirmation of columns with the object data type. ... 128

xiv

Table 5. 33. Selected features for machine learning algorithm. ... 129

Table 5. 34. Mapping to attacks surfaces. ... 130

Table 5. 35. Sample of Mapping the outputs to the SelectKBest algorithm data.............................. 131

Table 5. 36. sample output for the attack surfaces. ... 131

Table 5. 37. Attack Distribution for Each Surface of Attack. ... 133

Table 5. 38. CAPEC Dataset Features. ... 133

Table 5. 39. Generic attacks from CAPEC. .. 134

Table 5. 40. Exploits attacks from CAPEC. .. 134

Table 5. 41. Fuzzers’ attacks from CAPEC. ... 135

Table 5. 42. DOS attacks from CAPEC for dos and dos2 respectively. ... 135

Table 5. 43. Reconnaissance attacks from CAPEC. ... 135

Table 5. 44. Analysis attacks from CAPEC .. 135

Table 5. 45. Shell attacks from CAPEC. ... 136

Table 5. 46. UNSW-NB_15 found in CAPEC. ... 136

Table 5. 47. UNSW-NB_15 Attacks Category vis a vis CAPEC Attack Patterns 137

Table 5. 48. Mapping of STRIDE to CAPEC. .. 139

Table 5. 49. Risk Analysis of Filtered Attacks. .. 140

Table 5. 50. Quantitative Risk Analysis of the Filtered Attacks. .. 140

Table 5. 51. Risk Score of the Filtered Attacks. ... 141

Table 5. 52. Quantitative risk analysis of all the filtered attacks .. 141

Table 5. 53. Quantitative Risk Score of all the Filtered Attacks. .. 142

Table 5. 54. Qualitative Risk Mapping Score of all the Filtered Attacks. .. 143

Table 5. 55. High, Medium, low Risk attacks ... 144

Table 5. 56. Defense Mechanisms for the Filtered Attacks. ... 145

Table 6. 1. Worm Attack Pattern and Defense .. 151

Table 6. 2. General Backdoor Attack Pattern .. 155

Table 6. 3. Evaluating Worm and Backdoor Patterns on The Basis Of Their Forces. 160

Table 6. 4. Evaluating the Worm and Backdoor Patterns Using STRIDE .. 161

xv

LIST OF ABBREVIATIONS AND ACRONYMS.
ACCS-Australian Centre for Cyber Security.

ACM- Association of Computer manufactures.

AFRL- Air Force Research Laboratory.

APT- Advanced Persistent Threats.

ARP-Address Resolution Protocol.

BSIMM- Building Security in Maturity Model.

CAPEC-Common Attack Pattern Enumeration Classification.

CIA- Confidentiality, Integrity, and Availability.

COBIT- Control Objectives for Information and Related Technologies.

COTS- Components off-the-shelf.

CPU- Central Processing Unit.

CRAMM- CCTA Risk Analysis and Management Method.

CSTG- Cyber Systems and Technology Group.

CSV- Comma-Separated Values.

CVE- Common Vulnerabilities and Exposures.

CVSS- Common Vulnerability Scoring System.

CWE- Common Weakness Enumeration.

DARPA-Defense Advanced Research Projects Agency.

DDoS-Distributed Denial of Service.

DFD- Data Flow Diagram.

DHCP- Dynamic Host Configuration Protocol.

DOS-Denial of Service.

DREAD- Damage, Reproducibility, Exploitability, Affected users, Discoverability

EBIOS-Expression des Besoinset Identi_cationdes Objectifs de Sécurité.

GoF- Gang of Four.

HCI- Human-Computer Interaction.

HIPAA- Health Insurance Portability and Accountability.

xvi

HITRUST- Health Information Trust Alliance.

HTTP-Hyper Text Transfer Protocol.

ICMP- Internet Control Message Protocol.

IDS- Intrusion Detection System.

IEC- International Electro technical Commission.

IOTCA- Internet of Things Cybersecurity Alliance.

ISACA- Information Systems Audit and Control Association.

ISO- International Standards Organization.

ISSRM-Information System Security Risk Management.

KDD-Knowledge Discovery and Data Mining.

LINDDUN-Linkability, Identifiability, Non-Repudiation, Detectability, Disclosure of

Information, Unawareness, Non-compliance.

MAC-Mac Address Control.

MEHARI-Methode Harmoniséed' Analyse du Risque Informatique.

MIT-Massachusetts Institute of Technology.

MitM-Man in the Middle.

MITRE ATT&CK- MITRE Adversarial Tactics, Techniques, and Common Knowledge.

MITRE- Massachusetts Institute of Technology Research and Engineering.

NIC- Network Interface Cards.

NIST- The National Institute of Standards and Technology.

OCTAVE- Operationally Critical Threat, Asset, and Vulnerability Evaluation.

OOPSLA- Object-Oriented Programming, Systems, Languages & Applications.

OSI- Open System Interconnect Model.

OWASP-Open Web Application Security Project

PASTA-Process for Attack Simulation and Threat Analysis

PHI- Protected Health Information.

PLOP- Pattern Language of Programs.

POSA- Pattern-Oriented Software Architecture.

xvii

PTTES- Patterns for Time-Triggered Embedded Systems.

R2L-Root to local.

SDL- Security Development Lifecycle.

SRA- Security risk assessment.

SSL- Secure Socket Layer.

STP- Spanning Tree Protocol.

STRIDE- Spoofing, Tampering, Repudiation, Information disclosure, Denial of service,

Elevation of privileges.

TCP- Transmission Control Protocol.

TF-IDF- Term Frequency-Inverse Document Frequency.

TLNSD- Three Layer Network Security Domain.

U2R- User to Root.

UDP-User Datagram Protocol.

UML-Unified Modified Language.

VLAN- Virtual Local Area Network.

1

CHAPTER ONE

INTRODUCTION

1.1. Background Information.

Networks are inflicted by innumerable attacks both internal and external, which usually result

in damaging effects. These attacks can be shattering for both the users and the organization as

they can result to consequences such as exposure to litigation and civil suits, loss of

productivity, attacks from cyber terrorists, data and identity theft and even loss of reputation

(Ciampa, 2017b). With the fast growth of network capable portable devices, mobile apps

services, cloud computing services, the need on the networks is increasing day by day (Yao

et al., 2014). The scenario in terms of efficiency has also literally opened up the avenue for

attackers to propagate numerous attacks against network resources (Verizon 2013 Annual

Review, 2013). Motives for these attacks appear equally diverse like personal reasons,

prestige, criminal, commercial, or ideological in nature (G. Kumar, 2016).

Despite crafting defense strategies, there still exist a myriad of challenges in protecting

networks against attacks, this is largely attributed to greater sophistication of attacks where

attack tools vary their behavior so that the same attack appears different each time; Speed of

attacks where attackers can launch attacks against millions of computers within minutes; user

confusion where users are required to make difficult security decisions with little or no

instructions at all hence creating vulnerabilities to network systems (Ciampa, 2011). Table 1.1

elaborates difficulties in defending against attacks.

Attacks can also be traced back to well-known security problems and vulnerabilities such as

not hashing passwords within a database, storing sensitive information on servers within the

DMZ. These are clear indications that there is either a poor understanding of security issues

or that the priority given to security within networks is low (Schumacher et al., 2006).

Security awareness is lacking among enterprise planners, system architects and developers,

and operations managers. They therefore place a lot of reliance on security experts to

comprehend their security issues and offer security solutions. To meet the demand, there aren't

enough security experts, though. Additionally, the security experts frequently find themselves

reusing the same solutions for every business or system development project. They are

2

wasting their time by doing this and are prevented from tackling more difficult problems

(Schumacher et al., 2013a).

Table 1. 1.Difficulties in defending against attacks.

(Ciampa, 2017a).

For an organization, the expense of repairing these vulnerabilities and the risk involved with

them after implementation are substantial. Although there are many best practices available

to address the problem of security vulnerabilities, these approaches are sometimes challenging

to reuse since the best practices are implementation-specific. Therefore, there is a larger need

to comprehend the underlying causes of security problems in networks, where they come

from, and what can be done to alleviate them (Dougherty et al., 2009).

Technology has connected the world through networks, which are getting more complicated

and widely dispersed. Networks are now connected to the cloud, apps, and other Internet of

Things devices, as opposed to being primarily constructed around dispersed data centers in

the past (Shah, 2018) .These networks facilitate the operation of applications, the majority of

which are distributed in nature and backed by web services, interfaces, and agents, making

them complicated and challenging to comprehend, create, and manage. Future predictions

indicate that this trend will continue, with 125 billion connected devices estimated to be in

use by 2030. (Campbell, 2019).

Given these complexities, errors have become common and vulnerabilities are on the rise

coupled with the fact that these networks and resources within it store valuable information

3

which attract attacks. According to AlgoSec (2013), most security administrators have fallen

into the trap of bolting on more and more security layers and rules in attempts to shield the

network and vital assets from cyber-attacks. As a result, the network environment has become

more complicated, which has raised the possibility of dangers arising from human mistake

and incorrect setup. The situation has also worsened with the increase in the use of mobile

devices with enhanced capabilities such as smart phone which is now becoming the leading

target of attackers (Ruggiero & Foote, 2011) (Salerno et al., 2011).

Although the importance of security is widely acknowledged, it is still an afterthought in many

projects. That is why a secure design should be a critical component when developing and

deploying a system. When a system is not designed with security in mind it is definitely

bound to fail in this age of cybercrime (Schumacher et al., 2013a). Olagunju et al., (2013),

points out that the root cause of most infrastructural failures such as buildings, bridges and

roads can be traced back to poor architectural designs. The same can be underscored in the

world of Information Technology where some attacks have been traced back to poorly

designed software, poorly designed network, and use of protocols not critically designed with

security in mind (Kocher et al., 2004).

According to Yoder and Barcalow (1998) developers build systems without security in mind.

This is attributed to the fact that they focus more on trying to learn the domain rather than how

to protect the system. They tend to put a lot of emphasis on satisfying user needs than security.

When the time comes to deploy these systems, it quickly becomes apparent that adding

security is much harder than just adding a password protected login screen. The challenge

with security is that security has always been considered an afterthought. Even within the

convectional system development life cycle security is considered a non-functional

requirement rather than a functional requirement which means it is a function that is taken

into consideration after deployment rather than being in cooperated right from the requirement

soliciting phase (Galloway, 2019).

In a similar vein, according to (Schumacher et al., 2006), the enterprise context and

requirements that shape system security are not explicitly addressed and are not incorporated

into system architectures. As a result, it is necessary to start addressing security up-front rather

than using the "repair-service" approach that is commonplace at the moment. Security

4

problems should be addressed at every stage of the system development process, (Devanabu

& S, 2000). Ignoring security issues or deferring them until later phases of system

development could be risky because it is difficult to retrofit security into a system later on

(Riaz et al., 2007).As a result, it is critical to prevent mistakes since a well-thought-out design

that includes security considerations will make it easier to react to changing security

requirements (Yoder & Barcalow, 1998).

According to (Schumacher, 2003a) It is difficult to get security right if one does not start from

the design level, noting that whereas in systems development process there are mechanical

aids to detect coding errors there is no such aids for detecting design errors making it difficult

to get security right when the system is already commissioned. Furthermore, for a secure

system there is need for security requirements to be analyzed, security flaws to be discovered,

designed at the early stages of systems development process in order to avoid a catastrophe.

According to (Fernández et al., 2010), a good design process is essential for producing secure

systems. The basic premise behind their technique is that security principles should be

implemented at every stage of the system lifetime, and that compliance with security

principles should be checked at each stage rather than being a consideration after deployment.

Several approaches to building secure systems exists of which the prominent ones are based

on secure coding: they include Microsoft’s Security Development Lifecycle (SDL)

(Microsoft, 2019), OWASP’s CLASP (C.L.A.S.P., 2019) and Building Security in Maturity

Model (BSIMM) (McGraw & Young, 2016).(Gregoire et al., 2007) made a detailed

comparison of approaches and looked for similarities and differences, as well as suggested

improvements. They concluded that while code-based security is a valuable approach in

designing and build secure systems, it cannot produce secure systems by themselves, but can

be a good complement to model-based methods.

Some of the well-known model approaches such as UMLsec (Jürjens, 2005); CORAS (den

Braber et al., 2007); SecureTropos (Mouratidis & Giorgini, 2007) and Goal-Risk (Ansar &

Khan, 2018) have also been proposed as security approaches building secure system. But still

they are not reliable, not well defined on the basis of security features and design patterns

(Rehman & Mustafa, 2013).

5

In summary, security is frequently overlooked in system design and implementation. Rather

than retrofitting, it is necessary to handle security from the start. Many security breaches may

be traced back to well-known security issues that continue to crop up. The primary objective

in these circumstances is to improve functionality and performance rather than to reduce risk.

Therefore, in line with these challenges we need to find a way to conceptualize, design, build

and maintain a network that can try and withstand attacks basing it on pattern theory. Pattern

Theory is a research discipline that was conceptualized by professor Ulf Grenander in the late

1960s and has undergone further development by Grenander and the Pattern Theory group at

Brown University (Grenander et al., 2007).Pattern theory is a way to approach patterns

through mathematical formalism ‘a way of reasoning about patterns’, it can be presented

using analytical tools or computational methods. On pattern theory, emphasis is pegged on

structure of the patterns themselves and not the recognition of patterns.

Patterns are a well-established system development strategy. They are designed to collect

domain-specific expert knowledge in the form of documentation with a particular structure

and proven solutions for recurrent problems (Schumacher et al., 2006).

(Appleton, 2000) defines a pattern as an identified nugget of instructional information that

contains the basic structure and understanding of a successful family of proven solutions to a

recurrent problem that develops inside a certain context and system of forces. From the

definition it is seen that patterns can be applied within any discipline going by various research

done over the previous years and though it has its roots in the architectural field it has received

recognition in the field software engineering. Currently patterns have been applied in diverse

discipline e.g. phycology, pedagogy, enterprise development and telecommunication (Hamid,

2014)

The benefits of "reusability" are one of the reasons for its widespread appeal. Patterns, in

general, are organized texts prepared by professionals to give tested and verified answers to

frequently occurring issues in a certain environment. The power of such documentation is that

knowledge and experience are no longer isolated to the minds of specialists, but are

documented in a form that can be easily accessed and shared (Lakhani & Faisal, 2015).

Pattern-based approach has gained more attention recently in systems engineering by

addressing new challenges that were not targeted in the past(Hamid, 2014). They have been

6

applied extensively within the system architecture for real-time embedded systems,

middleware’s and distributed systems (Douglass, 2002), and it is now gaining momentum in

the field of information security engineering (Schumacher, 2003a) by promoting the use of

patterns in the form of reusable design artifacts.

The Pattern based approach examines three different challenges: first is “mining”, which

involves discerning patterns from existing systems, the second challenge is “hatching” which

involves selection of the appropriate pattern; and lastly “application” which is the effective

use of pattern during the system development process. These three challenges are dependent

on diverse expertise not limited to mathematics, graph theory, logic, stochastic modeling, and

hardware and software design(Sietz, 2011).

Patterns provide a strong foundation for building security and dependability into systems.

Neumann advocates for the necessity for 'principled' systems, which are founded on sound

conceptual approaches and patterns that allow for the implicit application of principles

(Neumann, 2004) .

1.2. Statement of the problem.

One of the most important reasons why we do have challenges in securing network

architecture is their complex nature (Bocetta, 2019). Another important reason is that most

developers and administrators build and apply security in a “helter-skelter” manner and when

securing a network, the different parts are secured using specific products or mechanisms.

According to (Szabo et al., 2015) the Network Architecture model has a fundamental design

problem, in that it allows different layers to work without the knowledge of each other and

information flows up and down to the next layer as the data is being processed. Thus, if one

layer is hacked communication can be compromised without the subsequent layer noticing

anything wrong.

Currently each security solution uses different distinct mechanisms even though the problems

being solved at each level are largely the same (Small, 2012). There hardly exists a holistic

approach in regards to the complete system. If attempted, one may find that different models

may be applied in different parts of the network architecture. Securing a network requires a

holistic approach if it is to guard against attacks and the practice of relying on security

7

components, cannot make the whole network secure if they do not work in a coordinated way

and protect all parts of the system.

There is a great need for a holistic approach, Fernandez, (2009) describes it as “Covering all

architectural levels and all units” for you to implement a secure network architecture. It is

important to have a system view of the network architecture, and there is a great need to unify

the security approach targeting these layers, and these can be achieved by using patterns since

it can provide a holistic view of security, which is a fundamental principle to build secure

systems (Fernandez, 2009).

1.3. Objectives of the Study

1.3.1. Main Objective of the Study

The main objective of the study was to develop a holistic security pattern-based model for the

network architecture and test its adoption towards the enhancement of network security.

1.3.2. Specific Objectives.

1. To assess the techniques, models, frameworks that guide in the design and

development of a secure network architecture.

2. To conceptualize and develop security pattern-based model for the network

architecture

3. To test the conceptual security pattern-based model

4. To evaluate the generated patterns contribution to network security assurance.

1.4. Significance of the Study.

The study's findings on the pattern model will have significant practical implications for

organizations. By adopting this model, organizations can strengthen their network security,

reduce vulnerabilities, and improve their incident response capabilities, ultimately

safeguarding critical assets and data.

Additionally, this study will make valuable contributions to the body of knowledge in network

security by exploring and documenting the effectiveness of defensive pattern models. It can

serve as a solid foundation for further studies in the rapidly evolving field of cybersecurity.

8

Not only will network security professionals and practitioners benefit from the study's insights

and recommendations, but the defensive pattern models themselves also provide guidance on

improving security postures. The findings of this study can inform and shape best practices in

the field.

1.5. Scope of the Study

The study is specifically centered around the domain of network security. It addresses

challenges, vulnerabilities, and threats within network architectures and aims to provide

solutions to enhance overall security. The primary focus is on the development and evaluation

of defensive pattern model. The model is conceptualized to offer proactive and comprehensive

security measures, and its effectiveness will be assessed in the context of network security.

The scope also involves a holistic approach to network security. The holistic pattern model is

designed to address security challenges across multiple layers of network architecture,

offering a comprehensive and coordinated strategy. In summary, the scope of the study is

focused on addressing network security challenges through the development and evaluation

of defensive pattern models, with an emphasis on a holistic approach within practical

organizational contexts.

1.6. Assumption of The Study

The study assumes that current challenges in network security, stemming from the complexity

of networks and a fragmented security approach, necessitate a coordinated and holistic

defense strategy. To address this, the study developed a security pattern-based model by

integrating various frameworks and constructs. The assumption is grounded in the belief that

the proposed model, tested on the Intrusion detection dataset, can fill gaps in existing security

models and offer a comprehensive defense against diverse cyber-attacks

1.7. Rationale of the Study

This study is motivated by the ongoing challenges faced by network security experts in

protecting complex networks, attributed to the fragmented nature of current security

strategies. The rationale is grounded in the need for a comprehensive and coordinated security

approach. The proposed model, based on security patterns and integrating various

frameworks, aims to fill the existing gaps. The research employs a simulation approach, to

9

furnish empirical evidence for the effectiveness of the model. The analysis of cyber-attacks

across network layers and the identification of new attack patterns contribute to the study's

rationale, emphasizing the importance of a holistic approach to enhance network security

resilience.

10

CHAPTER TWO

LITERATURE REVIEW

This chapter is entitled “Literature Review”. This section first provides an in-depth study

on patterns in the first three sections namely (1) History of Patterns, (2) Design Patterns,

and (3) Anti-Patterns. It then discusses attacks noted on networks and the resultant damage

due to them under (4) Attacks on Networks and Havoc Caused. Thereafter, a synopsis of

the OSI model and the part it plays in securing networks is provided in (5) The OSI Model

and its Roles in Securing Networks. Aspects of network security such (6) Network Security

Architecture Role in Securing Networks, (7) Network Security Design, and (8) Frameworks

Guiding Security of Networks are then discussed. The discussion in (9) Threat Model and

Threat Modeling provides an understanding of how models are developed to standardize

and ease disaster planning and preparedness processes in the face of security threats.

Finally, the section on (10) Security Risk Assessment and Network Security looks at the

process(es) of identifying security risks and vulnerabilities and some of the methodologies

useful in this process

2.1. The History of Patterns

A pattern is a regularity that can be seen in nature or in designs made by people. From a

prescriptive point of view, a pattern is a template that can be used to make new instances.

From a descriptive point of view, the parts of a pattern that repeat in a predictable way can

be seen and identified (H. Zhu, 2014) .

Patterns explain and predict regularities in a subject area, just like theories do in science. The

pattern roots can be clearly traced in the world of architectural design of structures and

documentation of the architectural best practices and lessons learnt. Abstracting these

problems solutions and showing how they can be resolved through a series of related

augmented steps, successfully defines best practices that can be used to solve a particular

problem and allows us to clearly reason about them. The focus of patterns is not pegged so

much on technology but rather on documenting and supporting sound engineering and design

processes (Appleton, 2000).

Patterns became more popular in computer science after the "Gang of Four" (GoF) book came

out in 1994. (e Gamma et al., 1995). In the same year, the first Pattern Languages of

11

Programming (PLoP) Conference was held. The next year, the Portland Pattern Repository

was set up to keep track of patterns (Repository, 2014) .

In his seminal books (Alexander, 1977) and (Alexander, 1979a) laid the foundation of the

“pattern concept” in the context of architectural design and building. With his team they spent

more than twenty years developing an approach to civil architectures using patterns (Ammar

& Hany, 2003), identifying more than two hundred and fifty patterns that are instrumental up-

to-date in planning of regions, towns, neighborhoods, buildings and rooms, ending with

detailed construction plans. The team was also instrumental in identifying that a pattern should

consist of a context-problem-solution trichotomy structure, known as the Alexandrian form.

(Beck, 1987) began to try out the idea of using patterns in programming. Specifically, they

used Smalltalk, which is a prototyping environment for user interfaces, to design user

interfaces. At the ACM Conference OOPSLA, they showed what they had done. This work

was important because it led to patterns that helped a lot in making user interface designs less

complicated. Since then, Beck, Cunningham, and others have written many more patterns

based on this work (Buschmann et al., 1996) .

In 1991 Peter Coad when reviewing the work by (Coplien, 1991) noted that the book contained

valuable C++ best practices for abstractions, although the term pattern was not used and

concepts within the book were not written in pattern style he was able to use the concept in

coming up with patterns that can be applied in object oriented programing (Coad, 1992).

In 1991 and 1992 the pattern community met in Object-Oriented Programming, Systems,

Languages & Applications conference (OOPSLA)where the Gang of Four (GoF) presented a

compilation of patterns that were discussed by several key figures of the pattern community.

The pattern events of 1993 the saw the formation of the hillside Group sponsored by Kent

Beck and Grady Booch as the de-facto organization for the pattern community, it is from here

that the patterns work by Erich Gamma and the group (GoF)was adopted and formed the

reference point of patterns in the field of software engineering. In April 1994 the same group

met again and planned the first ever conference on pattern language of programs (PLOP) and

in the month May 1995 and the first proceedings of the conference was published (Coplien &

Schmidt, 1995).

12

In 1995 the textbook (Gamma, et al., 1995), was considered the core reference of the pattern

knowledge in the world of software engineering. It was latter followed the POSA book by the

pattern community (Buschmann et al., 1996) which also played a critical reference book for

patterns.

The PLoP conference was held every year in Allerton Park, University of Illinois at Urbana-

Champaign, until 2004.Since then, it has rotated between Allerton Park and being held with

the big computer science conference OOPSLA, the Agile Conference in 2009, and PUARL

in 2018. From that time other pattern conferences have taken place such as AsianPLoP,

ChiliPLoP, EuroPLoP & KoalaPLoP (Schumacher et al., 2006) amongst others. These

conferences are important since they provide avenue for discussions on improvement of

patterns and working groups on several pattern topics, and clearly demonstrates a continuous

progress of the success of patterns and a steady growth of the pattern community since when

it was first started by the hillside group in 2001.

The fact that patterns represent a "grass roots" effort to build upon and draw from the

collective knowledge of talented designers is a key factor in their success. Rarely do new

development projects address genuinely fresh challenges that necessitate completely original

answers. Developers may occasionally come up with comparable answers on their own or

frequently recollect an issue they previously handled in a different circumstance, reusing its

essence and customizing its details to tackle the new difficulty. For both common and unique

design difficulties, experienced developers may draw on a wide corpus of such solution

designs. Their new application development is guided by this actual expertise.

Finding similarities between application-specific design challenges and their solutions leads

naturally to the idea of patterns since they frame these answers and their connection to the

problem in a more understandable way. A pattern may be defined as: A solution to a problem

that occurs inside a particular context, from a very broad birds-eye perspective.

2.1.1. The Notion of Patterns

A "pattern" is defined as both a process and an object, where the "process" creates the "object."

According to (Alexander, 1979), a "thing" can be represented as either code or a high-level

design that shows an object's structure and behavior. In other words, a pattern is both a spatial

arrangement of pieces that solves a specific issue or prevents a specific issue from arising and

13

a set of accompanying instructions to best produce this arrangement of elements (Schumacher

et al., 2006).

Alexander’s idea of patterns has gained acceptance in several areas within the research

community, in software engineering several authors and experts have provided their views on

patterns as follows

GoF see patterns as a tool to record and share "best practices," or methods that have proven

effective for seasoned designers (Gamma, et al., 1995). According to Appleton (2000), a

pattern is an identified piece of educational knowledge that encapsulates the fundamental

organization and wisdom of a successful family of tested solutions to a recurrent issue that

develops inside a certain context and system of forces. It is described as a way to convey

common sense and abstractions that are difficult to represent in other ways by Gabriel (1996).

While Rising (1998) views it as artifacts that have been found in several systems already in

place.

The above definitions clearly brings out the core concept of what a pattern is, but for it to be

clear, avoid ambiguity, achieve convenience, and usage, as shown in Figure 2.1, a typical

pattern should have the following elements: a name, a description of the problems it applies

to, an analysis of the forces (the significant considerations and consequences of using the

pattern), a sample implementation of the pattern's solution, references to known uses, and a

list of patterns that are related to it.

Figure 2. 1.Interaction of pattern elements source. adapted from (Noble, 1998)

Figure 2.1 shows how the problem is typically explored in terms of its context and the

applicable design factors that serve as the foundation for the solution. The solution's job is to

14

resolve the design pressures in such a manner that it creates advantages, some repercussions,

and follow-on challenges that lead to the patterns' application.

2.1.2. Describing and documenting patterns

Patterns are usually described using templates, and there are several template formats to that

effect. This format informs the design principle underlying the pattern and how to apply

patterns to solve recurring problems. These templates have predefined sections that are used

to document the different aspects of patterns. Depending on a pattern template one may find

different pattern elements being used. For instance, one may find there is use of the word

“Motivation instead of context” in a different template. It is worth noting that all known

pattern templates contain the basic pattern structure and the basic elements (Schumacher,

2003b).

Different writers have different methods for documenting patterns. What both styles have in

common is that design ideas are communicated in casual English initially, then elaborated

with informative graphics and detailed code samples (H. Zhu, 2014) Table 2.1 shows several

well-known pattern formats.

Table 2. 1.Well-known pattern forms. (Author).

2.1.2.1. GoF format

The GoF authors (e Gamma et al., 1995) had published a text book called “Elements of

Reusable patterns”. It has too many elements. However, it gives detailed understanding about

the pattern from problem statement to related patterns. To understand and apply GoF patterns,

the user should have knowledge in programming (C++), UML representations, and

acquaintance with several systems in which GoF patterns are already used. Table 2.2 shows

the GOF pattern Template.

15

Table 2. 2.GOF pattern Format. Adapted from (Gamma et al., 1995)

2.1.2.2. Alexandrian format

The Alexandrian format is the first pattern form proposed by Alexander (1979) to guide users

to generate solutions for the problems. Table 2.3 shows the Alexandrian format.

16

Table 2. 3.Alexandrian pattern Format. Adapted from (Alexander 1979)

2.1.2.3. POSA format

The POSA formart. It is a structured form. POSA form is a lengthy form. It has less focus

on applicability’s, forces, program code, and structure of a pattern. Table 2.4 shows the

POSA format

17

Table 2. 4.POSA format

2.1.2.4. Coplien format

The Coplien format as shown in Table 2.5 describes patterns in a short form, it has less focus

on applicability’s, consequences, when to use a pattern, structure, and implementation.

Table 2. 5.Coplien pattern format. Adapted From (Coplien,2002)

18

2.1.3. Elements of patterns

Tough there are several template formats that inform on how to apply patterns to solve

recurring problems we are able to see that they share common element as shown below.

Name. -This is what the pattern will be referred to it should be able to stress the action implied

by the pattern, it is a handle that can used to describe a design problem, its solutions, and

consequences. The pattern name should be easy to refer and remember in a word or two, how

to assign a name to a pattern is dictated by the convections of a pattern community.

Context. -Describes the general environment and conditions under which the problem occurs

and shows where and when the pattern will be applied.

Problem-At a glance it describes the problem to be addressed by the pattern by stating the

goals and objectives the pattern wants to achieve. The problem is used to determine where

and when the pattern will be applied.

Forces- Shows what considerations are to be accounted for when deciding on a solution to

the problem?

Solution. -Describes a proven solution through a structure of the elements that make up the

pattern, it provides the guidelines and what to avoid when attempting to implement a solution.

The context in which a problem occurs should always determine the appropriate solution.

Though a problem may have several solutions, in the case of patterns, it should contain one

problem, one context, and one solution” (Harrison, 2006).

Figure 2. 2.The relation between the pattern elements (Barhoom, 2015).

19

Related patterns- though patterns focus one problem, one context, and one solution. They are

not independent because they have relationship to other patterns (Buschmann et al., 1996). A

given pattern's suggested solution is frequently implementable with the aid of additional

patterns that address the problem's subproblems. A connection between consecutive patterns

in a set of patterns is made by such a relationship.

Figure 2. 3.Relationship between Patterns. (Author).

Examples- This is one or more of the pattern's sample applications, which help in

understanding the pattern's use, the contexts in which it may be used, and how it alters a given

situation.

Resulting Context. - Defines which forces have been resolved, which ones are still in play,

and which patterns may now be applied, it is sometimes referred to as a resolution of forces.

It also provides the results, post-conditions, and side-effects that come with using the pattern.

Rationale. -It is the account of how the pattern solves the problem, why it solves it and why

it is good

Known Uses. -They validate patterns as a provable solution to a recurring problem by

describing the known manifestations of a particular pattern and how it is applied in a particular

systems context, hence they serve as instructional examples.

2.1.4 Challenges for Creation of Patterns

Christopher Alexander's development of design patterns was prompted by a critical

examination of deficiencies in traditional architectural and urban planning. The prevalent

issues included a lack of user-centered design, resulting in environments that failed to meet

the needs and experiences of inhabitants(Alexander, 1979b). Traditional approaches led to

20

monotonous and inhuman spaces, prompting Alexander to introduce patterns inspired by

nature and traditional settlements to infuse diversity, complexity, and wholeness.

To counter the top-down nature of planning and enhance adaptability, Alexander conceived

patterns as small, adaptive solutions fostering organic, bottom-up development. Addressing

disconnected architecture, patterns were proposed as a tool to establish a design language

promoting coherence and connectivity between individual elements and their

environment(Talen, 2015). Additionally, patterns aimed to shift the focus from superficial

aesthetics to the inherent qualities that enhance livability and align with human needs,

countering the prioritization of style over functionality(Klingmann, 2010). In summary,

Christopher Alexander's development of patterns aimed to address shortcomings in traditional

architectural approaches by promoting a more humane, sustainable, and user-centric design

philosophy rooted in the intrinsic patterns of human life and nature.

The genesis of design patterns in the domains of software engineering, specifically through

the seminal works of the Gang of Four (GoF), Pattern-Oriented Software Architecture (Posa),

and Coplien, was prompted by discerned inadequacies and challenges within the respective

realms of software design, architecture, and team dynamics. Each group endeavored to

address distinct yet interrelated issues, thus contributing to the establishment of a robust

pattern-oriented paradigm.

The Gang of Four's (GoF) design patterns emerged in response to the prevalent difficulty in

achieving reusability and flexibility in software components. The intricate web of

dependencies and coupled codebases impeded adaptability, necessitating a paradigm

shift(Vesiluoma, 2009). GoF patterns, such as the Factory Method, Abstract Factory, and

Singleton, sought to furnish a repertoire of solutions to common design predicaments,

facilitating the creation of malleable, maintainable software systems.

POSA, on the other hand, delved into the architectural facets of software engineering,

recognizing the challenges associated with organizing large-scale software systems. The

advent of architectural patterns, encapsulated in the POSA framework, aimed to provide

architectural solutions for high-level design concerns(D. C. Schmidt et al., 2013). These

patterns addressed the complexities of distributed systems and concurrent programming,

offering guidance through constructs like the Broker pattern and Active Object pattern.

21

In parallel, Coplien's organizational patterns confronted challenges arising from

communication breakdowns within software development teams and the shortcomings of

conventional project management approaches. Coplien introduced patterns, such as Whole

Team and Trust Your Team, to enhance team dynamics and communication efficacy. The

organizational patterns also tackled issues in project management through constructs like the

Project Charter and Osmotic Communication(Aydinli, 2015). In conclusion, the development

of design patterns by GoF, Posa, and Coplien underscores a collective endeavor to rectify

inadequacies within the realms of software design, architecture, and team collaboration. These

patterns, each tailored to its specific domain, serve as a cohesive and structured response to

the multifaceted challenges inherent in contemporary software engineering practices.

2.1.5. Benefits Accrued from Development of Patterns

The introduction of patterns has yielded substantial benefits, influencing the way systems are

conceptualized, designed, and implemented. This paradigm shift has reverberated across

different facets of the system development lifecycle, fostering improved efficiency,

maintainability, and scalability.

patterns, as advocated by the Gang of Four (GoF), have significantly enhanced the reusability

and flexibility of software components. By encapsulating proven solutions to recurring design

problems, patterns facilitate the creation of adaptable and modular systems. This adaptability

ensures that software architectures can evolve seamlessly in response to changing

requirements, thereby mitigating the rigidity often associated with traditional design

approaches(Zhang, 2011).

Organizational patterns, as championed by Coplien, have played a pivotal role in fostering

effective communication and collaboration within software development teams. Constructs

such as the Whole Team and Trust Your Team patterns have ameliorated interpersonal

dynamics, resulting in increased transparency, shared understanding, and a more cohesive

team environment(Santos et al., 2015). This enhanced collaboration is instrumental in tackling

complex projects and achieving collective goals.

Pattern-Oriented Software Architecture (Posa) has significantly contributed to the coherence

and scalability of software architectures. Architectural patterns provide proven blueprints for

organizing complex systems, ensuring that components interact seamlessly(Schumacher,

22

2003c). This not only improves the overall robustness of software architectures but also

facilitates scalability as systems grow in size and complexity.

Patterns, across various paradigms, have demonstrated their prowess in simplifying

maintenance tasks and promoting extensibility. The encapsulation of design decisions within

patterns reduces the ripple effects of modifications, making it easier to update and enhance

systems. This benefit is particularly pronounced in long-lived software projects, where the

cost of maintenance and evolution can be substantial(Izurieta & Bieman, 2013).

The introduction of design patterns has contributed to the standardization of best practices in

software engineering (E. Gamma et al., 1993). Patterns encapsulate the distilled wisdom of

experienced practitioners, providing a shared vocabulary and set of guidelines(J. M. Smith,

2012). This standardization not only accelerates the learning curve for new developers but

also establishes a common ground for communication among team members.

patterns offer a resilient framework for adapting to the rapidly changing technological

landscape. As new technologies and paradigms emerge, the fundamental principles embedded

in design patterns remain relevant (Mang & Reed, 2012). This adaptability ensures that

software systems designed with patterns can withstand the test of time and technological

evolution.

In conclusion, the introduction of design patterns in software engineering has engendered a

transformative impact, enhancing the robustness, maintainability, and collaborative potential

of software systems. Through a systematic encapsulation of best practices and solutions to

recurring challenges, design patterns continue to serve as invaluable tools in the pursuit of

excellence in software development.

2.1.6. Inadequacies of Patterns

Just like other technologies pattern have some restrictions. The utmost crucial concern posed

by skeptics about the usefulness of patterns is one of uniformity. Patterns have no official

standards, and writers develop patterns in a variety of styles. They are informal statements of

a problem and its remedy. Patterns can become classics, remain restricted to specific sectors,

or simply fade and be forgotten, depending on their usefulness. A pattern's success is greatly

reliant on its name and the kind of the information it contains (D. Schmidt, 1995). Patterns

that are both overly comprehensive and packed with information have a greater chance of

23

losing sight of the solution's central purpose and essence. Keeping a pattern too short, on the

other hand, may degrade the quality of the information that is offered and necessitate the

utilization of extra pertinent information sources in order to comprehend the design challenge.

(Agerbo & Cornils, 1998).

In projects that need collaborative cooperation, it is essential to provide an introduction to the

pattern collection of interest and training to the entire team in order for the patterns to be

utilized properly. This is the only way to ensure that the patterns will be used effectively

(Unger & Tichy, 2000).This is important to keep in mind if practitioners are attempting to

broaden their vocabularies through the use of patterns. It is imperative that technically difficult

communications be supplied, even though this could call for additional work to be put into

training team members.

The fact that patterns are dependent on the programming language is another argument against

them. The vast majority of pattern collections are dependent on a particular programming

language, such as C, C++, or Java. Because of this dependence, the applicability of the pattern

is occasionally restricted to particular systems alone. Finally, it is possible that applying the

pattern to every possible situation is not acceptable, especially when the solution is obvious.

There are others who argue that the importance of design patterns is overstated (Cline, 1996).

The usage of design patterns may be advantageous, neutral, or detrimental depending on the

circumstances of application, as determined by the results of an experiment that compared

patterns to straightforward solutions. The experiment was carried out so that the findings could

be compared (Prechelt & Unger, 2001) Other people who do not like patterns have said things

like, "a pattern is not a strict prescription to be followed (unlike certain modeling standards

like UML), but it is more than just a general suggestion"(Vokac & M., 2004). Because UML

does not provide step-by-step directions like a recipe, this is difficult to accept because

patterns do.

In spite of the challenges mentioned previously, it is nevertheless a fact that patterns have the

potential to be helpful for solving more complicated design problems. They do this by offering

a method to reuse tested and proven solutions, which helps designers avoid reinventing the

wheel. "Pattern interest has expanded in recent years, as indicated by the number of

conferences and seminars organized every year across the world since 1994. Extending

24

outside the United States and Europe, new developments include AsianPLoP 2011 in Tokyo

and GuruPLoP 2013 in India. This unique method is still in its early stages, although patterns

have been successfully applied in a variety of disciplines recently, including formalization

approaches (Taibi, 2007), online application design (Millett, 2010), and mobile application

design (Neil, 2012), among others. As a result, it is realistic to expect them to become more

important in the next years.

2.2. Design Patterns.

It is noteworthy to note that Alexander's architectural concepts and ideas have recently had a

far greater influence on industries other than architecture. This covers a wide range of

industries, from organizational management to poetry, but in the context of this study, it

focuses specifically on the subject of computer software design. "Chris (Alexander) is a

renowned cult figure," Richard Gabriel, a well-known proponent of the software pattern

approach, once said. (Eakin, 2003).

The necessity for software reuse within this group has had an impact on the adoption of

patterns. Software developers frequently repeat ideas that have previously worked well for

them, and as they gain more experience, their library of design knowledge expands and they

become more skilled. However, this design reuse is typically limited to personal experience,

and developers seldom share design expertise (Beck & Coplien, 1996).It is absurd how we

software developers reinvent the wheel with every project, according to (Ganssle, 1992).The

introduction of design patterns presented a chance to share the collective experience of the

software community and get beyond the inefficiencies and resource waste of re-invention.

Although patterns were primarily used in object-oriented program design at first, they are now

used in many other areas of software engineering. Organizational patterns are discovered

through examining recurrent linkages and structural relationships within companies that

support their performance. The pattern language (Cain & Coplien, 1996) that outlined "best

practices" for efficient software development is one example, as are the collection of patterns

for implementing novel concepts in an organization (Manns & Rising, 2000).Pedagogical

patterns aim to promote effective teaching practices by capturing professional knowledge in

the area of teaching and learning. (Bergin, 2000) and are two instances of pedagogical patterns

that have been published (Fricke & Volter, 2000).The two distinctive qualities of software—

25

reliability and human factors—are the focus of patterns for telecommunications systems. A

few publications that discuss patterns and pattern languages for usage in fields like

telecommunications, distributed systems, middleware, etc. are those by (Adams & Coplien,

1996), (Rising, 1998) and (Hanmer, 2007).

Additionally, patterns have been effectively used in software development (Ambler, 1998),

cognition (Gardner & Rush, 1998), interface design (Borchers, 1999), and software

configuration management (Berczuk & Appleton, 2003).

The research community has broadly embraced and expanded on (Alexander, 1977) notion of

capturing design experience through patterns, particularly in the area of software engineering.

Some of the opinions about patterns that various professionals have are presented here.

Patterns appear as a result of the lessons gleaned from the application of a certain discipline.

Experts in the subject gather these lessons and add information acquired from a study of the

theoretical underpinnings of the domain to them. These specialists may then reshape patterns

that can be utilized again in the field. These actions taken together result in the formation of a

pattern (Petter et al., 2010).Comparing patterns to other learning strategies like algorithms and

heuristics is intriguing. In order to solve a problem, an algorithm uses operations from a

predetermined set of fundamental operations (addition, subtraction, multiplication, and

division), and it does so in a finite number of operations (Aytug et al., 2003).According to this

definition, an algorithm converges when it completes its task in a limited number of steps,

meaning it always arrives at the correct solution. An algorithm may be used to a collection of

mathematical connections or mathematical assertions that relate to the different parts of a

system in order to derive a solution. While design patterns are unrestricted, these linkages

essentially convey knowledge of how a certain system function.

Heuristic rules are those that are created via experience, judgment, and intuition. Heuristics

do not represent the knowledge of the design, unlike relationships, and are a representation of

rules by which a system may be run. Additionally, heuristics may not always provide the best

or ideal option (unlike algorithms). Years of experience lead to the development of heuristic

rules, which, unlike design patterns, are often far more private and individual and not

accessible to the general public.

26

It is crucial to remember that patterns are meant to enhance rather than diminish the

distinctiveness of the design. This is so that a pattern can offer a universal solution to a

recurrent issue, one that can be used in various contexts without necessarily repeating itself

(Cool & Xie, 2000).It is not the case that patterns are "one size fits all" since the process of

adapting or applying the pattern permits modification at various phases during the software

development.

Software practitioners picked up on the educational value of patterns, or "learning from

experience," quickly. It does so because codifying good design approach aids in distilling and

disseminating expertise, assisting others in avoiding development traps and pitfalls that are

regularly experienced (Jézéquel et al., 2000).

2.3. Anti-patterns

 In 1995, Andrew Koening introduced the concept of an anti-pattern. Anti-patterns are, as their

name suggests, the opposite of patterns.If patterns are the best answers to repeating issues,

anti-patterns are the worst solutions to the same recurring problems. Because it might be

extremely helpful to know what does not work (and why), Koening asserted that anti-patterns

may be more important than "actual" patterns (Rising, 1998). An alternative definition of an

anti-pattern is that it "describes how to get out of a terrible solution and then how to move

from there to a good solution" (Appleton, 2000).

According to Coplien (2000) anti-patterns do not provide a resolution force as patterns do,

and they are dangerous as teaching tools: good pedagogy builds on positive examples that

students can remember, rather than negative examples. Anti-patterns might be good diagnostic

tools to understand system problems” (Coplien, 2000). Further: “Anti-patterns do not provide

a resolution force as patterns do, and they are dangerous as teaching tools: good pedagogy

builds on positive examples that students can remember, rather than negative examples. Anti-

patterns might be good diagnostic tools to understand system problems”.

2.4. Attacks on Networks and Havoc Caused.

The world today is characterized by security incidents, as evidenced by the increasing number

of attacks on world citizens from terrorism, extremism, wars, political intolerance, muggings,

and hijackings, to name a few. Networks and systems are not immune to these attacks, just as

27

citizens are. Phishing, identity theft, worms, viruses, denial of service, social engineering, and

botnets are examples of what is wreaking havoc in the world of technology.

In today's world, where the internet and networks are relied on for data communication,

transmission, and storage, security is a major concern, and there is an increasing need for

networks to be equipped with protection mechanisms against both internal and external attacks

(Fernandez & Pan, 2001) based on the insecurity that exists within them (Nishant, 2012).

The rapid development of the internet and computing technologies has made society more

reliant on network services than ever before (W. Baker et al., 2011). As the growth rate

increases and attacks become more complex and sophisticated, enterprises and individuals are

exposed to consequences such as civil suits, litigation, loss of productivity, cyber terrorist

attacks, data and identity theft, and even reputational damage (Ciampa, 2017a).

Most organizations and businesses today rely on networked systems for competitive

advantage, survival, and prosperity. As a result, the information contained within these

systems is a valuable asset (Niekerk et al., 2006). Information on credit, health, professional

work, business, education, and other important things are relied on within these systems, and

because of their value, information within networks has become a growing target of attacks

(Fernández, 2015).

Security threats to network systems have evolved dramatically, with news of security

breaches, hacking, data disruption, and denial of service hitting the headlines almost weekly

(Liebowitz, 2011) Uber, Heathrow Airport, the consulting accounting firm Deloitte, and the

financial and credit reporting firm Equifax (Khosrowshahi, 2017) (Warburton, 2017)

(Reuters, 2017) (Alferd & M, 2017) are examples of enterprises that experienced security

breaches in 2017. Illegal exposure campaigns such as "Vault 7," a series of documents

released by Wikileaks in March 2017, exposed the techniques the CIA had been gathering for

use in cyber warfare, as well as their capabilities to exploit automobiles, Internet of Things

(IoT) devices, personal computers, and smart phones. "Shadow Brokers," an underground

group of hackers that emerged in August of 2016, were also notorious for publishing several

zero-day exploits and were also responsible for the leaked exploit "EternalBlue," which was

largely responsible for the WannaCry Ransomware. All of this clearly demonstrated that

28

compromises on every sector of the economy, whether government or private, are clearly not

immune to attacks (Kevin, 2017).

Despite the fact that protective mechanisms and solutions are in place to ensure data security

and to assist organizations in collecting, tracking, and reporting the status of known security

issues. Every day, new threats and vulnerabilities are discovered. The continued growth of the

number of attack incidents shows that we still have a long way to go and a lot of time and

effort is required to reach the appropriate security levels Figure 2.4 shows the number of

incidents reported to the CERT (Sas, 2019).

Figure 2. 4.Depicts the number of incidence attacks in relation to the year

Source. (Statista,2019)

In 2018, a total of 3,739 incidents were reported, representing an exponential increase in

attacks from 50 incidents in 1996 to 3,739 incidents in 2018. This pattern indicates that the

number of cyber security incidents has been steadily increasing.

This raises the critical question of whether the security mechanisms in place to protect the

ever-changing networks are sufficient to deter cyber criminals! Are attacks evolving at such

a rapid pace that protective mechanisms are unable to keep up? Is there a challenge in the

design of defensive mechanisms that they cannot handle providing network protection!

29

2.4.1. Techniques Employed in Attacking Networks

Critical infrastructure is the target of several attacks using a range of strategies and tactics.

This includes hacking into network systems, creating viruses and worms, attacking websites,

launching denial-of-service attacks, or carrying out terrorist operations through electronic

communications, according to (Bogdanoski, 2013).

The word "hacking" is used to refer to all unlawful access to computer systems and networks,

including "cyber murder" and other similar crimes. A British hacker who entered the

Liverpool hospital in 1994 and altered the doctor's prescription handed to the patient by the

nurse is a classic case of “cybermurder”. Many of these hackers employ "brute force," which

entails a sequence of combinations of all feasible letters, numbers, and symbols, in an effort

to discover the password that will enable them to carry out their malicious attack (Nagpal,

2002).

Attacks against any organization's or country's vital infrastructure may be carried out using

the password sniffing approach. Software called a "password sniffer" is used to monitor a

network and record passwords that are sent via the network adapter. The attacker has installed

this method on several of the network systems that they want to compromise, including the

phone system and network providers, in order to monitor all activity on an area network

(Hassan et al., 2012). The sniffer program will automatically capture the data that user’s input,

such as login and password, while utilizing internet access methods like FTP or telnet. In

1994, hundreds of websites were impacted by one attack of this kind.

Sometimes attacks are launched via spam mail. Spam is the term for unsolicited mass message

transmission. Although the attackers employ a variety of spam messages, email spam is the

most frequently used one. Email spam occasionally poses as an advertisement for goods and

services, and when opened by recipients, it instantly generates the recipient's username and

password, which the attackers can use to access his or her email and carry out their attack

(ITU, 2014).

On occasion, computer viruses are spread across a system in order to carry out undesirable

functions including espionage, information generation, or even system failure. In his study,

(MacKinnon et al., 2013) found that cyber weapons are primarily software tools used by cyber

terrorists to wreak havoc on organizations and even nations in order for them to accomplish

30

their missions and goals. These software tools can manipulate computers, make intrusions into

systems, and perform espionage by sending spying which can inform of viruses into a system.

2.4.2. Havoc of Network Attacks

It is impossible to overestimate the importance of data in carrying out various tasks inside an

organization since it is the main instrument used to transfer data into information when

businesses and nations manage it. According to (Koltuksuz, 2013), a network attack can

undermine data integrity, causing the data to no longer be trusted, damaging its secrecy, and

interfering with its availability. The increased frequency of network attacks into corporations

and nations' data has created a slew of issues, including the loss of key and critical data that

is typically difficult to recover.

The crucial infrastructure via which much of the company's activities is carried out and which

also contains vital information is the pulse of every organization. It is self-evident that any

attack on a country's key infrastructures has the potential to halt its economy. According

Thuraisingham, (2004), an attack may be undertaken against any of the following targets. For

the operation of the country, infrastructure comprises telephone lines, electronic, electricity,

gas, reservoirs and water sources, food supply, and other crucial elements. All telephone

connections might be shut down as a consequence of an attack on the software used by the

telecommunications sector, and network attacks could target the software used by gas and

electricity providers.

Attacks on networks have resulted in the closure or immobilization of several industry-

focused businesses, which has some effect on the expansion of the global economy. According

to Thuraisingham, (2004) estimate, network attacks could cost a company billions of dollars

in the business sector. For example, a bank's network could be attacked or hacked, giving

thieves access to their accounts without authorization and costing them millions or even

billions of dollars. This would force the bank into bankruptcy and force it to close down.

Numerous innocent people have been killed by cyberterrorism, which has also caused

financial hardship for many families and, occasionally, psychological harm to the afflicted

individuals. According to Awan,(2014), cyber-terrorism has taken the shape of attacks on

computer systems, networks, and attacks that have led to "explosions of multiple plane crashes

crises all over the world that have claimed many lives." These attacks have caused major

31

damage and the loss of life. It is extremely upsetting that cyber terrorism is taking lives at an

exponential pace, and if prompt action is not taken to stop it, it will continue to take the lives

of innocent people who ought to be advancing the world economy. Terrorists may even try to

manipulate air traffic control by breaking in, which might lead to jet accidents or perhaps a

deadly crash (Iqbal, 2004). Terrorists may potentially take control of a company's

pharmaceutical computer system, changing some of the important prescriptions that the

pharmacist may have created.

As trust may be seen as a tool that builds connections and confidence between companies and

customers, it is a well-known fact that the growth and patronage of any business depend on

the faith that its consumers have in such organization. Attacks on networks may intrude into

other people's "cyberspace," claim (Saini & Rao, 2012), with the intention of discouraging

and upsetting end users and customers who often visit the impacted page for commercial

transactions. Customers will lose trust in the aforementioned internet site if it is invaded and

attacked since it damages companies and makes users the victims of cyberterrorists. It is

impossible to overestimate the value and significance of trust in the information technology

era because without it, businesses and organizations would not be able to survive, much less

thrive, in a cutthroat environment.

2.5. The OSI Model and Its Roles in Securing Networks

Understanding the OSI model aids network administrators in understanding IT security which

evolving and expanding daily. Threats to an organization can range from a misplaced

backdoor to a nefarious adversary meticulously creating a Trojan to open ports on your web

server(Shaw, 2022).

By examining the layers, we may identify the benefits and drawbacks of our networks. Despite

having a fantastic set of antivirus software, our encryption techniques being up to dated.

Knowing that a certain layer is weak helps us to comprehend how vulnerable our system is,

how to split resources, and how to get specialist support if needed (Surman, 2002).

The most crucial point to keep in mind is that every layer has attacks either in development or

ready to launch due to lax defense. Regardless of the layer, protecting your system from

attackers is a never-ending process (Holl, 2003).

32

We can better comprehend the dangers that our networks may encounter by understanding the

OSI model (Osakwe, 2020).Understanding the OSI model's segregated structure aids in our

understanding of the overall but compartmentalized approach that must be used. The tiers can

only be adequately protected if our networks are seen as independent parts. If the network can

be divided into manageable components, as the OSI model enables us to do, we can share the

risk. We have a better chance of addressing problems and protecting our assets when the risk

is divided into smaller, more controllable parts (Q. Zhu & Basar, 2012).

Also, as technology advances, so do high-profile hacking tactics. As a result, security

specialists are in high demand. However, security experts and analysts must first grasp the

fundamentals of how network levels function, as well as the important components that may

strengthen security at each tier (Bourgeois & Bourgeois, 2014).

The OSI model is a good place to start when it comes to learning about network security.

Every layer of the framework is based on a particular protocol or method. Conceptually, the

network architecture is divided into seven tiers comprising of Physical layer, Data link layer,

Network layer, Transport layer, Session layer, Presentation layer and Application layer(Swire,

2018).

The effort of protecting a single computer, much alone a network, might be intimidating to

the inexperienced. IT system managers must begin someplace, and that place should be with

a grasp of the OSI model. The OSI model separates the network into easily discernible parts

that may each be protected independently. Once every component is secure, a comprehensive

security strategy is completed, and the threat of an attack is significantly reduced. But first, it

is important to understand the OSI model.

2.5.1. The OSI Model.

The International Organization for Standardization (ISO) developed the seven-layer

networking architecture known as Open System Interconnection to be used for worldwide

communications (Beal, 2021). It is important to note that the model is an ISO standard that

specifies how the IT industry should develop networking protocols for computers. Protocols

are sometimes referred to as languages, and these languages allow devices to communicate

with one another. When everyone follows the same set of guidelines, putting the puzzle

together becomes much easier(Jasud, 2017).

33

These layers are divided or rather modularized into two depending on the operational level

within a network setup. These modules are referred to as the host and media Layers as shown

in Figure 2.5 The Host layer combines the Application Presentation, Session and transport

layer, while the media layer includes the network data link and presentation

layers(Kavianpour & Anderson, 2017).

The media layers focus on the preparation, encoding, and transmission of data across the

network. They are just concerned with the data transfer itself and not with the content or

purpose of the data. They have hardware and software counterparts, with the former

predominating as one moves from layer 1 to layer 4.

The host layers, on the other hand, are responsible for implementing networked applications

and interfacing with the user. The higher-level protocols care less about the mechanics of data

transport and instead rely on the lower levels to make it happen. Typically, these layers are

realized as computer programs that operate on some sort of electronic device. Layers,

Sublayers, and Layer Groups in the Open Systems Interconnection Reference Model (OSI,

2005).

In a hierarchical structure like this one, each layer handles its own specialized function and

passes the results on to the layer above or below it for further processing.This means that data

is sent from a higher level to a lower one.The data is directed to its final destination when it

reaches the physical layer.When information reaches its final destination, it must first pass

through several layers before it can be translated. An e-mail, for instance, starts at the

Application layer and travels down the stack, across the wire, and back up the stack to the

Application layer at the destination.

34

Figure 2. 5.Showing the media and host layersSource: http://www.cables-solutions.com/wp-

content/uploads/2016/06/OSI-Model.png

Control is transmitted from one layer to the next within the source computer. Data flows down

the hierarchy of the sending node and then up the hierarchy of the receiving node. Figure 2.6

depicts this information flow; observe how there is no way to skip a layer and how the

procedure is mirrored on the following machine. Each layer is only capable of communicating

with the layers above and below it as seen in Figure 2.6, the Physical Layer is capable of

communicating with the Data Link Layer and the media itself note that there is no lower layer

for Physical.

Created one layer at a time. This allows for scalability, as work in one layer can continue even

if progress in a different layer is slowed. The process by which one layer of a network may

connect with the proper layer at a remote location is called "encapsulation," and it occurs when

data travels from one layer to the next.

http://www.cables-solutions.com/wp-content/uploads/2016/06/OSI-Model.png
http://www.cables-solutions.com/wp-content/uploads/2016/06/OSI-Model.png

35

Figure 2. 6.The OSI Layers Data Flow

Source (Y. Li et al., 2011)

The layers and their functions are described as follows:

• Physical Layer • Connect and disconnect connections, specify voltage and data rates,

transform data bits into electrical signals, and choose between simplex, half-duplex, and full

duplex transmission.

• Data link Layer • Waits for response for each sent frame while synchronizing, detecting, and

fixing errors.

• Network Layer • Routes important signals, Separate incoming messages into packets. Serve

as a network controller for data routing.

• Transport Layer - Determines if transmission should be parallel or single-path, and then

determines if data should be multiplexed, divided, or segmented. Splits data down into smaller

parts for effective handling.

• Session Layer –controls logging on and off, user authentication, billing, and session

management between two systems in synchronized interaction.

• Presentation Layer – is in charge of the syntax and semantics of the information sent.

• The application layer- in charge of information file retransmission, login assistance, password

verification, etc.

36

The model, together with examples of security risks for each of the model's levels, is depicted

in Fig. 2.7. The OSI model's lowest levels are implemented in hardware and are thus

vulnerable to physical attacks. The remaining layers are comprised of software and are thus

only directly endangered by software risks.

Figure 2. 7.OSI Models and Attacks. (Manninen, 2018)

2.5.2. Necessity of Having Security at Each Layer of the OSI Model.

OSI Defense in Depth to Increase Network Security explains how susceptible networks are

and how Network administrators may lower risks (Dauch et al., 2009).Each layer of security

is addressed via the OSI model technique.

2.5.3. OSI Layers Threats

2.5.3.1 Physical Layer Security threats

As earlier said the Physical Layer is used to provide the technical requirements for data

communication it describes the network's physical characteristics, such as voltage levels,

cable kinds, and interface pins. The bulk of risks are at this layer, include cutting physical

cables, changing interface pins, natural disasters like earthquakes, fires, and floods that can

cause short circuits, as well as other acts of human vandalism, can interfere with the electrical

impulses that connect network nodes. Some of the threats/vulnerabilities in relation to access

control include Access of the network to non-authorized personnel, inadequate physical

security enabling unauthorized access, and unrestricted access to critical servers and lack of

enforcement of password complexity policies(Shakiba-Herfeh et al., 2021).

37

2.5.3.2. Data Link Layer Security Threats (Switch Security)

The second tier of the OSI model is called the data link layer, and it deals with how frames

are delivered. It guarantees data transfer across a physical link in a secure manner. This layer

is in charge of flow management, error notification, ordered frame delivery, network topology,

and physical rather than logical addressing. Switches that handle protocols like the Spanning

Tree Protocol (STP) and the Dynamic Host Configuration Protocol are frequently found on

this tier (DHCP). LAN connectivity is provided by switches, and most attacks start within the

LAN. Because of the layer's practical and useful design, there are flaws in the Data Link

Layer. Frame-level exploits and vulnerabilities include, but are not limited to, sniffing,

spoofing, broadcast storms, and unsafe or nonexistent virtual LANs. A network segment or

the entire network may have significant issues due to improperly configured or defective

network interface cards (NICs) (Mahmood et al., 2020).

ARP spoofing may be employed maliciously to take over the IP address of a system. Through

the use of ARP spoofing, it is possible to force a switch to route traffic to a different VLAN

by delivering ARP packets with carefully fabricated IDs. Without the top tier being aware of

it, the security flaw at the lower layer affects security at the upper layer (Al Sukkar et al.,

2016).

MAC flooding is the network switch attack that happens when a switch's MAC table reaches

its maximum of 131,052 entries and then overflows. An attacker is able to collect network-

sensitive information, such as passwords, by sniffing the inundated traffic (Daş et al., 2015).

A spanning tree protocol attack is A denial-of-service (DoS) attack that occurs when an

attacker injects himself into a data stream. It starts with a physical intrusion, typically by a

malicious person installing a rogue switch. The root priority is lowered by the attacker when

a lower root priority is set, the link between two switches is severed. This makes the attacker's

switch the "root" switch, giving the attacker complete access to all traffic going through all

switches (Pearson, 2016).

A multicast brute-force attack looks for software flaws in the switch. By storming a switch

with multicast packets, the attacker attempts to exploit every conceivable weakness. The

objective is to determine whether a switch that receives a high quantity of layer 2 multicast

traffic will "behave improperly." When routing joins different VLANs, the switch should

38

maintain traffic inside the original VLAN; but, if it does not, frames may leak into other

VLANs. This attack is very speculative since it expects the switch to handle multicast packets

improperly. To stop such an attack, the switch should contain each frame inside its appropriate

broadcast domain. Switches, on the other hand, have typically been unable to counteract this

kind of attack, adding it as another attack channel (Alzahrani et al., 2013).

Random frame-stress attacks come in a variety of flavors, but in general, they are brute-force

attacks that randomly alter various fields of a packet while leaving the source and destination

addresses alone. The objective of this attack is usually to determine how the switch software

responds to packet fields that contain nonsensical or unexpected values(Zhao et al., 2011).

2.5.3.3. Network Layer Security Threats (Router Security)

The OSI model's Network layer defines routing, layer 3 switching, and IP addressing. This

layer is used to communicate between network devices that are not connected to the same

segment. The network layer serves as a guide and a traffic controller. It directs the flow of all

data packets. When data enters the network layer, it is assigned an internet protocol (IP)

address as a result the packet now becomes are of its destination. The routers, on the other

hand, are responsible for keeping track of and managing all of the traffic. The network layer

performs routing on the network by utilizing many widely used protocols (Kumar et al., 2014).

Malicious actors can attack the network layer by overloading the network, impersonating the

network, and sniffing the network traffic(Kaur & Singh, 2014). In relation to network

overloading and congestion a denial of service (DoS) attack, such as a ping flood, can be used

to do this by an attacker. When an attacker knows which IP addresses are affiliated with a

target network, he or she will continually send an internet control message protocol (ICMP)

ping or echo to overburden a portion of or the entire network, depending on the situation. This

means that an attacker can target a single endpoint or a router in order to prevent all

communication from taking place(Kumar et al., 2012).

IP spoofing is yet another method of attack to be aware of. An attacker will alter the source

IP in the header of the message, which is commonly used for distributed denial of service

(DDoS) attacks. IP spoofing has become almost normal practice for DDoS malware kits in

recent years(Hastings & McLean, 1996).

39

With the use of IP and port sniffing, attackers can have an impact on the network layer. An

attacker can employ IP and port sniffing to undertake reconnaissance and learn more about a

user by analyzing the packets they send and receive. Malicious actors can steal vital

information from a network connection that has not been secured(Anu & Vimala, 2017).

Routing attacks' most visible consequence is network outage, in which attackers drop packets

and render destinations unavailable. This form of attack, in which traffic is "black-holed,

(malicious node pretends like normal node and forward packets but selectively drops some

packets) " is also referred to as a hijack attack. The attacker's objectives, on the other hand,

may be more complex like Surveillance and Impersonation (Korba et al., 2013).

Government agencies may use routing attacks to perform surveillance and Intelligence

agencies such as NSA have had their fair share of accusation for launching routing attacks to

intercept and reroute traffic of interest for purposed of surveillance. This attack is typically

referred to as an interception attack, as genuine destinations continue to receive traffic.

Interception attacks are far more difficult to detect than hijack attacks since they do not disrupt

communication, albeit performance may suffer as a result of the more convoluted methods.

Additionally, authorities might use routing attacks to circumvent legal constraints by

redirecting domestic traffic, such as emails between citizens and foreigners for monitoring

purposes(Goldberg, 2017).

By intercepting packets via hijack or interception attacks and responding with forged

responses, attackers can fool senders. These attacks have the potential to cause serious harm.

In 2018, attackers impersonated Amazon's authoritative DNS service and responded to DNS

queries for a bitcoin website with Russian IP addresses via routing attacks. The consumers

were then sent to a bogus website that they mistook for their legitimate bitcoin provider. As a

result, bitcoins was stolen.In order to send spam or other malicious traffic, attackers may spoof

a huge number of IP addresses (Madory, 2018).

2.5.3.4. Transport Layer Threats.

Transmitting variable-length data sequences between source and host is defined by the

Transport Layer. Because data comes in various sizes and is divided into packets, there are

guidelines on how to handle it, the reliability of this layer can be achieved by ensuring the

segmentation and de-segmentation mechanism and error control. Two protocols are

synonymous with this layer: Transmission control protocol (TCP) and User Datagram

40

Protocol (UDP) .TCP favors data quality over speed while UDP favors speed above

quality(Stewart & Metz, 2001).

Despite its status as a 'host layer,' the transport layer is vulnerable to the same risks that

plagued the previous 'media layers.' Sniffing, especially relating to ports and protocols, may

be found here as well (Kizza et al., 2013). The transport layer can be targeted by distributed

denial of service (DDoS) attacks(Manavi, 2018).

At the transport layer, SYN floods and Smurf are two common attack types. By simply

abusing the TCP three-way handshake, SYN flood, also known as Half Open Attack or TCP

Sync Flood, happens when an attacker uses a fictitious IP address to initiate several

connections to a server without waiting for the connection to finish (Parmar & Gosai, 2015).

Smurf attacks to overburden network resources by causing a denial of service. The attacker

sends out echoes of the Internet Control Message Protocol, causing an unending cycle of

requests (Bhalekar & Shaikh, 2019).

Additionally, there is a problem to address at the transport layer level of abstraction: For a

malevolent actor, it is an excellent site to carry out reconnaissance. Except if they aim to

launch a distributed denial of service (DDoS) attack against you, they are not permitted to

attack you directly at the transport layer. The actor, on the other hand, may learn a great deal

about how to gain access to your environment, particularly the session layer, which is

frequently targeted by hackers and other malicious actors(Elejla et al., 2017).

The importance of reliability at the transport layer cannot be overstated. Because all of the

packets are moving around, there is a great deal going on in this layer. If this layer does not

successfully segment and reassemble the packets, performance may be adversely affected

(Hunt, 2002). As a result, the transport layer must be as error-free as is reasonably practicable.

This is also the reason why it conducts error control functions. If there are any flaws in this

section, interaction between hosts can get jumbled(Algaley & Yousif, 2022).

2.5.3.5. Session Layer Threats.

The Session Layer is a gatekeeper responsible for syncing everything up for action, it creates,

manages, accepts, opens and closes sessions, inter-system communications and the interaction

of local and distant applications. At times it is even responsible for sessions failing on

41

occasion, especially if your machine is managing a large number of them. As a result, not only

is efficiency critical at the session layer, but so is security(Köksal & Tekinerdogan, 2019).

Managing the session layer is crucial. Session hijacking attacks occur in the session layer,

they include Cross-site scripting, sidejacking, fixation, cookie stealing, Man in the Middle

attack and brute force attacks. A session hijacking attack is one that compromises a token by

estimating what a legitimate token session will be, allowing the attacker to gain unauthorized

access to a server as a result of the breach to authenticate the session, the server places a

temporary remote cookie in the client's browser. So, the remote server remembers the client's

login status. A hacker requires the client's session token to perform session hijacking. This

may be gained by fooling the user into visiting a malicious link with a preset session ID, for

example. Using the stolen session token in their own browser session, the attacker can take

over the targeted session. The server eventually thinks the attacker's connection is the same

as the original user(Shi et al., 2021).

2.5.3.6. Presentation Layer Threats.

The presentation layer transforms machine-readable code into something that the end user

may utilize in the application layer afterwards. It is where formatting, conversion and

encryption happen. Threat actors hunt for attacks in presentation layer encryption weaknesses.

SSL hijacking or sniffer is one of the most popular techniques. Malformed SSL requests are

the most common type of attack seen at the presentation layer. Because attackers are aware

that analyzing SSL encrypted packets consumes a lot of resources, they utilize SSL to tunnel

HTTP attacks to the target site(Shi et al., 2021).

Man-in-the-middle (MitM) attack, as mentioned earlier, are a favorite tactic among threat

actors. SSL hijacking may be harmful at the presentation layer when combined with malware.

If an attacker has already placed malware on a system, the MitM will employ a proxy to act

as an untrusted certificate authority. If this occurs, the browser will trust the incorrect

certificate authority, allowing the attacker to access all communications(Keerthi, 2016).

2.5.3.7. Application Layer Threats.

The application layer, as the name implies, is intended to service the end user. Mail and file

transfers, among other things, take place here. It includes online browsers, applications, and

nearly anything else you see on your screen. To be clear, applications are not necessarily a

42

component of this layer, but the services they provide are. This layer allows for the most

diverse cyber attacks and security breaches. It can result in the network being shut down, data

being stolen, the program being crashed, information being manipulated as it travels from

source to destination, and many other things. The list of threat can be exhaustive starting from

the different types of malware, because all viruses, worms, key loggers Phishing, Backdoors,

Program logic, flawsBugs and Trojans do their damage to this part of the OSI model(Norman

& Joseph, 2017).

As shown in Figure 2.8. network managers may learn that network security is more than

simply OS hardening, authentication, and encryption with the aid of the OSI model and

Network Security by Defense. Because security flaws exist at every level of the OSI model,

precautionary security measures can be taken to protect networks (Groat et al., 2012). Three

fundamental building components comprise the foundation for network security protection

and attack is protecting Confidentiality, Integrity, and Availability (CIA).

The choice to use the Open Systems Interconnection (OSI) model in this research is justified

by its comprehensive framework, layered approach to security, industry acceptance,

interoperability, sensitivity to security concerns, educational value, relevance in modern

networks, and facilitation of pattern development.

Figure 2. 8.OSI Addressing Security at Each Layer. (Holl, 2003)

43

The OSI model's structured layers provide a systematic approach to understanding network

architecture and addressing security concerns at specific levels. Its global recognition as an

industry standard ensures that research findings are applicable across diverse network

environments. Additionally, the OSI model's adaptability to modern networks and alignment

with network simulation enhances its relevance in the context of enhancing network security

through defensive pattern models.

2.6. Network Security Architecture Role in Securing Networks.

Strength of the organization's structure is a key component of its success. A well-thought-out

company plan, well-trained workers, and seasoned business leaders are all essential.

Consistency and commitment are essential to building a powerful team (Eskierka, 2011),

which is why Network security architecture implementation is no exception. In order to keep

an organization safe from outside attacks, it is critical that its network security architecture is

impenetrable.

Network attacks and breaches happen in a variety of shapes and sizes, and they are always

evolving. As a result, it is imperative for a business to be well-versed in measures and methods

to counteract such dangers. An organization is subject to a variety of dangers if it lacks

adequate security(Smys et al., 2020).

The organizational structure, standards, rules, and operational behavior of a computer

network's security and networking components are all laid out in a framework known as a

network security architecture (Smys et al., 2020).With the aid of a security architecture, you

can better understand the relationship between your security controls and your entire systems

structure. In order to keep your vital system's quality traits such as confidentiality integrity

and availability intact, these controls are essential to their implementation(Schumacher et al.,

2013b).

Three critical elements that are included in a security architecture are Network Elements

which entails Network topologies, Network connections between nodes using specific

protocols, Network communication protocols and Network nodes. Security Elements which

entail strong encryption techniques, Secure network communication protocols, security

software and security devices. Security Frameworks which entail Technology standards for

44

security software choices and security framework architecture standards. Lastly Standards,

Security Procedures & Policies (Biskup, 2009).

The purpose of network security architecture is to provide assurance that a company's critical

network infrastructure, including its most sensitive data and mission-critical applications, is

secure from both known and unknown threats. To prevent, detect, and neutralize any and all

network intrusions. Take care to maintain small, unnoticeable attack surfaces in your network,

so that malicious actors may sneak up on their targets without raising suspicion. To ensure

that all private and sensitive information is sent using strong encryption and end-to-end

encryption methods, and that any attacks are actively recognized, mitigated, and destroyed

using countermeasures like Moving-Target Defenses. In order to deliver a suitable and timely

solution, you must have a thorough understanding of the many problems in your system

(Checkpoint, 2021).

2.7. Network Security Design.

Network security is built using a variety of components and technologies, and these

components and technologies are represented in architectural design. In order to build the

system, the designer will select the relevant technologies, including Blackbox firewall

products, cryptographic protocols, proxy agents and packet filtering routers. As a result, a

detailed architectural model will depict all of the system's parts and their interrelationships.

The Architectural Model not only aids in a better knowledge of the system to be implemented,

but it also allows for the establishment of important components and the effects on the overall

system of errors in each of these components(Alabady, 2009).

It has been thoroughly explored and proven to be practical to use architectural design for

software applications. The significance of architectural design is expanding as commercially

available (COTS) components have grown more prevalent. The architecture of the system

becomes crucially significant, much like in software development, because a network security

system depends on a range of COTS that implement a variety of security technologies (Miller,

2013).

There are also survivability studies that focus on the same topic. Modeling a system's

architecture and assessing the consequences of component failures on the overall aim may be

accomplished using approaches like the easel language (Stojkovic & Steele, 2005).Although

45

the suggested security architectural design has some similarities to the survivability

architecture approach, they also diverge dramatically. "Survivability is concerned primarily

with system availability and goal fulfillment," according Stojkovic & Steele, (2005), whereas,

as previously indicated, network security architecture is concerned primarily with authenticity

and integrity, confidentiality, access control, and auditing needs. These and other research can

provide some insight into the qualities of an effective network security architecture design

model.

The designed model has a very desired attribute of formality. Studies over an extended period

of time have shown the benefits of a formal model over an informal or semiformal one.

Additionally, the model is assessed automatically rather than by a human, and it enables code

to be immediately generated from the model (Rushby, 2001).

While creating a new network security architectural model, there are many lessons that may

be learned from formal techniques. The ability of the model to represent lower-level

subsystems that have not yet been built as a black box component in a high-level model is one

characteristic that may be incorporated from formal modeling methodologies. Then, using a

top-down development strategy, each of these subsystems might be developed separately.

Starting with the stated lower-level black boxes, lower-level subsystems may be created and

then used to construct a more complicated model of higher-level functionality. By using

hierarchical breakdown, the model's scalability and understanding are both enhanced (Graft

et al., 1990).

Network security experts have suggested that black-box packet filtering and proxy agent

black-boxes (which may be further extended by using protocol-specific programs) be used to

emulate firewalls. An advanced concept of a network security system could include a firewall

black-box in addition to additional aspects like decentralized trust management and

cryptographic associations management (Sena & Geus, 2002).

The layered technique, which divides the model into various tiers in accordance with certain

requirements, as in the design of an operating system, for instance, is a desired characteristic

that may be added to existing formal models. The standard in our case may be how sensitive

the data is that has to be secured. This is a common approach to information security that is

46

present in many systems, including the Bell and LaPadula multi-level security model (Bell &

LaPadula, 1975) , and it offers protection for crucial assets in the lower levels.

2.8. Frameworks Guiding Security of Networks.

2.8.1. NIST Security Framework

The National Institute of Standards and Technology (NIST) Security Framework is a

collection of recommendations created by the NIST. This framework was developed by

considering a range of security experts from diverse sectors and setting up a common set of

rules and regulations that was then transformed into a framework. It is not a standard checklist

that one would check off and mark as finished at the conclusion of each project stage. Instead,

it focuses on assessing the current situation. How would you assess security? How to

Approach Risk How do you handle threats to security? The framework is more interconnected

and helps individuals make wise judgments. It also helps the team communicate about safety

precautions, threats, and other topics. This framework focuses on managing cyber-securely,

communicating internally and externally, upgrading and updating security rules, and other

related things. The five fundamental elements that go into developing this framework are

Identify, Protect, Detect, Respond, and Recover (Cockcroft, 2020).

2.8.2. COBIT Security Framework

Control Objectives for Information and Related Technologies is referred to as COBIT. The

management, governance, and security of information technology are all incorporated into

this security framework together with strong business concepts. Information Systems Audit

and Control Association (ISACA), created it. It is a worldwide organization of professionals

that focus on information technology security governance. Businesses who want to improve

the quality and security of their output might benefit from this approach. This framework is

founded on two elements: the requirement to meet stakeholder expectations and the

enterprise's end-to-end process control (Arora, 2010).

2.8.3. ISO/IEC Standards framework

ISO/IEC Standards: This framework was created by the International Electrotechnical

Commission (IEC) and the International Standards Organization (ISO) (IEC). British

Standard BS 7799 served as the foundation for this framework's creation, however it has

subsequently undergone several updates and modifications to become ISO/IEC 27001: 2013.It

47

is an industry-recognized set of best practices for high-level security management and

execution. The framework urges companies to assess every aspect of the cybersecurity

process, which includes the following: Environmental and physical security, access

management and control, information technology security procedures, communication

security, cryptography, incident response, and compliance It contains suggestions for a vast

array of security measures that might be used inside the businesses that will be dealt with

utilizing this framework. In the course of risk assessment and management, all issues will be

addressed (Disterer, 2013).

2.8.4. HITRUST Cybersecurity Framework (CSF).

To help healthcare organizations and their business partners comply with Health Insurance

Portability and Accountability Act (HIPAA) regulations, HITRUST offers an integrated risk

and compliance solution. To create a set of safeguards for the security and privacy of protected

health information (PHI) and electronic PHI, leaders in the public and commercial sectors in

the fields of privacy, information security, and risk management worked together (ePHI).Each

of the 156 control requirements in the HITRUST CSF's 49 control objectives fits under one

of the following 14 control categories: Access control, human resource security, risk

management, and security policy are all included in the program for information security and

management. Organization, compliance, and asset management for information security

managing communications and operations, protecting the physical and natural environment,

Information system acquisition, development, and maintenance Management of business

continuity incidents, management of information security incidents, and confidentiality

standards (Donaldson et al., 2015) (Donaldson et al., 2015)

2.8.5. Internet of Things (IoT) Cybersecurity Alliance (IOTCA).

The IoTCA's goal is to create a community of cybersecurity and IoT experts that can cooperate

on practical IoT security issues and work toward developing an IoT posture that prioritizes

security. Their technology uses a multi-layered approach to offer end-to-end security,

covering all networked devices and the apps that run on them. The endpoint layer, which

consists of gadgets and linked objects, and the short-range network layer make up the

framework. Applications are handled by the data/application layer, while communications are

handled by the network layer. Threats include limited resources, malware, device cloning, a

48

lack of monitoring, protocol manipulation, man-in-the-middle attacks, denial-of-service

attacks, and unauthorized software and access are what they aim to stop (Walker, 2021).

2.8.6. MITRE ATT&CK.

MITRE is a nonprofit government-funded research and development organization with a

specialization in cyber security. After MITRE began documenting common cyber-attack

TTPs against Windows commercial networks, ATT&CK became the de facto standard,

providing a consistent lexicon for both offensive and defensive researchers. The Common

Vulnerabilities and Exposures (CVE) list is created and trademarked by the MITRE

Corporation. MITRE Enterprise has compiled a list of 14 techniques often used by

cybercriminals to develop advanced persistent threats (APTs) in a corporate setting. Which

include: reconnaissance; resource generation; initial access; execution; persistence; privilege

escalation; defense evasion; credential access; discovery; lateral movement; collection;

command and control; and exfiltration (Strom et al., 2018).

2.9. Threat Model and Threat Modeling.

A threat model is a representation that describes the threats that affect the security of a given

setting, they are developed to standardize and ease disaster planning and preparedness process.

Threat models are derived from threat assessment processes(Marback et al., 2013a).

Threat modeling is a risk-based method to building secure systems. It is centered on detecting

dangers in order to build mitigation methods. According to NIST, it is used to simulate both

the offensive and defensive methods of a particular system in order to aid in the discovery of

security solutions (Almubairik & Wills, 2016).

Threat modelling employ the use of abstraction in the quest of discovering security challenges.

Abstractions assists in looking at security risk towards a system from a bigger point of view

and finding the issues that other procedures and tools could not discover as a result of unique

issues that are specific to design of systems. It also assists in discovering parallels and finding

comparisons to problems encountered in other systems (Möckel & Abdallah, 2010).

Threat modelling has evolved from traditionally being used in software security to more

complex systems such as to evaluation of security process in embedded systems, cloud

computing infrastructure as well as control systems architecture. Threat modelling produces

49

threat scenarios which are attributed to threat sources, these scenarios can be characterized

using tree structure, graphically or even verbally (Bodeau et al., 2018a)

From literature several diverse threat modeling frameworks, tools and methodologies do exist,

they can be famed according to the goal of the threat modelling, the entity being modeled

within a system setup or even a specific lifecycle phase of an entity. Some of them are broader

than others, some are specific to a particular domain, while others have higher abstractions

levels(Gonzalez, 2022).

Threat modeling methods can be incorporated with other methods to create enhanced toolsets

for solving security problems for instance several research work has shown its cooperation

with the risk process a to solve security problems (Mohanakrishnan, 2021).

A generic threat modeling method should be made up of the following basic phases, the first

one being an in-depth understanding of the object to be modeled, second, what the object does,

followed by how data flows and stored and finally who the users are(Tarandach & Coles,

2020).

Several threat modelling approaches have been proposed by different authors on how to

approach threat modelling exercises. (Shosctack,2014) proposed a threat modeling approach

by looking at the assets and impact of threats towards the assets, from this approach critical

valuable Assets need be identified and considered one at a time and impact they face as a

result of threat being actualized should also identified and prioritized. The supporting assets

are also identified and highlighted since they can be exploited as a conduit to harm the critical

assets.

(NIST, 2012) in their approach they look at threat modelling in relation to an attack(er) in

relation to what they want to achieve and how they achieve it. Several

constructs/characteristics of an attacker are modeled in this approach they include their

intentions, capabilities, resources available to them and behaviors, all this makes it possible

to understand and give insights of procedures, tactics and techniques of attackers. The authors

propose the use of cyber kill model or cyber-attack life cycles to model attacker’s behaviors

into attack scenarios or threat scenarios. The treat scenarios can be described in details after

the threat source have been identified and impact can be derived from the attacker’s behavior,

intentions and motivations.

50

(Souppaya & Scarfone 2016), their threat modeling approach looks at the software, system

and data. The threat modelling at the software part focuses on the reduction of vulnerabilities

within the software and it is performed during the design and development stage, the system

part focusses on a working and operational system to improve its overall security and the data

part concentrates on the protection of the data within the system. The general focus of this

modelling approach is the type of the system, its function, what can go wrong and what can

be used to cause harm. This modelling approach employs DFD`s to model the system, data

and boundaries then threats relevant to each of them are determined.

Scarfone & Souppaya 2016 their threat modeling is data centric in approach i.e. the main focus

is on data as opposed to other entities within a system. From this modelling the emphasis is

on the identification and characterization of the data of interest within a system and its

respective characteristics such as authorized inputs, processing, transmission, data flows,

outputs, and access and security objectives of data in place within the system.

2.9.1. Threat Modeling Approaches.

Using threat modelling techniques, a system abstraction, and profiles of prospective attackers,

including their aims and tactics, and a library of possible threats are created. There are a wide

variety of threat modelling techniques that have been utilized. Some emphasize on abstraction

and foster granularity, while others are more people-centric. Some strategies focus on risk or

privacy concerns. Combining threat modelling methodologies can provide a more

comprehensive perspective of prospective threats (Konev et al., 2022).

To get the most out of threat modeling, it should be done early in the development cycle. This

implies that possible problems may be identified and addressed early on, avoiding a far more

expensive correction later on. Consideration of security needs through threat modeling can

lead to proactive design decisions that allow threats to be mitigated from the start (Poston,

n.d.).

When it comes to threat modelling, as with any other aspect of a project, there is no one "best"

threat modelling approach; rather, the selection should be made in light of the project's unique

objectives and concerns. The following Threat modelling approaches are drawn from many

sources and focus on several steps (Marback et al., 2013b).

51

2.9.1.1. LINDDUN

A threat modeling technique called LINDDUN (Linkability, Identifiability, Non-Repudiation,

Detectability, Disclosure of Information, Unawareness, and Non-Compliance) helps to

systematically identify and address privacy vulnerabilities in systems (Wuyts, 2015).It was

influenced by Microsoft's security development lifecycle's threat modelling approach for

security (STRIDE) (Howard & Lipner, 2006), which was developed more than 20 years ago

(Kohnfelder & Garg, 1999).

One of the most cutting-edge methods for simulating privacy issues is LINDDUN. There are

many different security threat modeling approaches (UcedaVelez & Morana, 2015), however

they all adhere to the same four high-level phases described by (Shostack, 2014a) as the

following four inquiries: What possibly could go wrong? What are your strategies to deal with

it, and how well did you do?.

The LINDDUN framework, shown in Figure 2.9, offers a methodical approach to privacy

assessment. The process starts with a DFD of the system, which provides a broad description

of the system's data flows, data storage, procedures, and external entities. By iterating over all

model components and evaluating them from the standpoint of the threat categories, users of

LINDDUN may construct threat trees and evaluate if a threat is applicable to the system.

Figure 2. 9.Linddun Phases.

Source (linddun, 2020).

52

Essentially, phases 2 and 3 are a series of questions designed to help the user begin the process

of detecting potential security risks in the system. Phase 2 is all about mapping danger

categories to the portions of the system in which they may arise. The rest of the process

focuses on finding solutions and mitigating techniques (Wuyts et al., 2018).

LINDDUN has gained a lot of interest from both academics and the business world. (Y. S.

Martin & Kung, 2018) have used LINDDUN in a number of academic projects, and it has

been endorsed by several experts in the field of privacy engineering (Kostova et al., 2020)

LINDDUN, like security threat modelling (Dhillon, 2011), might be regarded a time-

consuming and sophisticated application. It is more common for LINDDUN to be used as a

memory aid for a brainstorming-style activity than a technique to identify privacy risks.

The threat trees of the LINDDUN system are notoriously difficult to work with. In spite of

the fact that they offer a useful overview, they may be deficient in semantics and contain just

a few selection criteria to enable the evaluation of prospective hazards (Wuyts et al., 2020a).

LINDDUN threat trees' complexity necessitates a high level of privacy knowledge, according

to industry feedback. This, along with the high cost of labor-intensive systematic elicitation

and documentation, is preventing a thorough privacy threat modelling effort. LINDDUN's

suggested and actual usages diverged so far that a more user-friendly version was developed

to bridge the knowledge gap and ease the burden on users.

2.9.1.2. OCTAVE

OCTAVE (Operationally Critical Threat, Asset, and Vulnerability Evaluation) It is a risk-

based strategy and planning technique for IT security. The CERT Division of the SEI

developed it in 2003, and it was enhanced in 2005.Organizational risks are the primary

emphasis of OCTAVE, whereas technology risks are left out of the equation. Operational risk,

security policies, and technology are its most three important parts. An organization's security-

related activities and processes can be modelled using the OCTAVE approach. The threat to

the organization's most vital assets is used to prioritize areas of improvement and to develop

a security plan for the organization (Alberts, 2003). The OCTAVE process is depicted in Fig.

2.10.

53

Figure 2. 10.Octave Process.

Source (Cio-wiki, 2021.)

The following evaluation process are included in the OCTAVE approach's assessment.

Identify the organization's most valuable information assets. Determine which assets are most

important to the organization and focus risk analysis efforts there. Look at the linkages

between important assets, the danger to those assets, and the weaknesses both organizational

and technical that might expose those assets to threats. Investigate how an organization's

operations depend on certain assets and whether or not those assets are vulnerable to security

threats. Lastly improve the safety of the organization's most important assets by developing a

practice-based protection strategy and risk mitigation procedures.

In addition to the evaluation process Three-step technique to evaluating organizational,

technological, and analytical factors is also used to establish asset-based threat profiles,

identify infrastructure vulnerabilities, and design security strategy and plans see Figure 2.11.

54

Figure 2. 11.Three-step technique to evaluating organizational threat profiles

Source (author)

OCTAVE assesses activities rather than processes in their entirety and it is primarily suited

for large businesses (Alberts et al., 2003). The approach is comprehensive, but it is also

adaptable. The disadvantages of OCTAVE include a high time investment and extensive and

ambiguous documentation (Stanganelli, 2016a) .

(Nweke & Wolthusen, 2020) claim that OCTAVE is quite complex. Learning requires a lot

of work, and the procedures needed could take a while. Additionally, OCTAVE

documentation can become long, which is likely to discourage policymakers from utilizing it

as a threat modeling technique for their organization. The mechanism used for threat

identification and categorization is another flaw in the OCTAVE threat modeling approach.

When OCTAVE is used, it may become undesirable to record risks and threats using the threat

tree because of the environment's complexity (Maghrabi et al., 2016). In the event of a very

large computing environment, it can be difficult to determine which of the pathways

accurately reflects the dangers being portrayed as the number of pathways grows.

2.9.1.3. STRIDE

Designed by Loren Kohnfelder and Praerit Garg in 1999 and embraced by Microsoft in 2002

for producing secure systems, it is presently the most established threat modeling

Methodology. STRIDE evaluates the system detail design by modeling the system in place

and identifying the existing threats within the system (Khan et al., 2017a). The acronym

Build asset-
based threat

profiles

•This is an organizational evaluation

Identify
infrastructure
vulnerability

•This is an evaluation of the
information infrastructure

Develop a
security strategy

and plans

•This is an identification of
risks to the organization's
critical assets and decision
making

55

STRIDE, which stands for Spoofing, Tampering, Repudiation, Information Disclosure,

Denial of Service, and Elevation of Privilege, is used to identify known threats to the system

it is modeling (Karahasanovic et al., 2017).As demonstrated in Table 2.6 below, which lists

the known threats and the properties they violate, (Selin, 2019) claims that STRIDE is more

of a threat classification than a threat model or threat modelling framework. In order to have

prepared reactions and mitigations to threats or attacks, one might use these groups of threats

to develop a security strategy for a specific system.

Table 2. 6.STRIDE Threat Categories definition and property violated.

Adapted from (Prakash, 2020)

STRIDE employs the use of DFD`s in modelling the system which assists in accurately

Identifying the boundaries of the system, data stores and objects, interfaces, processes

functions ,techniques, entities and events which is a critical step in determine the success of

the threat modelling (Shevchenko, Chick, et al., 2018a). From this identification one can be

able to determine the trust boundary interactions that poses vulnerabilities towards the system

and which becomes instrumental in determining the required mitigation techniques(Bodeau

& McCollum, 2018).

(Scandariato et al., 2015) in their study of evaluating the productivity and performance of

STRIDE they concluded that it is a relative easy to learn and execute methodology with low

rates of false positives in terms of threats, (Khan et al., 2017b) in their work “threat modeling

framework for cyber-physical systems using STRIDE” considers it as a light-weight and

effective threat modeling methodology that simplifies the identification of vulnerabilities

within a system.

56

2.9.1.4. DREAD

DREAD stands for Damage potential, Reproducibility, Exploitability, Affected users, and

Discoverability. Developed by Microsoft, it is a threat modelling technique. DREAD employs

the standard qualitative risk assessment of HIGH, MEDIUM, LOW, with a qualitative risk

rating of 3,2,1 given to each. For the most part, DREAD's threat modelling technique employs

a score system to evaluate the likelihood of occurrence for each of the defined regions of the

asset being threatened. Threat modelling using the DREAD technique is able to forecast the

likelihood of occurrence of each threat discovered throughout the modelling process by

integrating the derived risk rating values (UcedaVelez & Morana, 2015). The Figure 2.12

show a summarized DREAD approach and each term is discussed sequentialy.

Figure 2. 12.Summary of DREAD threat model

Source (Wildcard, 2021)

It is important to understand how much damage an attack may bring to consumers and the

organizations as a whole. Financial responsibility or damage to an organization’s reputation

are both examples of tangible damage. It also relies on the type of the attacks and the assets

attacked.

Reproducibility evaluates the ease with which the attack can be repeated. If an attacker were

to attempt an attack, they should be rewarded based on how much work they would have to

put into it. There will be a higher rating for attacks that are easy to imitate than attacks that

are more difficult to reproduce in the scoring system

57

Attackers can take advantage of a vulnerability if it is exploitable. Numerous attacks exist,

some of which are simple enough for anybody to carry out, while others need a certain level

of expertise to pull off. This knowledge led to the rating of threats with a high degree of

exploitability as high risk and those with a low level of exploitability as low risk.

When a danger is realized, the number of people who will be affected is known as the number

of affected users. A threat with a higher probability of affecting a large number of users than

one with a lower probability of doing so will have a higher risk factor rating.

Discoverability is how easily a vulnerability may be found. There are threats that are

extremely difficult to learn and threats that are quite simple to understand. A danger that is

more difficult to understand would be given a lower score than one that has been made

available to the general public for review and discussion(Wildcard, 2021).

Despite the fact that DREAD is an asset-centric threat modelling technique, it has been used

in conjunction with the STRIDE model in the literature (Abomhara et al., 2015), (Amini et

al., 2015) .The DREAD scoring method is employed in this technique to determine the

likelihood of an attack exploiting a certain danger.

DREAD: has been demonstrated to be rather subjective and to provide inconsistent outcomes.

In fact, Microsoft stopped using DREAD for their software development life-cycle in 2010

(Bodeau et al., 2018b)This highlights DREAD's limitations as a threat modelling technique.

DREAD, on the other hand, is still frequently used and recommended for threat and risk

modelling efforts. As a result, valuable ideas on how to enhance the scoring scheme's

repeatability have been offered in (LeBlanc, 2007).

2.9.1.5. PASTA.

Tony UcedaVélez (UcedaVelez, 2012) created the Process for Attack Simulation and Threat

Analysis (P.A.S.T.A.) in 2012 as a risk-centric threat modelling methodology. According to

(UcedaVelez & Morana, 2015), the PASTA technique may be used in practically every

context, with the exception of those in which executive sponsorship of the process and the

created artefacts is not accessible. This is because the PASTA approach's deliverables are also

meant to be acquainted with the organization's leaders.

58

PASTA aims to balance business objectives with technology requirements (Shevchenko,

Chick, et al., 2018b). At different stages, it uses a variety of design and elicitation

methodologies. For instance, high-level architectural diagrams are used. DFDs are used in

stage three's second phase of establishing the technical scope. Stage six involves the

construction of attack trees and use and abuse instances for analysis and attack modeling

(Shull, 2016).The threat modelling process is elevated to a strategic level with the help of this

approach, which demands security input from operations, governance, architecture, and

development as well as key decision makers (Simeonova, 2016) PASTA adopts an attacker-

centric stance and is sometimes referred to as a risk-centric paradigm. Last but not least, the

process produces asset-centric output in the form of threat evaluation and enumeration

(UcedaVelez, 2012)

The PASTA threat modelling technique consists of the following phases for the actual

execution. The first level of threat modeling is determining objectives, which entails clearly

establishing the system's business goals. In the second stage, the technological scope is

established by listing all the system's resources. The system is then broken down in order to

better understand how it functions. Threat analysis is done in the fourth stage to identify

system hazards. The next stage is weakness and vulnerability analysis, which identifies

vulnerable areas within the system and links them to the attack tree presented in the threat

analysis step. The goal is to investigate the likelihood that the discovered vulnerabilities may

be exploited using attack modeling and simulation. Finally, residual risk analysis and

management are carried out to lessen threats that pose significant systemic concerns. Fig. 2.13

shows a representation of each level. PASTA is designed for businesses that seek to match

threat modeling with their strategic objectives. This is because PASTA extends security

responsibility to the entire firm by incorporating business impact assessments as a critical

component of the PASTA process. This approach could be a drawback of using PASTA since

it might need several hours of training and teaching for important stakeholders.

59

Figure 2. 13.Stages of PASTA

Source (Dolbeau, 2022)

2.9.1.6. CVSS

For systems vulnerabilities, CVSS offers an open framework for describing their features and

consequences. It captures the key characteristics of a vulnerability, and produces a numerical

score representing its severity. CVSS was created and is maintained by NIST (Booth et al.,

2013)with contributions from a CVSS Special Interest Group (Baker et al., 2013)supported

by FIRST (Abraham et al., 2015) It can be applied on a wide range of technical systems

because of its common and standardized scoring methodology. A CVSS score may be

calculated using an online calculator (Booth et al., 2013).

60

As illustrated by Figure 2.14 the three categories of CVSS are: Base, Temporal and

Environmental. The characteristics of a vulnerability are embodied in the members of the Base

subset of the population. In the Temporal subcategory, we see the features of a vulnerability

as they shift and change through time. Every person has their own set of environmental

vulnerabilities, which are represented by the Environmental category. By using CVSS, IT

administrators, bulletin providers, security vendors, application vendors, and researchers may

all profit.

Figure 2. 14.Categories of CVSS.

Source adapted from (CVSS, 2019)

Analysts assign values to each indicator in the CVSS score, which is then calculated. It

important to note that there is usually lack of clarity in the equations utilized in this procedure,

although the documentation goes into great detail to describe every measure.

This approach is frequently utilized, despite some reservations about its opaque score

calculation and the possibility of discrepancies generated by various judgment "experts" (Mell

et al., 2007)Like some other threat models CVSS is frequently used in conjunction with other

threat modelling techniques.

2.9.1.7. TRIKE.

TRIKE is a security audit framework that leverages threat modelling as a strategy. This

approach to threat modelling takes a risk management and defensive approach (Mead et al.,

2018a). Like many other techniques as shown in Figure 2.16, TRIKE begins with a system

definition. The analyst must first recognize and analyze the assets, scheduled activities,

regulations, and system actors before building a requirement model. This procedure may result

in the creation of an actor-asset-action matrix, where the rows correspond to actors and the

columns to assets.

61

There should be four portions in each matrix cell, one for each CRUD action (creating,

reading, updating, and deleting). The analyst should choose one of three values permitted

activity, prohibited action, or action with rules in these cells. There should be a rule tree for

each cell (Saitta et al., 2005).

Upon establishing the criteria, a DFD is constructed. Each piece is assigned to a certain actor

or set. The analyst detects risks that fall under one of two categories: elevated privilege or

denials of service (Stanganelli, 2016b)Whenever a danger is found, it becomes the root node

of an attack tree.

Trike uses a five-point rating system for each activity based on the likelihood of an attack that

might cause damage to assets through CRUD.A lower number denotes a larger risk, and actors

are rated on a five-point scale according to the perceived risk they provide to the asset.

Additionally, actors are evaluated on a three-dimensional scale based on the possible actions

they may do on each object (Shevchenko, 2018).

The Trike scale system does not seem to be a formal technique. Despite the fact that the

website for Trike 2.0 is live, it is not being maintained and no documentation has been

provided for users. Figure 2.15 bellows shows the TRIKE methodology.

Figure 2. 15.TRIKE methodology

Source adapted from (wallarm, 2020)

62

2.9.1.8. Attack Trees.

According to (Ellison & Woody, 2010), security requirements engineering should take into

consideration the expected threats and risks towards a system. A risk analysis process should

be used to pinpoint the attacks towards the system, while the security requirements

engineering should suggest mitigating solutions to attacks.

Attack trees are one of the mature practice that has been widely used for threat modelling and

describing attacks within a system (Shevchenko, Frye, et al., 2018a). Attack trees are

conceptual diagrams that provides a systematic description of the security of systems by

showing how an asset or a target could be subjected to an attacked and this in turn assists in

analyzing the threats within a system. Founded on the prior works by (Leveson, 1995) Bruce

Schneier developed attack trees (Schneier, 1999)

A tree structure is used to depict an attack on a system, with the root node representing the

objective and the leaf nodes representing possible approaches to achieve that goal. Each node

becomes a sub goal, and the offspring of that node represent the paths to that sub goal's

completion. Alternatives are represented by OR nodes, whereas various stages toward the

same objective are represented by AND nodes (Wideł et al., 2019).

After the tree is constructed, multiple values can be assigned to the leaf nodes, which are then

used to determine the goal's security. The security expert and system engineer have complete

control over these parameters. The procedure of assigning values is done by hand. Other

properties, such as the time it takes to complete a step, the cost of operations, the competence

necessary to launch an attack, and so on, can be added to attack trees. Nowadays attack trees

are blended with other techniques and within frameworks such as PASTA, CVSS and

STRIDE. Table 2.7 provides a summary of threat modelling method features.

63

Table 2. 7.Summary Threat Modeling Methods Features.

DREAD

facilitates the evaluation of the risk posed by a threat exploit, has the ability to predict the

possibility that a threat exploit will materialize, contributes to risk management, has a

built-in ranking of threat mitigation measures, offers flexibility, and may be applied in

any situation.

(Hussain et al., 2014).

Trike

helps identify appropriate mitigation solutions, directly contributes to risk management,

prioritizes threat mitigation, fosters stakeholder cooperation, has automated components,

and has vague and insufficient documentation (Shevchenko, Frye, et al., 2018b).

OCTAVE

This method takes a lot of effort and has murky documentation, yet it helps find useful

mitigation strategies and directly supports risk management. Additionally, it prioritizes

danger reduction and promotes cooperation among stakeholders. Repeating it

consistently yields the same results.

It is purposefully made to be scalable.(Bodeau et al., 2018c).

PASTA

Contributes directly to risk management by assisting in the identification of suitable

mitigation approaches. • Promotes collaboration among stakeholders by including built-

in prioritizing of threat mitigation. • Requires a lot of time and effort but produces a lot

of information.(Mead et al., 2018b).

Attack

Trees

Facilitates the identification of applicable mitigation measures; produces consistent

findings when repeated; and is simple to apply provided the user already has a solid

grasp of the system in question.(Xiong & Lagerström, 2019).

CVSS Has a built-in threat mitigating prioritization system produces predictable results when

repeated

Has automated elements • Uses obscure scoring calculations (Potteiger et al., 2016).

LINDDUN It assists in the discovery of relevant mitigation solutions, prioritizes threat mitigation,

and can take a long time to accomplish (Wuyts et al., 2020b).

STRIDE assists in identifying applicable mitigation strategies • is the most mature • is simple to

use, but requires a significant amount of time(Maheshwari & Prasanna, 2016).

2.10. Security Risk Assessment and Network Security.

Security risk assessment (SRA) protects an organization from hackers and cyber thieves and

identifies and mitigates security threats to an organization it also examines an organization's

security posture and compliance with industry standards and regulations (Progoulakis et al.,

2021).

Security risk assessment procedures monitor open ports, anti-virus updates, password rules,

patch management, and encryption strength. With this information, an organization's network

security specialists may assess control effectiveness, identify risks, develop specific plans and

solutions, identify vulnerabilities, and provide remedies (Lamarca, 2020).

In addition to identifying vulnerabilities, security risk assessment provides various

advantages. Security risk assessment helps in the identification of weak security measures,

vulnerable systems, and security risks to an organization so as to fix these flaws and improve

64

an organization's network security (Stoneburner et al., 2002). It lets you examine security

measures in place.it also examines security measures' efficiency and improve them using

security risk assessment tools. It can also assist in taking preemptive efforts to improve

security controls' efficacy. It checks if and organization is compliant with industry

standards(Abrar et al., 2018).

By using this risk assessment technique, businesses and managers may better allocate time

and funds to protect and defend assets that need it the most. Thus, risk assessment may be

seen as a tool for productivity that helps the company save time, money, and reputation (Lund

et al., 2010). Although the risk assessment process generally uses some similar basic ideas,

such as risk = impact * likelihood, there are usually many different and well-known models

used to carry out the actual risk assessment. Some methods emphasize system breakdown to

help identify risks (Biswas et al., 1989). These models offer a qualitative modeling approach

that will facilitate the design of a risk assessment system and enhance the risk assessment

process. When determining an overall risk assessment, it is important to take into account the

failure rate of information systems as well as the unpredictable nature of human behavior.

This technique helps to overcome these uncertainties.

Other methods need the use of a knowledge-based system together with qualitative issue

resolution, which may lead to the creation of a universal and transportable risk assessment

tool (Marhavilas et al., 2011).The usage of such knowledge-based systems frequently includes

the addition of fault and event trees. Event and fault tree analysis includes accurately

identifying each potentially damaged system as a branch on the tree after distinguishing

unique possible failures as independent "tree-roots or trunks." This method allows for the

precise creation of a list of all potentially affected systems for a particular failure (Rezayat,

2000). The ability to simulate "what-if" scenarios using fault tree analysis is one of the main

advantages of using it to develop knowledge-based systems. By looking into potential system

failures, organizations and managers may get a complete and accurate view of potential risk.

Another popular method for assessing risk is the idea of annualized loss expectation. A

financial definition of risk that businesses use to calculate the estimated value or cost of an

event that might result in a certain risk is called annualized loss expectation (Varga et al.,

2021). Using this process, an organization calculates risk by multiplying a certain financial

65

sum by the likelihood of the risk "occurrence." The cost is calculated by summing the direct

and indirect financial sums related to the risk's occurrence over the course of a year.

Different methods have been used to approach the risk assessment process. One model divides

risk assessment into six distinct phases (Yang et al., 2006). This method's initial step is to

create a cost factor grading scheme. When the grading system is created, risks are found. The

next step is to determine the risk probability. The assessment of risk severity that follows

standardizes an overall risk on a scale of 1-100.The following categories can then be applied

to the 1-100 scale. Systems having an overall risk rating of 0 to 5 are deemed "low risk," 5 to

15 "moderate risk," 15 to 50 "high risk," and 50 to 100 "very high risk." The third step is to

offer suggestions for ways to reduce the hazard that has been described (Yang et al., 2006).

Not all risk-adjustment strategies take into account both effect and likelihood. Some risk

assessments focus solely on the possibility that the hazard may materialize (Aubert et al.,

2005). When a given risk's influence or incidence leads to an irreversible condition, this kind

of risk assessment is especially helpful. This kind of risk evaluation is used often in the

medical industry. Since death is the end result, medical risk evaluations often solely consider

the possibility of a certain condition. In these cases, the impact is no longer considered since

it is irrevocable (Aubert et al., 2005).

The ability of a company to protect its information technology assets depends on the

completion of a proper risk assessment, which is both beneficial and necessary (Maclean,

2017). The company and management team will be able to make precise and knowledgeable

judgments on resource management, hiring, and budgeting when the risk assessment process

is finished. A thorough grasp of the dangers related to each individual system as well as the

overall level of risk associated with the deployed technology results from a well-defined risk

assessment (Shameli-Sendi et al., 2016b).

Every company in every sector of the economy must play a crucial role in the accurate,

thorough, and efficient risk assessment of a network system. As standards develop, practices

change, and new types of risk assessment are introduced, organizations must find a way to

make sense of all of this. A robust risk assessment process gives organizations more power

by ensuring that risks have been identified and accurate, pertinent controls are in place (Peltier,

2005).

66

CHAPTER 3

METHODOLOGY

3.1. Research Design

The research design unfolds in two main phases (1) model development (2) simulation, each

contributing distinct perspectives to achieve the study objectives.

3.2. Phase 1: Model Development

3.2.1. Literature Review

The model development phase commences with an extensive review of existing literature on

network security including threats and attack techniques, models, frameworks and artifacts to

guide in development of secure networks and related methodologies. This review informs the

identification of foundational concepts, best practices, and gaps in current approaches.

3.2.2. Conceptualization of holistic security pattern-based model

Building upon the insights gained from the literature, defensive pattern model is conceptually

formulated. This model is designed to encapsulate a comprehensive and structured approach

to address network security challenges.

3.3 Phase 2: Simulation

3.3.1 Selection of Simulation Tools

The simulation phase involves the application of selected simulation tool to assess the

practical efficacy of the pattern model. Simulation tool is chosen based on their relevance to

network security scenarios, considering factors such as scalability, accuracy, and real-world

applicability.

3.3.2 Scenario Design

Realistic network security scenario is designed to simulate various threat vectors,

vulnerabilities, and attack scenarios. These scenarios aim to emulate the complexity and

diversity of challenges faced by modern network architectures.

67

3.3.3 Implementation of the Model

The developed pattern model is implemented within the simulated environments. This phase

involves integrating the model into the network architecture and evaluating their performance

in response to simulated security threats.

3.3.4 Metrics Definition

Quantitative metrics are defined to measure the effectiveness of the security pattern-based

model. These metrics include but are not limited to response time, incident detection accuracy,

and overall network resilience. The criteria for success are established based on industry

standards and best practices.

3.4 Ethical Considerations

The research adhered to ethical principles, ensuring the confidentiality of sensitive

information and permission to use the data has been granted by the owners of the data by

being provided free for download and use by anyone as long as acknowledgement is done.

Simulations are conducted in a controlled environment preventing unintended consequences.

3.5. Dataset

This study employes the use of a network based secondary dataset to test the model. When

choosing the dataset for this study it leverages on detailed overview analysis of network-based

intrusion detection data sets with respect to the data set properties by (Ring et al., 2019). Their

study looked 34 datasets ranging from the year 1998 to 2017 (10 years) and evaluated them

based on 15 properties which included the year of creation of dataset, public availability,

normal user behavior within the traffic, attack/malicious traffic, meta data, format of the traffic

(packet based, flow-based or other type), anonymity, data count, duration of collection, kind

of traffic, type of network environment of the dataset, complete network meaning it is a traffic

from a network with all the typical network resources, predefined splits of training and test

sets, balanced traffic which means it containing both normal and malicious traffic, lastly

whether the data set has explicit labels.

68

Table 3. 1.Dataset properties and their value ranges (Ring et al., 2019)

Since it is recommended when searching for a good dataset in use should be current, well

labeled and the required format, the study picked 12 datasets from their analysis that were

falling in their latest three years (2015 to 2017) as shown in table 3.2 then analyzed the other

properties and settled for UNSW-NB15 which had the desired features for the study. From

the table 3.2 the highlighted cells depict the reasons as to why a dataset was dropped.

Table 3. 2.Study dataset selection criteria

69

3.6. The Study Test Environment

3.6.1. Kaggle Test Bed

Kaggle proves to be an excellent choice for conducting a study that involves classifying

attacks and clustering them based on three layers of network security: the User layer, Host

layer, and Media layer. The platform has amassed a diverse collection of real-world datasets,

offering researchers the opportunity to access data representative of various attack scenarios.

This diversity is pivotal in training robust and applicable machine learning models tailored to

the intricacies of cybersecurity. Kaggle ensures a secure and controlled environment for

working with sensitive data, addressing privacy and security considerations. Researchers can

confidently navigate their studies while benefiting from the collaborative and competitive

features that Kaggle uniquely offers in the realm of machine learning and data science.

3.6.2. Python

The case for using Python in conjunction with Kaggle for a study on classifying attacks and

clustering them based on network security layers is strong due to Python's readability,

simplicity, and widespread adoption. The language's extensive ecosystem, including popular

libraries like NumPy and Scikit-learn, empowers researchers to efficiently manipulate and

analyze datasets within Kaggle's environment. Python's dominance in the machine learning

community, supported by its integration with deep learning frameworks like TensorFlow and

PyTorch, ensures that researchers can implement sophisticated models for classification tasks

data another reason is it can carry out predictive analytics to various datasets due to the ability

of predefined algorithms such as logistic regression. It can also assist in statistical

functionalities to understand the data and extract information that can be used in the decision-

making process among others. The language's prevalence in Kaggle aligns with the platform's

educational resources, tutorials, and community discussions, providing a cohesive and well-

supported environment for impactful research in the cybersecurity field.

3.7. Performance Metrics

There exist a number of metrics to evaluate ML based IDS systems; however, this research

aims to maximize the correct predictions of instances in the test dataset. The main measure to

look at is the Accuracy (AC) defined as follows:

70

 …eq… (3.1)

whereby the TP stand for True Positive and is the rate of examples correctly identified as

attacks. TN, True Negative, is the rate of legitimate traffic classified as legitimate. FP, False

Positive, sometimes referred to as Type I error, is the rate of legitimate traffic classified as

attacks. FN, sometimes referred to as Type II error, is the rate of legitimate traffic classified

as intrusions. Additional metrics considered in this paper are the Recall, the Precision and

F1score defined as follows

 …eq… (3.2)

 …eq… (3.3)

 …eq… (3.4)

71

CHAPTER FOUR

MODEL FORMULATION

This chapter is titled “Model Formulation”. The chapter provides an

(1) Introduction. Thereafter follows a discussion on a proposed extension to the OSI Model

in (2) Extending the OSI Model to include a User layer hence mapping the extended OSI

model into the three-layer network security domain (TLNSD). In (3) Model Development

section, the Network Architecture Security Pattern Model is presented, composed of the

Attack Context Checking, Attack Surface Identification, and Risk Assessment

Components. In addition, this section also presents the CAPEC Repository which provides

the dataset that will be used to identify the attacks.

4.1. Introduction.

The network engineer of today must be security-conscious, and the security engineer must be

aware of the network he is responsible for protecting (Cole et al., 2003)They could overlook

the fact that security measures like firewalls and authentication controls only make up a

portion of the solution. Such network-level defenses can only prevent a very specific range

and type of threats. A multi-tiered approach to security is required if one actually wishes to

defend the company, and here is where the OSI model proves to be quite helpful (Eric, 2016)

The Open Systems Interconnection, or OSI Model, is a security architecture that defines

application security guidelines in seven levels. (Solomon, 2016) physical, data link and

network layers (media layer), and transport, session, presentation and application layer(host

layer), all of which must be secured for networks to be considered safe.

Several writers have proved the OSI Model's relevance and use in the area of network security.

Reed (Reed, 2003) gives an overall viewpoint in which typical information security challenges

map clearly to the logical structures offered in the OSI Seven Layer Network Model,

demonstrating the Seven Layer Model's use in assessing information security problems and

solutions. They assess typical information security risks and controls on each layer and

demonstrate that the Seven Layer Model's scheme for layer interaction provides insight into

some of the issues encountered by concentrated, "single-layer" security solutions. They offer

a holistic multi-layer strategy based on network model layers to tackle the problem rather than

discrete solutions and logical or physical hardware layers.

72

Pace, (2014) illustrates a rational, thorough, and practical way to safeguarding an

organization's information resources by utilizing the OSI Model's seven levels. They conclude

that no one layer of the model, when fully implemented, provides even a smidgeon of safety.

A comprehensive security solution takes into account all levels of the OSI model.

Martinović et al., (2014) proposed several techniques of control and protection for the OSI's

multiple layers. It can be seen from this that granularity is achieved in terms of network

security by moving from general to more specific security measures. All of this is done to

improve security by combining multiple layers of security, also known as "defense-in-depth,"

which states that "even if one measure fails, another one will take its place."

4.2. Extending the OSI model

The seven-layer model is more than sufficient for network applications, but when it comes to

network security, there are notions that require organization that do not fit into the traditional

network model. Crutchley, (2002) mentions two more factors—people and policy—that are

crucial to the assessment of a network security posture in a brief online essay. With people

engaging with applications at layer eight and policies (theoretically) governing people's

behaviors at layer nine, Crutchley suggests adding these two components to the model as two

extra levels.

(Greg, 2019) proposes an eighth layer which he refers to as the human layer, which is the layer

at which technology interfaces with people. This layer deals with people and policies. The

rational being that apart from vulnerable software’s and hardware as enablers of attacks,

human/user are also a source that can be exploited especially for those who are not security

conscious. He proposes that the two critical issues should be addressed in this layer and this

include security training of users so that they can make informed decisions when faced with

security challenges and secondly establishing security policies, guidelines and procedures to

secure organization against an attacks all this they inform play a critical role in setting the

overall tone and define how security is perceived within an organization and lack of it is one

of the biggest vulnerabilities many organizations have.

We can implement the best security solutions known at the various layers of the OSI model

and still be vulnerable through people and employees hence the eight layer “human layer” is

73

an important consideration on the OSI Model(Gregg et al., 2006) for a holistic defense of

networks .

The seven-layer OSI Reference Model was given a human factors expansion by Bauer &

Patrick, (2014).This extension gives a common conceptual vocabulary to promote meaningful

talks between the HCI (Human-Computer Interaction) disciplines and those in charge of

network and application design, and it is compatible with the design principles of the OSI

model. As a function of network and device capabilities, this new conceptual common ground

may be utilized to relate applications to human requirements and to establish whose

responsibility a problem is. The model Figure 4.1 aids in determining which discipline a

problem belongs to by providing a standard vocabulary to assist bridge diverse fields of study.

Additionally, it demonstrates how a full end-to-end perspective necessitates understanding

how user experience is impacted by overall network and application performance. Finally, it

offers a plan for ensuring that applications can function satisfactorily within network

constraints while still meeting Layer 10 requirements.

Figure 4. 1.OSI and User Interaction

Source (Bauer & Patrick, 2014)

Greg, (2019) refers to Layer 8 as "user" or "political". Cyberoam associates Layer 8 with

identification of user, controlling of their activities in a network and setting policies

(Cyberoam, nd). (Curry, 2013) points out that Layer 8 represents the individual person, Layer

9 represents the organization, and Layer 10 is concerned with government or legal

compliance).Because the OSI layer numbers are used to characterize the network, a user-

caused problem can be stated as a layer 8 problem (Apposite, 2017).Mosco (1996) cites the

8th layer as crucial to understanding the OSI Model because it drives political policies like as

spectrum management, network neutrality, and digital inclusion, all of which help shape the

technology utilized inside the OSI's seven layers.

74

According to (Kaspersky, 2020) user can become attack vectors in many forms putting

organization networks at greater risks and acting now, to prevent employee-related threats,

has never been more important. There is need for training so that users can become more

aware of the impact of their actions to help to mitigate the risk of users becoming an attack

vector.

According to (Sapronov, 2015) users have the ability to swing the balance one way or the

other especially now that there is standoff between cyber criminals and security professionals,

as a result of the continuous invention of new tricks in order to evade the security software

and hardware currently being used.

Based on the discussion the study concludes that a user in a network setup should cease being

something that system administrators and the top management do not know what to do with,

instead becoming an important aspect that can be leveraged in the protection of networks,

something that is resistant and reliable, and also demands the vision of network security

professionals. Hence this study adopts an enhanced OSI model with the user aspect as part of

one of its constructs to assist in evaluating network security problems and solutions, see Figure

4.2.

Figure 4. 2.Extended OSI Model.

Extended OSI

Application

User

Presentation

Session

Network

Data Link

Physical

Transport

75

4.3. Model Development

4.3.1. Attack Context Checking

4.3.1.1. Three Layer Network Security Domain (TNLSD) Component

Security specialists advocate the notion of security defense in depth. According to this theory,

network security should be tiered, with several measures utilized to secure the network. No

security system can be guaranteed to survive every possible attack. As a result, each

mechanism should have a backup mechanism (Richardson, 2022).

When building and implementing network security, following a structured modular set of

procedures will assist handle the many problems that play a role in security design.

Many security plans have been established haphazardly and have failed to safeguard assets

and satisfy the core security goals (Corgi, 2020).

Because of modularity, you can keep each design aspect basic and easy to grasp. Simplicity

reduces the need for substantial training for network operations workers and speeds up design

implementation. Because each layer has distinct functions, testing a network architecture is

simplified. Fault isolation is increased because network personnel may readily identify

network transition points, allowing them to isolate potential failure locations.

With its three-layer hierarchical concept, Cisco advocates a modular approach. This approach

splits networks into core, distribution, and access layers to aid in security design and

implementation. Based on the needs of the company, they propose that networks be developed

in hierarchical, modular, redundant, and secure network designs (Upravnik, 2016). Hierarchy

and modularity let you to build a network with numerous interconnected components in a

layered and organized manner. A hierarchical model can help you optimize network

performance, decrease the time it takes to install and debug a design, cut expenses, and

increase security (Tiso, 2011).

Discovering possible attacks holistically is an important step in designing system security

since the detected attacks will identify fundamental security needs and offer insight on what

and why security measures are necessary. (Backers 2015) proposed a comprehensive attack

analysis approach that investigated different attacks from the attacker's perspective. The

framework accepts a three-layer requirements model with social, software, and physical layers

76

as input, capturing a holistic system context that is utilized as the domain model throughout

the attack analysis. The methodology produces a collection of potential multistage attacks,

which are then fed back into the three-layer requirements model to identify essential security

requirements.

Given the above the study modularize the extended OSI model into three layers which are the

organization layer, Host Layer and Media Layer and christen them as the three-layer network

security domain as shown in Fig 4.3. The Media layer combine’s the physical, data link and

network layer which are in summary concerned with controlling the physical delivery of data

over the network. The host layer which combines transport session presentation and

application layers is concerned accurate delivery of data between computers. The organization

layer is concerned with the users and how they interact with the network.

Figure 4. 3.Three-layer network Security domain (TLNSD).

4.3.1.2. Anti-Goal Identification.

(Lamsweerde, 2004a) was the first to employ anti-goals to represent an attacker's malevolent

intentions for system assets. An anti-goal model depicts how an attacker's abstract anti-goals

77

are narrowed to terminal anti-goals that attackers may achieve, so capturing the attacker's

techniques. Analysts may successfully detect system dangers and utilize this information to

develop safe systems by using anti-goal models.

Several articles have used anti-goals to capture the reasoning behind attacker behaviors.

(Lamsweerde, 2004b) describes a method for modeling, specifying, and analyzing

application-specific security needs. The technique is built on a goal-oriented framework for

generating and resolving roadblocks to goal achievement. The enhanced framework covers

harmful hurdles (referred to as anti-goals) erected by attackers to jeopardize security goals.

Threat trees are created progressively through anti-goal refinement until leaf nodes are

obtained that are either software vulnerabilities that the attacker may see or anti-requirements

that the attacker can implement. By applying threat resolution operators to the specification

of the anti-requirements and vulnerabilities discovered by the analysis, new security

requirements are obtained as countermeasures. In addition, the study presents formal

epistemic specification structures and patterns that may be utilized to aid in the formal

derivation and analysis process. The strategy is shown using a web-based banking system,

where subtle attacks have lately been identified.

(T. Li, Horkoff, Beckers, et al., 2015) describes an ongoing study to build a comprehensive

attack analysis approach. The method uses goal modeling to capture attacker harmful intent

as anti-goals, which are then methodically improved and operationalized into real attack

activities that target various assets (e.g., human, software, and hardware). A comprehensive

attack pattern repository (CAPEC) is seamlessly incorporated into the methodology to give

analysts with practical security expertise and aid in the identification of potential attacks in

certain scenarios. Finally, a set of security rules for mitigating discovered threats is presented.

According to (T. Li, Paja, et al., 2015) , the increasing complexity of systems makes their

protection increasingly difficult, as a single vulnerability or disclosure of any component of

the system might result in major security breaches. This is exacerbated by the fact that the

system development community has not kept up with advances in attack knowledge. The

paper proposes a holistic attack analysis approach to identifying and combating both atomic

and multistage attacks, taking into account not only software attacks but also attacks against

people and hardware. To bridge the knowledge gap between attackers and defenders, the

78

malevolent intents (i.e., anti-goals) of attackers are collected, and a comprehensive attack

pattern repository (CAPEC) is used to operationalize attacker objectives into real attack

activities. Based on the findings of the attack analysis, suitable security controls may be

chosen to combat possible threats.

(T. Li, Horkoff, Paja, et al., 2015) have used the anti-goal method in their work to identify

system dangers and develop relevant countermeasures. They explore genuine attack situations

to analyze anti-goal enhancements from an attacker's perspective. For developing anti-goal

models, they used three ideas from a goal model method developed by (Jureta et al., 2010) :

Goal, Task, and Domain Assumption. A goal records attacker intents (i.e., anti-goals); a task

gives precise attack activities undertaken by attackers; and a domain assumption specifies a

system-relevant suggestive attribute.

(Horkoff & Yu, 2016), their solution uses a three-layer, goal-oriented requirements model to

account for security vulnerabilities at various abstraction layers. We may build an attack

strategy that suggests a set of attack scenarios from which associated security measures can

finally be generated by iteratively refining root anti-goals into operationalizable anti-goals.

Such techniques capture not just the universe of conceivable attacks, but also an attacker's

strategy, which may include alternate plans and the combination of many stages to achieve a

harmful aim.

4.3.2. Attack Surface Identification.

Analyzing the attack surface is an efficient and methodical method of finding all potential

attack scenarios, which are required for doing security analysis from the perspective of an

attacker. It is vital for focused security analysis to determine which attack surfaces are likely

to be operationalized. Each attack surface, which is made up of one or more anti-goals that

explain the malevolent intentions of attackers, gives information on what and when attackers

may aim to attack.

Analysts must realistically determine how attackers may attack a system in order to design

mitigation techniques.

To establish a comprehensive attack strategy, (Beckers ,2016) has created a framework based

on real evidence to assist methodical study of attack tactics, resulting in more complete plans

and a more thorough security analysis. They conduct grounded research on three genuine

79

attack situations to analyze how attackers elaborate their malevolent intentions in reality, and

as a result, they find five anti-goal refinement patterns.

(T. Li & Horkoff, 2014) suggested an anti-goal refinement methodology that systematically

refines anti-goals by exploiting anti-goal refinement patterns and finally discloses attack

scenarios. The framework was assessed by applying it to a credit card theft scenario, with the

outcome demonstrating that the framework is capable of generating a comprehensive attack

plan that not only covered the previously known attack scenarios, but also identified new

attack possibilities.

(Mylopous, 2016), investigated three real-world attack scenarios to learn how attackers

modify their malevolent intents, and derived five refinement patterns. Based on such

refinement patterns, they present an anti-goal refinement framework for methodically

generating attack tactics from the perspective of an attacker. Finally, they assess their

performance using a credit card fraud scenario.

(Tong, 2015), describe attack tactics that attackers may use to destroy systems by modeling

an attacker's high-level malevolent intentions as structured anti-goals, which can be developed

and operationalized like conventional goals but from an attacker's perspective. They contend

that the attacker has specialized techniques of elaborating their high-level anti-goals till they

reach clear and precise anti-goals, and that the elaboration of anti-goals equates to the

production of their attack strategies. They suggest characterizing an anti-goal as a quadruple:

asset, threat target, and interval, in order to methodically analyze the evolution of hostile

purpose.

According to Figure 4.4, the study identifies the attack surface and perform attack context

checking on the Three Layer Network Security Domain (TLNSD) by subjecting and analyzing

the attacker’s malicious intent through the anti-goal identification process, and the study

adopts and characterize the attackers’ anti-goals as a triple construct consisting of Asset,

Threat, and Target.

The attacker's intents against the network are captured as anti-goals, which are then

methodically evaluated to uncover the attacker's attack plans. When attacking a network, an

attacker might employ a variety of attack tactics in order to achieve his primary anti-goal. An

attack plan clarifies which system components to attack and when to attack them. The study

80

propose that once root antigoals are discovered, they be systematically refined in order to

investigate potential attacks across three levels of the network security domain. To that aim,

study want to explore a variety of attack scenarios in order to better understand how attackers

devise attack techniques in order to carry out their malevolent objective. The study can then

identify the attack targeting the various surfaces based on the study.

Figure 4. 4.Attack surface Identification.

4.3.3. CAPEC Repository

The CAPEC (Common Attack Pattern Enumeration Classification) Repository is a formal

illustration of a Network attacker’s tools, methodologies, and perspective. it contains a

collection of known patterns of attack employed by adversaries to exploit known weaknesses

in a network set up (capec.mitre.org, 2021).

81

CAPEC defines each attack using descriptive textual fields known as elements which explains

in details each exploit identified. The current CAPEC has 527 specific security attacks with

their elements(CAPEC, 2021). MITRE developed CAPEC as a result of lack of a standard

and consistent documentation of attacks that would support the attack-specific security

research(Hoglund & McGraw, 2005). CAPEC is necessary standard for effective mitigating

of attacks, a security analyst who is fretful and interested in formulating a defense mechanism

against an attack or reducing exposure to the attack, should be able to review an attack pattern

within CAPEC.

A systematic representation and official standard for identifying individual attack patterns are

provided by the Common Attack Pattern Enumeration and Classification (CAPEC) list (A.

Martin, 2006).Deepening one's understanding of attack patterns may increase awareness of

existing exploits, vulnerabilities, and weaknesses as well as the injection of security across

the board in a system (Gegick & Williams, 2005a).By reducing exposure to documented

vulnerabilities and known flaws, integrating and expanding attack pattern information can

increase security (Pauli & Engebretson, 2008).A security checklist that incorporates attack

patterns might result in a greater degree of protection (Engebretson et al., 2008)..

(Kaiya et al., 2014) in the process of eliciting security requirements propose a method

leveraging on CAPEC which they concluded enables security experts to save time. (Kanakogi

et al., 2021) suggested a technique employing Natural language Processing Technique to

track associated CAPEC-ID from CVE-ID using Common Weakness Enumeration in order

to address the question of how to effectively respond to security vulnerabilities (CWE)..The

traditional tracing technique makes advantage of the connections between each repository.

Manual tracing is necessary, but accuracy could also be a problem. The Doc2Vec and TF-IDF

measures are used in the tracing approach to determine similarity between the CVE-ID and

CAPEC-ID. The findings indicate that the Doc2Vec model may be improved, despite the fact

that TF-IDF had a greater accuracy.

4.3.3.1. Attack Patterns

Attack patterns are derived from the notion of design patterns and explain typical approaches

for attacking software. Attack patterns capture and explain the attacker's point of view, which

can assist software engineers in thinking like an attacker. (McGraw & Hoglund, 2004)

82

identified 49 attack patterns. The Common Attack Pattern Enumeration and Categorization

(CAPEC) repository contains 463 publicly available attack patterns, as well as a thorough

schema and taxonomy for classification (Y. Zhu, 2015).

(Barnum & Sethi, 2007) shown that attack patterns may be deployed at any stage of the safe

software development life cycle. (Gegick & Williams, 2005b) employed regular expressions

to create attack patterns based on existing vulnerability databases, which they then used to

discover security weaknesses during program design. Pauli & Engebretson (2009) developed

a software tool for retrieving associated CAPEC attack patterns based on system prerequisites,

such that mitigation methods for the recovered attack patterns might be used during system

design and implementation.

As illustrated in Fig.4.5, (Yuan et al., 2015) suggest a way for constructing abuse scenarios

based on Microsoft's threat modeling and attack patterns.

Figure 4. 5.The method for developing abuse cases based on Microsoft threat modeling and attack patterns.

(Yuan et al., 2015)

Potential risks are examined using their technique by following Microsoft's threat modeling

procedure. Initial abuse cases are prepared based on the detected dangers. A library of attack

patterns, such as CAPEC, is searched, and attack patterns related to the abuse instances are

obtained. The information obtained from the attack patterns is utilized to extend the first

misuse scenarios and offer mitigation methods at this level. Such an approach has the potential

to aid software developers without extensive knowledge of computer security in developing

83

relevant and valuable abuse scenarios, hence reducing security risks in the software systems

they design.

(Horkoff, 2015) stated that CAPEC prioritizes the pragmatic development of security patterns

with a thorough schema and categorization taxonomy in a comparison of numerous attack

pattern repositories. It is gaining traction in academia and business because it delivers a large

amount of practical security expertise. As a result, we picked CAPEC as the realistic attack

knowledge source for our strategy.

Since our model is about control patterns, as shown in Fig 4.6 after identifying the attack

strategy through the Antigoal process, we leverage on CAPEC repository to assist in

identifying the existence of the attack pattern related to the attack strategy in order to assist in

identification of mitigation strategies.

Figure 4. 6.Identifying existing attack pattern.

4.3.3.2. Retrieving Relevant Attack Patterns Component.

The Common Attack Pattern Enumeration and Classification (CAPEC) hosts over 504 attack

patterns (still growing), along with a comprehensive schema and classification taxonomy.

CAPEC however, is not easy to use, since users have to go through the whole list to get the

attack pattern they are looking for. This does not make using CAPEC for software

84

development attractive to developers, (Shostack, 2014b) also reports “the impressive size and

scope of CAPEC may make it intimidating for people to jump in”.

In order to automatically associate attack patterns with requirements specifications and further

derive security requirements, several researchers have attempted to address the scalability

issue by defining term-maps, which link terms in requirements specifications to specific

security terms used in CAPEC (Kaiya et al., 2014).In order to make it easier to navigate the

many different attack patterns, (Engebretson & Pauli, 2009) augment the CAPEC attack

patterns with the ideas of parent threat and parent mitigation. (Yuan et al., 2014a)provide a

tool to make it easier to get CAPEC patterns by mapping CAPEC patterns to the STRIDE

threat categories.

In order to help developers, find security flaws in their code, Gegick and Williams (2005)

developed a set of 53 attack patterns. The four vulnerability databases served as the basis for

the creation of these attack patterns. Regular expressions were employed to represent these

attack patterns and contain the actions that can be taken to attack the program. These attack

patterns were then utilized to find security holes by looking for a similar sequence of

components in the system design. To counter this, we've developed misuse scenarios by

mapping attack patterns from CAPEC to STRIDE.

Pauli and Engebretson (2008b) developed an approach for teaching attack patterns based on

a hierarchy to present information logically. This hierarchy includes the following levels of

abstraction from highest to lowest: vulnerability, attack pattern, exploit, bug and flaw,

activation zone, injection vector, payload, and reward. Students were asked to map CAPEC

Release 1 to the abstraction levels of this hierarchy. The objective of this work is to assist

students to learn and retain information on attack patterns through the mapping process. They

mapped attack patterns to abstraction level for teaching, we map attack patterns to STRIDE

to retrieve relevant attack patterns from CAPEC.

Wiesauer and Sametinger (2009) developed a taxonomy for security design patterns

using attack patterns. In their taxonomy, they described a criterion for selecting attack patterns

based on security requirements. The purpose of the taxonomy was to help users see relevant

security design patterns when selecting attack patterns. Their work assigned security design

patterns to CAPEC attack patterns and employs the STRIDE model to group attacks into

85

different categories to classify security patterns, our work maps CAPEC attack patterns to

STRIDE to identify Relevant attack patterns

McGraw (2006) mentioned in his book that attack patterns can be used for developing

abuse cases, however, he did not discuss an approach to select and use relevant attack patterns

for developing abuse cases. Our work introduces an approach for selecting and utilizing

CAPEC attack patterns by mapping it to STRIDE.

For a mature business, the ability to rapidly implement a Threat Modeling strategy enables

them to Identify, Protect, Detect, Respond, and Recover (Tatam et al., 2021).In their

investigation, they determined that STRIDE is organized and well-documented, and that it

stands out since so many resources were committed in its development and documentation.

(Yuan et al., 2014b) made a tool to find relevant CAPEC attack patterns for software

development. This was done so that patterns could be found in a systematic way that fit the

context. The tool can find the attack patterns that are best for a certain type of STRIDE and

for the software that is being made. It can be used with the Microsoft SDL tool for threat

modeling. It also lets developers use keywords to look for CAPEC attack patterns. At the

moment, there is no clear mapping between CVE and CAPEC. (Kanakogi et al., 2021)

suggests using TFIDF and Doc2Vec to automatically find the related CAPEC-IDs from the

CVE-ID so that vulnerabilities can be fixed more quickly.

(Seehusen, 2015) developed a web-based tool (TrAP) for categorizing attack patterns and

mapping them to STRIDE categories. The tool calculates a metric of for each attack pattern

in terms of textual values of properties such as Severity, Completeness, Attacker Skills, and

Likelihood of Exploit and uses it to rank each attack pattern according to each particular

STRIDE category. The ranking puts the attack patterns most relevant to a particular STRIDE

category at the top of the list of retrieved patterns.

From Figure 4.7 since an Attack strategy can be linked to several attack patterns within the

CAPEC repository which can become too many and laborious to analyze we propose to

restrict or rather pick only those that are mapped to STRIDE since is a technique widely use

in retrieval of suitable patterns for threat modelling base on several studies highlighted earlier.

With that in mind it would then ideally assist in identifying the applicable attack pattern per

the attack domain which is the Three Layer Network Security Domain (TLNSD).

86

If from the attack strategy you are unable to identify the applicable patterns from the CAPEC

repository the model creates an option of deriving alternative attack patterns. In this study we

adopt the POSA template for deriving the alternative patterns. Once the patterns are derived

it can be updated to attack pattern library for our case the CAPEC generating new knowledge.

The same pattern can then be subjected to the CPAEC-STRIDE mapping process.

Figure 4. 7.Retrieving Relevant Attack Pattern and Deriving Alternative Attack Pattern.

4.3.4. Risk Assessment Component.

(Abuonji & Rodrigues, 2018) points out that effective security is built on good risk

management. This is because organizations need to evaluate their risks and put in place the

right security controls to help them deal with the risks they face. (Hewitt, 2020) says that risk

management tries to reduce risk by recognizing the risks that are already there, figuring out

how bad they are, and planning how to deal with them. A good risk management plan will

help an organization set up ways to avoid possible threats, lessen their effects if they do

happen, and deal with the results. (Hewitt, 2020) point out that there are three steps you can

take to manage risk in your network security. First make a map of your network by listing the

assets that cybercriminals might want to steal. second figure out what the network's risks are

IN

CAPE

C

87

and how they could affect your business. Third Plan for an attack by thinking about what

you'll do if someone breaks into your network. How soon will you be able to figure out who

is attacking?

According to (B. Cole, 2020), the risk management process consists of the following steps:

setting the context of the Risk, identifying the Risk, analyzing the Risk, assessing and

evaluating the Risk, mitigating the Risk, monitoring the Risk, communicating and consulting

with stakeholders. This should help with questions like "what might go wrong?" " how would

it effect the organization?" " what could be done if anything happened?" and "how would the

organization pay for it?”. The following seven phases make up the iterative process of risk

management (Abuonji & Rodrigues, 2018). according to Figure 4.8.

Figure 4. 8.Risk Management Process

Source:(Abuonji & Rodrigues, 2018)

(1) Recognizing assets and calculating their values (2) Conducting threat assessments within

the organization and its environment (3) Conducting assessments of vulnerabilities within the

organization (4) Executing threat-vulnerability (T-V) pairing (5) Calculating risk in terms of

likelihood of occurrence and impact on the information assets (6) Choosing and implementing

the most appropriate security controls (7) Evaluating the efficacy of those controls that have

been put in place.

The ISO 27005:2011 (ISO/IEC 27005:2011, 2018) is a standard that was developed by ISO

to provide a guiding principle for security risk management. This standard is a general

approach and does not specify or advocate for a particular methodology, but rather acts as a

88

base by which several security risk management methodologies have conformed or adopted.

In this study we also adopt this general approach and not a specific methodology for risk

management. The process model of this risk management approach is displayed in Figure 4.9.

Figure 4. 9.Risk Management process model

(ISO/IEC 27005:2011(En), 2018)

Various studies have come up with conceptual models for risk management they include

CORAS (Lund et al., 2010), EBIOS(Expression des Besoinset Identi_cationdes Objectifs de

Sécurité) (Iguer et al., 2013), MEHARI (MEthode Harmoniséed' Analyse du Risque

Informatique) (Mihailescu, 2012), OCTAVE (Operationally Critical Threat, Asset, and

Vulnerability Evaluation)(Jufri et al., 2017), CRAMM (CCTA Risk Analysis and

Management Method) (Yazar, 2002), ISSRM (Altuhhova et al., 2012) among others, within

this study adopted ISSRM to guide in conducting risk assessment since it contains the asset,

risk and risk treatment concepts and it is in compliance with ISO/IEC 27005 standards , Figure

4.10 shows ISSRM process, while Figure 4.11 the meta model of ISSRM

89

Figure 4. 10.ISSRM process (Mayer, 2009)

Figure 4. 11.Information System Security Risk Management (ISSRM) metamodel

 (Mayer et al., 2018)

90

4.3.5. Network Architecture Security Pattern Based Model

The final step in building is that once the relevant attack has been identified it is subjected to

the risk assessment process at the risk management component this give rise to Figure 4.12

the final model structure, once the relevant attack has been. Information System Security Risk

Management Risk management as previously seen identifies estimates and evaluates risks and

delivers security requirements which in turns leads to control mechanisms, in our model once

the requirements are identified it guides in the generation of the defensive control patterns in

this process, we adopt the POSA approach to guide us in the process. Finally, the patterns

generated are evaluated to see their contribution towards the security assurance of the network

architecture.

Figure 4. 12. Network Architecture Security Pattern Based Model.

IN

CAPEC

91

CHAPTER 5

MODEL TESTING AND RESULTS

5.1. Model Testing

The term "attack surface" is used to describe the entirety of an organization's or system's

potential entry points for malicious hackers. Intruders can inflict damage to your network by

manipulating or downloading data if they are able to get access to it, which is why it is

important to secure all potential entry points. The easier it is to maintain security; the smaller

your organization's attack surface may be. A surface analysis is a good first step in reducing

or protecting your attack surface, and then implementing a strategic defensive strategy reduces

the likelihood of an expensive attack or extortion attempt.(Atighetchi et al., 2014).

5.1.1. First Stage of Model.

The overall output of the model was to generate defensive control patterns of attacks within a

network. To achieve this, we took the approach of splitting the model into three parts each

with an input, process and output steps, with the output of a subsequent part acting as an input

of latter part. Figure 5.1 shows the first part of the split whose output was the discovery of

attacks on the network surface, the input in this instance was the network traffic that can be

generated from a typical network from various devices such as intrusion detection systems,

firewalls, and protocol analyzers among others. The traffic was subjected to attack context

checking process in order to discover the attacks on the network surface.

In this model the attack surface consisted of three-layer domains that is the Media, Host and

Organization/User which is christened (TLNSD). To achieve the stated output, the process

part of the model subjected the network traffic through a machine learning process running

on a python test bed.

92

Figure 5. 1.First stage of the model

5.1.2. The Second Stage of the Model.

The second stage of the model as shown in Figure 5.2 also had the input, process and output

components, the output was the identification of relevant attacks. The input part was the

discovered attacks on the TLNSD which was an output of the first part of the split model. In

the Process step the CAPEC repository is run through the Machine Learning process and a

comparative analysis is done between it and the discovered surface attacks to check the

existence of the discovered attacks within it, if discovered they are mapped according to

STRIDE model categories and their applicable attack patterns, if the attacks are not identified

within the repository then attack patterns are derived and updated within the repository which

is also subsequently mapped according to STRIDE and applicable attack patterns.

93

Figure 5. 2.Second Stage of the Model.

5.1.3. Third Stage of the Model.

The third stage of the model is depicted in Figure 5.3 has the overall output of the model.

For it to be achieved the identified relevant attacks were subjected to risk analysis process.

Risk analysis plays a critical role in identifying and recommending how to protect networks

systems.

Figure 5. 3 Third Stage of the Model.

IN
CAPEC

94

5.2. Study Data Set -UNSW-NB_15

5.2.1. Dataset Description

The study used the UNSW-NB15 data set to test the model. The dataset is a hybrid of the real

modern normal behaviors and the synthetically attack activities which was created in the

Cyber Range Lab of the Australian Centre for Cyber Security (ACCS) citation. Three tools

were used to generate different aspects of this dataset they include tcpdump tool (tcpdump

tool, 2014) used for capturing raw network traffic, IXIA Perfect Storm tool (IXIA Perfect

Storm One Tool, 2014) used to generate, simulate a hybrid of normal and abnormal network

traffic, the tool was also instrumental in extracting nine categories of attacks from the dataset

as seen in Table 5.4, a simulation process of 36 hours produced 100GB of network traffic data

which is split into sets of 1Giga Bits by the tcpdump tool, the Argus (Argus tool, 2014), Bro-

IDS (BroIDS Tool, 2014) and twelve algorithms were used to extract 49 features from the

dataset and also to analyze in detail the flows of connection packets. These techniques were

configured in a parallel processing to extract 49 features with the class label. After finishing

the implementation of the configured techniques, the total number of records, were 2,540,044

which were stored in four CSV files.

Figure 5. 4.UNSW-NB15 Dataset Description.

The testbed configuration utilized to produce the UNSWNB15 dataset is shown in Figure 5.5.

This testbed's primary goal was to record any regular or anomalous traffic that was distributed

among network nodes and started from the IXIA tool (e.g., servers and clients). It is significant

to note that the IXIA tool was used to generate attack traffic in addition to regular traffic; the

95

attack behavior was sourced from the CVE website for the goal of accurately simulating a

contemporary threat environment.

Figure 5. 5.The Testbed Visualization for UNSW-NB15.

(Moustafa & Slay, 2015)

On the IXIA traffic generator, three virtual computers were set up. Servers 1 and 3 were

configured to handle normal traffic, but server 2 was designed to handle potentially harmful

traffic. Two virtual interfaces with the IP addresses 10.40.85.30 and 10.40.184.30 connected

servers and collected communications from both public and private networks. The servers and

hosts were connected by two routers. IP addresses 10.40.85.1 and 10.40.182.1 were set up on

Router 1, whereas 10.40.184.1 and 10.40.183.1 were set up on Router 2. These routers were

connected to a firewall that was configured to let all traffic—normal and irregular—pass

through. On router 1, the tcpdump program was installed in order to gather the Pcap files of

the simulated uptime. The data set characteristics, including the simulation duration, flow

numbers, total source bytes, total destination bytes, number of source packets, number of

destination packets, protocol types, number of normal and abnormal traffic, and number of

unique source and destination IP addresses, are described in Table 5.1.

96

Table 5. 1.Data Set Statistics

The whole architecture used to create the final shape of the dataset from Pcap data to CSV

files with 49 features is depicted in Fig. 5.6. On the testbed depicted in Fig. 5.5, the simulation

was running while Pcap files were being created using the tcpdump program. The Argus and

Bro-IDS tools were used to obtain the properties of the data set, and a group of twelve

algorithms were used to provide additional features for the dataset.

Figure 5. 6.Architecture for Generating UNSW-NB15 Data Set.

5.2.2. UNSW-NB15 Features Categories.

Features within the UNSW-NB15 dataset are categorized into seven types they include: Flow,

Basic, Content, Time, General Purpose, Connection and Label. Table 5.2 gives an elaboration

on the feature type their attributes within the dataset and its description.

97

Table 5. 2.Feature Attributes.

5.2.3. UNSW-NB15 Data Types

Table 5.3 the elaborates on the counts of feature attributes and their respective data types

Table 5. 3.Data Types.

5.2.4. UNSW-NB15 Attack Type Categories

Table 5.4 gives a glimpse of the types of attacks within the dataset and their description.

There are total of nine types of attack which include Analysis, DoS, Fuzzers, Exploit,

Generic, Reconnaissance, Shellcode and Worm.

98

Table 5. 4.Attack type categories

Attack

Categories Description

Analysis

A method through which an attacker can get unauthorized remote access to a system by

circumventing standard authentication and gain access to in information stored in databases

and file servers.

DoS

An exploit under which the attacker is able to disrupt system resources by keeping them very

busy in order to prevent authorized access to services and some extent causing it to fail or

halt.

Fuzzers

An attack where the hacker attempts to find vulnerabilities in the system software, software

applications, or network and suspend these resources for a set length of time.it can be

automated to randomly feed multiple iterations of data into a program execution until one

of those variants uncovers a vulnerability.

Exploit
Incursions or codes that take advantage of software security weaknesses, errors, or bugs they

are usually included into malware, allowing for very simple and quick dissemination.

Generic
An attack that attempts to crack and gain access the secret keys within a cryptographic

system

Reconnaissanc

e

 It is a probing attack, which collects information of the target computer network in order to

circumvent its security controls.

Shellcode
 A malware that infiltrates a small piece of code beginning with a shell to gain control of the

infected system it usually manipulates program functions and registers.

Worm

 Malware that replicates itself and moves to other systems through the network, based on

the security weaknesses in the targeted system that it wishes to access. It consumes an

excessive amount of system memory and network traffic which Reduces system availability

5.3. Machine Learning Testbed.

As stated earlier to test the model three subparts of the original Model were run in Kaggle

platform with python using the UNSW-NB15 network traffic dataset. Kaggle Machine

learning platform was chosen in comparison to other platforms because, it has the necessary

Python programming language libraries preinstalled, It has a an adequate amount of resources

such as memory, CPU and storage space, It is a free and open source platform, It is a secure

platform for your program can be made public to all people, private to the account holder or

even the specific people he may authenticate to access the program(Pryzybla, 2020) (Chugh,

2020).The system resources for the testbed included Intel Xeon CPU 2.0 CPU with a core

count of 4vCPU, the RAM was 30GB and Hard disk of 73GB. See appendix 1 for more details

5.3.1. Importation of Machine Learning Libraries and Modules

Libraries are collections of commands and operations written in a particular language. A

strong collection of libraries may help programmers complete complicated jobs faster and

with fewer lines of code changes. They make "doing machine learning" easier for those who

lack development experience. They lessen the processing time, tedium, and inefficiencies

99

caused by manually coding algorithms, mathematical formulas, and statistical equations.

Appendix 1; Code Box1 shows the libraries and modules imported in machine learning

platform.

5.3.2. Data Preprocessing

Data preprocessing is a crucial step in preparing data for machine understanding, particularly

in the context of real-world datasets prone to issues like missing, inconsistent, and noisy data.

Such problems can significantly impact the performance of data mining techniques, leading

to subpar results and distorted statistics. Duplicate or missing numbers may distort overall

data statistics, while outliers and inconsistent data points can result in unreliable predictions.

To enhance data quality, preprocessing involves understanding the data, visualizing it through

statistical methods or libraries, and summarizing key aspects such as class distribution,

duplicates, missing values, and outliers. Eliminating irrelevant fields and performing

dimensionality reduction, including feature engineering to identify influential characteristics

for model training, are integral components of the data preprocessing process.

5.3.3. Importation of Dataset

This study involved the use of the UNSW_NB15 dataset which was split into four files:

1. UNSW-NB15_1.csv

2. UNSW-NB15_2.csv

3. UNSW-NB15_3.csv

4. UNSW-NB15_4.csv

The importation was done using the pd.read_csv() function which is usually used open various

types of files such as excel files, database files and many other files to be analyzed. It also

takes different kinds of parameters depending on the file(s) to be opened. In this instance, the

parameter low_memory was set to False to silence the error that comes up after opening very

big files. The file is therefore opened at once without any error popping up provided that the

file had the correct structure. As seen in Appendix 1; Code Box 2 four CSV files of the

UNSW_NB15 dataset that is UNSW-NB15_1.csv was assigned variable un_1, UNSW-

NB15_2.csv was assigned variable un2, UNSW-NB15_3.csv was assigned variable un3 and

UNSW-NB15_4.csv was assigned variable un4. A quick run on the structure of the dataset

using the head() function it was observed as seen in Table 5.5 that the columns do not have

100

the column header names. Due to the need for an organized structure of the dataset for

analysis, feature selection and feature engineering process, the column headers were renamed

to appropriately and renaming was guided by the dataset description document.

Table 5. 5.Output of .head() on the dataset showing column headers with no name.

5.3.4. Renaming of Columns Headers.

The concept of list in python makes a good foundation that can lead to the renaming of

columns that will be used in a dataset. To rename the column headers of the data frame the

appropriate name for the columns were sought from the data description file. The main reason

was to assist the researcher to merge the four datasets together and also to be able to

manipulate the data to desired output and results based on column headers. Appendix 1; Code

Box 3 shows the python code listing of col variable holding the column headers, Appendix 1;

Code Box 4 shows the column headers assigned to the four individual dataFrames, Table 5.6

shows the resultant output(renaming) of with the assigned column header names.

Table 5. 6.Dataset with New Column Headers.

5.3.5. Boolean Filtering of Malicious Logs

In this study, the portion of the dataset that was of interest was the malicious part. From the

description document of the UNSW_NB15 dataset, the malicious logs were indicated by the

value 1 in the Label column. To filter the malicious logs from the dataset, the malicious logs

with the label of 1 were filtered from the four datasets. The filtering process was done resulting

101

in the DataFrames mal_1, mals2, mals3 and mals4 representing the malicious parts of dataset

un_1, un2, un3 and un4 respectively. Appendix 1: Code Box 5, Code Box 6, Code Box 7,

Code Box 8 shows the filtering process on the malicious dataFrames. The un1 dataset had

malicious logs extracted from it. Table 5.7 shows sample malicious log.

Table 5. 7.Sample of malicious logs from un_1

The un2 dataset had malicious logs extracted from it. Table 5.8 shows sample malicious log.

Table 5. 8.Sample of malicious logs from un_2

The un3 dataset had malicious logs extracted from it. Table 5.9 shows sample malicious log.

Table 5. 9.Sample of malicious logs from un_3

102

The un4 dataset had malicious logs extracted from it. Table 5.10 shows sample malicious

log.

Table 5. 10.Sample of malicious logs from un_4

Figure 5. 7.Percentage of malicious log in Un_1 Un2 Un3 and Un4.

Figure 5.7 shows the percentage of the malicious logs within the four dataset un_1 at 3.8%,

un2 at 7.5%, un3at 2.3% and un4 at 20.2% respectively.

5.3.6. Merging the Dataset.

Since the study adopted a full census approach it was required to utilize all the four datasets,

this necessitated the merging of the datasets The malicious logs from the four datasets were

also merged creating the un1 dataset which stored the cumulative malicious log as seen in

Appendix 1; Code Box 9., a quick run on the shape of the un1 dataset gives a total of total of

321,283 rows and 49 columns as shown in Appendix 1; Code Box 10.

5.4. Analysis of the Malicious Combined Dataset

5.4.1. Malicious Count Within the Dataset

In the over 2.5 million rows in the combined dataset, 2.2 million rows were non-malicious

while 321,283 rows were malicious. The differentiating factor between the malicious and the

clean logs was that in the Labels column, the malicious rows had a value of one and the clean

103

datasets had a value of zero. The malicious rows contributed to about 12.6% of the dataset

which is illustrated in the Figure 5.8.

Figure 5. 8.Distribution of Normal vs. Malicious Traffic.

5.4.2. Identification of Missing Values.

Handling missing values in real-world data is crucial due to various factors such as data

capture issues and corruption. Many machine learning algorithms do not handle missing

values well, making proper data preparation essential. Several methods exist for addressing

missing values, including deleting rows or columns with null values, imputing missing values

for categorical variables, and using algorithms like k-NN, Naive Bayes, and random forest

that support missing values. Predicting missing values based on other features in the dataset

is another approach, as is using deep learning libraries like datawig for imputation through

Deep Neural Networks.

Each method has its own advantages and drawbacks, and there's no one-size-fits-all solution.

The choice of approach depends on achieving a robust model with optimal performance,

considering the nature of the data and collection methods. A background understanding of the

dataset is essential for effective preprocessing and handling missing values. Ultimately, the

strategy adopted should align with the characteristics of the data, and different methodologies

may be applied accordingly Appendix 1: Code Box 11 was used to check for missing values.

From the Table 5.11 it was established that only two out of the 49 columns had missing values.

104

The two columns were ct_flw_httpd_mthd and is_ftp_login with 282939 and 297183 missing

values respectively.

Table 5. 11.Missing Values in The Malicious Dataset.

5.4.3. Protocol Distribution in the Malicious Traffic

We set out to look at the protocols in the malicious traffic as seen in Appendix 1; Code Box

12 a total of 129 protocols were found to have been used to perpetuate malicious activities

within the network. Figure 5.9 shows the top ten significant counts of the various malicious

protocols the lead was taken by UDP with 223750 instances of attacks and the tenth was swipe

at 262 attacks.

Figure 5. 9.Top Ten Malicious Protocol Count.

5.4.3.1. Top Three Malicious Protocols

From Figure 5.9 three protocols udp, tcp, and unas show a highly significant instances of

malicious activities ranging from 22370, 58184 and 16202 respectively the other protocols a

low number of instances ranging from 3000 to 272. Each of the top malicious protocols were

classified into its own unique dataframe, as seen in Appendix 1: Code Box 13 all the malicious

105

TCP protocols were placed in the mal_tcp dataset the UDP in mal_udp dataset and unas in

mal_unas dataset. A filtering of the three produced the following samples of TCP UDP and

UNAS malicious traffic in Tables 5.12, 5.13, and 5.14

Table 5. 12.Sample Filtering malicious TCP traffic.

Table 5. 13.Sample Filtering malicious UDP traffic.

Table 5. 14.Sample Filtering malicious Unas traffic.

For ease of analysis of attacks the high significant instances protocols and low significant

were merged and grouped differently. Appendix 1: Code Box 14 shows the merging process

of the three top malicious protocols were stored into the tmalpt dataframe. Table 5.15 shows

the sample output of the merging process.

106

Table 5. 15.Output of the top 3 significant malicious protocols.

Then a Boolean filter was done to extract the logs that were in the malicious DataFrames uni1

but not in the tmalpt dataframe this was done so as to get the low significant malicious

protocols which the output was stored in nunas frame as seen in Appendix 1: Code Box 15.

The Table 5.16 bellow shows the sample output of 126 low significant malicious protocols

extracted from the Boolean process.

Table 5. 16.Low significant malicious protocols.

107

In order to have a cumulated analysis on the remaining protocols, they were all renamed to

others as shown in Appendix 1: Code Box 16. Table 5.17 shows the sample output obtained

Table 5. 17.Other Protocols.

A summary of value count within the tmalpt and nunas frames was done as illustrated in

Appendix 1: Code Box 17 and Table 5.18 shows a new shape and the protocol distribution

Table 5. 18. Protocol Distribution of Tmalpt and Nunas.

The Figure 5.10. shows the distribution of the malicious protocols.

Figure 5. 10. Distribution of Malicious Protocol.

The pie chart in Figure 5.11 shows the percentage distribution of the malicious protocols.

108

Figure 5. 11. % distribution of malicious protocol

5.4.4. Attack Distribution.

In attack distribution analysis we went out to look for the following aspects within the dataset,

in terms of categories of attacks what percentage does each attack constitute within the traffic!

What is the distribution of attack categories in relation to the protocols? A treemap

visualization of the malicious dataset with the aid of squarify library was used as shown in

Appendix 1: Code Box 18.

Table 5. 19. Percentage of Attack Distribution within the Malicious Traffic.

 attack_cat attack count%

Exploits 67.068908
Generic 13.858499
Fuzzers 5.974484
DoS 5.089905
Reconnaissance 3.805990
Fuzzers 1.572134
Analysis 0.833222
Backdoor 0.558697
Reconnaissance 0.547492
Shellcode 0.400893
Backdoors 0.166209
Shellcode 0.069409
Worms 0.054158

109

Table 5.19 the percentage attack counts the top attack in the list of attacks was Exploits

67.069%, Generic 13.858%, Fuzzers 7.547%, Reconnaissance 4.353%, DOS 5.089%,

Backdoors 2.40%, Analysis 0.724%, Shellcode 0.470 %, Worms 0.054%

Figure 5.12 shows the tree map visualization of the the attack distribution this was generated

using using the python code as shown in Appendix 1: Code Box 19.

Figure 5. 12. Treemap Visualization of Attack Distribution.

Within the UDP protocol as seen in Fig 5.13. the following was the distribution of attacks, the

Generic attacks took the lions share with 210600 (94%), followed by Fuzzers at

6043(2.701%), Reconnaissance at 4890(2.185%), Exploits 874(0.391%), Shellcode 761

(0.340%), DoS 527(0.235%), Backdoors 34(0.015%) and Worms were the least at 21

(0.009%).

Figure 5. 13. Attack Distribution UDP Protocol.

110

In relation to the TCP protocol the distribution of attacks as seen in Figure 5.14 exploits attacks

were leading at 27443(47.196%) instances, Fuzzers at 15474 (26.612%), Reconnaissance at

6965 (11.978%), DoS at 3336 (5.737%), Generic at 3118 (5.362%), Shellcode was

750(1.289%), Analysis 622(1.069%), Backdoor 323(0.492%) Worms153 (0.263%).

Figure 5. 14. Attack distribution TCP protocol.

In relation to the UNAS protocol the Distribution of attacks as shown in the Figure 5.15 were

observed as follows, the exploits were leading with 40.32%, DoS 32.38%, Analysis 5.715%,

Fuzzers 6.987%, Reconnaissance 5.185%, Backdoor 4.975%, Generic 4.443%, DoS 2.542%,

and Backdoor at 1.271%.

Figure 5. 15. Attack Distribution UNAS Protocol

111

When looking at other protocols the distribution of attacks was as follows in Figure 5.16

exploits 9676 (42.872%), Dos 7244(32.097), reconnaissance 1292(5.724%), Backdoor

1166(5.166%), analysis 1129(5.002%), Generic 1043(4.621%) and Fuzzers 1019 (4.515%).

There were no attacks recorded for Shellcode and worms categories with other protocols.

Figure 5. 16. Attack Distribution Other Protocol.

5.4.5. Targeted Ports Per Attack

From the malicious dataset a total of 1405 different port numbers were a target of attacks, and

the cumulative frequency of attacks on the same was 27443 Table 5.20 below shows a sample

of the ports with at least 100 and above attacks. Port 80 the http service had 11751 (42.820%)

attacks, port 25 the smtp service 4427 (16.132%) attacks, port 21 for ftp service 2206

(8.03848%), port 110 for POP3 1558 5.677222 attacks, port 143 for IMAP services had1547

(5.637139%) attacks, port 3306 for MySQL services had 434(1.58146%) attacks, port 8080

for http services had 336(1.224356%) attacks, port 139 for NetBIOS services had 257

(0.936487%) attacks, port 445 for SMB Active Directory services 173 (0.630398%) attacks,

port 23 for telnet services had 135 (0.491929%) attacks. Appendix 1: Code Box 20 shows the

code used for this purpose.

112

Table 5. 20. Sample of Ports with 100 Attacks and Above.

General statistics of the malicious logs per protocol is given in Table 5.21

Table 5. 21. Statistics of the Malicious Logs per Protocol

TCP log
timings

UDP log
timings

UNAS log
timings

Overall log
timings

Count 58184.00 223750.0 16202.00 321283.00

Mean 1.946001 0.103501 0.000007 0.730478

Standard deviation 5.584161 2.286526 0.000003 4.866499

Minimum value 0.000000 0.000000 0.000000 0.000000

25th percentile 0.527969 0.000004 0.000004 0.000005

50th percentile 0.857681 0.000008 0.000008 0.000009

75th percentile 1.505891 0.000009 0.000009 0.000010

Maximum value 59.999527 59.99602 0.000035 59.999527

5.4.6. Main Dependency Protocols Timings Per State

In the analysis below Table 5.22 establishes the time used per attack state in the top protocols

in the UNSW-NB_15 dataset.

Table 5. 22. Main dependency protocols timings per state

TCP protocol
 UDP protocol

UNAS protocol Other Protocols

State Duration State Duration State Duration State Duration

Fin 104221 Req 12200.2 Int 0.1123 Int 53164.9
Con 8934.07 Int 9100.86 Req 40582.7
Rst 69.8937 Con 1857.36 Con 4557.99
Acc 0.972
Clo 0.6167

113

5.4.7. Mean Of Time Distribution in Malicious Packets

Table 5.23 shows the mean of Time distribution within the TCP, UDP, UNAS and OTHER

protocols.

Table 5. 23. Mean of Time Distribution in Malicious Packets.

TCP protocol
 UDP protocol UNAS protocol Other Protocols

State Duration State Duration State Duration State Duration

Con 36.4656

Req 38.0068

Int 0.000007

Req 44.6946

Rst 5.3764

Con 3.1968

Con 6.8131

Fin 1.7992

Int 0.0408

Int 2.4648

Clo 0.6167

Acc 0.485

5.4.8. Attack Category Time Duration in The Malicious Dataset

Appendix 1: Code Box 21 was used to extract duration of attack of each attack category

within the malicious dataset was extracted. Table 5.24 shows the total time duration taken

by each category of attack.

Table 5. 24. Attack Category Time Duration in the Malicious Dataset.

Attack Category Duration of Attacks

Exploits 94522.20123

Fuzzers 64832.28926

DoS 40045.14186

Reconnaissance 14057.57736

Generic 11478.62264

Backdoor 5180.99554

Analysis 3793.153263

Shellcode 548.274819

Worms 77.858737

5.4.9. Attack Category Time Duration For TCP, UDP, UNAS And Others.

Appendix 1: Code Box 22 shows the attack category time duration of the three significant

protocols TCP, UDP, UNAS and Other protocols attacked within the malicious dataset. The

table 5.25 shows the time duration of attacks of category in relation to the three

114

Table 5. 25. Attack category time duration for TCP UDP UNAS.
TCP
protocol

UDP
protocol

UNAS
protocol

Other
Protocols

Attack Cat
Time
Duration of
Attacks

Attack Cat
Time
Duration of
Attacks

Attack Cat
Time
Duration of
Attacks

Attack Cat
Time
Duration of
Attacks

Exploits 48697.2621

Fuzzers 21032.7386

Exploits 0.04507

Fuzzers 6065.89847

Fuzzers 37733.3631

DoS 1175.86599

DoS 0.03631

Reconnaissa
nce

7101.10226

DoS 11429.0327

Exploits 718.41175

Analysis 0.00645

Analysis 2136.27677

Reconnaiss
ance

6956.18749

Generic 219.626311

Reconnais
sance

0.00583

Backdoors
4854.04504

Generic 6598.62073

Backdoors 11.184046

Generic 0.00496

DoS 28381.4429

Analysis 1656.87004

Worms 0.000156

Fuzzers 0.00397

Exploits 45106.4823

Shellcode 548.26883

Reconnaiss
ance

0.281778

Backdoor 0.00286

Generic 4660.37064

Backdoor 315.760745

Shellcode 0.005989

Worms 231.994907

5.4.10. Mean Duration of Attacks Per Protocol

Appendix 1: Code Box 23 shows the extraction of mean duration of attacks per protocol.

Table 5.26 shows the respective mean duration attacks per protocol.

Table 5. 26. Mean Duration of Attacks per Protocol
TCP
protocol

UDP protocol

UNAS protocol

Other
Protocols

Attack Cat
Mean
Duration
of Attacks

Attack Cat
Mean
Duration
of Attacks

Attack
Cat

Mean
Duration
of Attacks

Attack
Cat

Mean
Duration
of Attacks

DoS 3.143824

Fuzzers 2.679468

Fuzzers 0.000007

Fuzzers 3.5272625

Fuzzers 2.572246

DoS 2.231245

DoS 0.000007

Reconnaissa
nce

10.092908

Analysis 2.663778

Exploits 0.821981

Exploits 0.000007 Analysis 1.892185

Generic 2.116299

Backdoors 0.2372

Backdoors 0.000007

Backdoors 3.2779805

Exploits 1.774488

Generic 0.001043

Generic 0.000007

DoS 3.917924

Worms 1.516307

Reconnais
sance

0.000375

Reconnaiss
ance

0.000007

Exploits 4.661687

Backdoors 1.0855995

Shellcode 0.000008

Shellcode 0.000007 Generic 4.468236
Reconnaiss
ance

0.996701

Worms 0.000007

Worms 0.000007

Shellcode 0.7187945

115

5.5. Data Cleaning

The primary goal of Data Cleaning as explained earlier is to build a valid dataset by detecting

and eliminating mistakes that would arise from a set of duplicate data or missing values. This

improves the training data quality for analytics and enables more accurate decision making.

5.5.1. Identification And Filtering of Missing Values.

In big data analytics, missing values is one of the main causes of inaccuracy when it comes to

the subjection of various algorithms. Due to this, the missing values have to be handled

correctly. The un1.isnull().sum()was used to identify the missing values within the

dataset. It works by detecting missing values in the given dataframe. It returns a Boolean

same-sized object indicating if the values are NA. In this instance the sum function was

invoked to return the total missing values within the sets of features in the dataset un1.The

value 0 depicts no values are missing. Out of all the 49 columns as shown in Table 5.27, only

two were found to have missing values. The two columns were ct_flw_http_mthd with and

is_ftp_login.

Table 5. 27. Missing values in malicious dataset.

Features
Missing
Values Features

Missing
Values Features

Missing
Values

srcip 0 dwin 0 is_ftp_login 297183
sport 0 stcpb 0 ct_ftp_cmd 0
dstip 0 dtcpb 0 ct_srv_src 0
dsport 0 smeansz 0 ct_srv_dst 0
proto 0 dmeansz 0 ct_dst_ltm 0
state 0 trans_depth 0 ct_src_ ltm 0
dur 0 res_bdy_len 0 ct_src_dport_ltm 0
sbytes 0 Sjit 0 ct_dst_sport_ltm 0
dbytes 0 Djit 0 ct_dst_src_ltm 0
sttl 0 Stime 0 attack_cat 0
dttl 0 Ltime 0 Label 0
sloss 0 Sintpkt 0 dtype: int64
dloss 0 Dintpkt 0
service 0 tcprtt 0
Sload 0 synack 0
Dload 0 ackdat 0
Spkts 0 is_sm_ips_ports 0
Dpkts 0 ct_state_ttl 0
swin 0 ct_flw_http_mthd 282939

116

For the purpose of analyzing the columns with missing values, it was first extracted from the

dataset as shown in Appendix 1: Code Box 24. The data was then stored temporarily in the

mvs dataset. A run of shape mvs gave 321283 rows and 2 columns. The cells with values on

both columns were 22215(6, 9%) and the one missing 299086(93.1%). A brief analysis is

done for the two columns using the code in Appendix 1: Code Box 25 and the output is shown

on the Table 5.28.

Table 5. 28. Missing values statistics.

Statistics ct_flw_http_mthd Is_ftp_login

Count 22215 22215

Mean 0.053342 0.002161

Standard deviation 0.225520 0.046434

Minimum value 0.000000 0.000000

25th percentile 0.000000 0.000000

50th percentile 0.000000 0.000000

75th percentile 0.000000 0.000000

Maximum value 2.000000 1.000000

5.5.2. Filling of the Missing Values

In this process, the missing values on the two columns, were to be filled with the mean. To do

so, a duplicate of the cells with the missing values was created then filled with their respective

mean. The mvs dataset was duplicated. From there, the column ct_flw_http_mthd was filled

with the mean. After this, the same process was repeated for the second column is_ftp_login.

From there, the column names were then renamed in order to distinguish them from other

columns after they have been combined with the complete dataset. Finally, a confirmatory

evaluation is done to find out whether there are any missing values which returns the values

0 for the detecting they have been filled successfully this process is shown in Appendix 1:

Code Box 26.

5.5.3. Filling Missing Values with The Median

Median refers to the middle value in a certain group of data. The mvs dataset was duplicated

then column ct_flw_http_mthd and is_ftp_login was filled with their respective median

117

values this process is shown in Appendix 1: Code Box 27. A look at the sample of five in

Table 5.29 the output confirms the columns are filled.

Table 5. 29. Sample Missing values filled with Median.
 median_ct_flw_http_mthd median_is_ftp_login

321128 0 0

262107 0 0

458085 0 0

521486 0 0

344062 0 0

5.5.4. Forward Filling of Missing Values

In this procedure, consider a column with the values 1 to 5 and a missing value x. The data

can have the structure of the set s = [1, 2, x, 4, 5]. In the procedure of forward filling,

the missing value x is replaced with the value that comes before it. In the instance of the set

s, the previous value is 2 thus that is what will replace x in its position. the mvs dataset is then

duplicated. From there, the column ct_flw_http_mthd is renamed to

ffill_ct_flw_http_mthd and is filled with the median of that column. Finally, a

confirmatory evaluation was done to find out whether there are any missing values. If there

are none, the code has been executed successfully.

5.5.5. Backward Filling of Missing Values.

Consider a set t with values 1 to 5 and a missing value x. The data will have the structure t =

(1, 2, x, 4, 5). In backward filling, the missing value is replaced with the value that comes

after it. The set will have a new structure t = (1, 2, 4, 4, 5). The same concept applies to the

dataset that will be backward filled. To accomplish the process, a duplicate of the dataset that

had the two columns was created and the back filling of the missing values done this process

is shown in Appendix 1: Code Box 28.

5.5.6. Filling Of Missing Values in The Mal Dataset with Created Values

Initially the two columns with missing values were dropped so that they can be replaced with

the newly created datasets as shown in Appendix 1: Code Box 29. A confirmation was done

by calculating the difference between the numbers of columns in the original dataset to the

columns in the current dataset this process is shown in Appendix 1: Code Box 30. Afterwards

118

the two modified columns were appended to the original dataset of malicious logs which

created a dataframe that would be used for the feature selection process. In order to add the

two columns whose missing data was replaced by the mean, a duplicate of the data with 47

columns is created as shown in Appendix 1: Code Box 31. After that, the new columns are

added. A confirmation was done shows the two columns mean_ct_flw_http_mthd and

mean_is_ftp_login was added as shown in Appendix 1: Code Box 32. The same processes

were repeated for the forward filling, backward filling and median as shown in Appendix 1:

Code Box 33.

5.6. Machine Learning algorithms

The following algorithm were selected for the purpose of classification and clustering

networks attacks

5.6.1. Feature Selection -SelectKBest Algorithm

Feature selection is a critical step in model training, as it helps to focus on the most relevant

features and can improve model performance and reduce overfitting. The SelectKBest

algorithm is chosen to perform feature selection. It selects the top K features based on

statistical tests, such as F-test or mutual information. By choosing the most informative

features, the algorithm aims to enhance the performance of the subsequent models.

5.6.2. Base Learners -KNeighbors, Random Forest, GaussianNB

Base learners are individual models that form the ensemble. They are trained on subsets of the

data or with different features to capture diverse patterns. KNN is a simple and intuitive

algorithm that classifies a data point based on the majority class of its k-nearest neighbors.

KNN is chosen as a base learner because it captures local patterns in the feature space. It can

be effective when instances of the same class are clustered together. By including KNN as a

base learner, the ensemble benefits from its ability to capture local decision boundaries.

Random Forest is an ensemble learning method that builds multiple decision trees and

combines their predictions. Random Forest is a popular choice for base learners in ensembles

because it provides a good balance between bias and variance. It reduces overfitting and

increases the model's generalization ability. Each tree in the forest is trained on a random

subset of features and data, introducing diversity among the base learners.

119

Gaussian Naive Bayes is a probabilistic classifier based on Bayes' theorem, assuming that

features are conditionally independent given the class. GaussianNB is chosen as a base learner

for its simplicity and speed, especially when dealing with continuous data. It assumes that

features are normally distributed within each class, making it suitable for certain types of

datasets. Including GaussianNB as a base learner provides diversity in the modeling approach,

particularly when the data's underlying distribution aligns with the assumptions of the

algorithm.

5.6.3. Meta-Learner (Logistic Regression)

The meta-learner combines the predictions of the base learners to make a final prediction.

Logistic Regression is often used as a meta-learner due to its simplicity and interpretability.

Logistic Regression is chosen as the meta-learner (TrainMetaLearner) because it is well-suited

for binary classification problems and provides probabilities as outputs. Its simplicity makes

it computationally efficient and less prone to overfitting, especially when the base learners are

diverse.

5.6.4. K-means Clustering

Clustering is used to group similar data points together, which can reveal underlying structures

in the data. K-means clustering is applied to the normalized predictions of the meta-learner

(KMeansAlgorithm). The clustering process helps identify patterns or groups of similar

instances in the data. This can be valuable for tasks such as customer segmentation or anomaly

detection.

5.6.5. Feature Scaling

Feature scaling ensures that all features have similar scales, which is important for algorithms

sensitive to the scale of input features, such as K-means clustering. Feature scaling (e.g., Min-

Max scaling) is applied to the predictions of the meta-learner (FeatureScaling). This step

ensures that the features used in K-means clustering have consistent scales, improving the

effectiveness of the clustering algorithm.

In summary, the chosen algorithms are designed to work together in a stacking ensemble

framework. Feature selection, diverse base learners, a logistic regression meta-learner, and K-

means clustering are employed to enhance model performance, interpretability, and uncover

potential patterns in the data.

120

5.7. Ensemble Technique Approach

Ensemble is a machine learning technique employs several learners to address a single

classification or regression issue. Ensemble techniques build a group of models (learners) and

combine them as opposed to traditional machine learning approaches, which aim to build a

model from training data. After two groundbreaking studies in the 1990s, ensemble techniques

became a significant area of research. According to (Hansen & Salamon,1990), when a group

of classifiers is used in conjunction to make a prediction, the results are frequently more

accurate than those of a single classifier. (Schapire,1990) demonstrated weak models

(learners) can be boosted by strong models(learns). three common ensemble techniques exist

include Bagging, Boosting and stacking.

Bagging method combines the averaging method for regression and the voting method for

classification. This methodology employs the voting method for classification and the

averaging method for regression. The ensemble approach is used to aggregate data from base

learners and then vote on the labels during the voting phase. The one with the most votes is

chosen as the system's Prediction(Zhou, 2012). Random forest algorithm combining random

decision tree trains by drawing random subset of the training set is one of the algorithm used

this method(Altman & Krzywinski, 2017).

Boosting improves weak classifiers by increasing their execution. It implements a successive

learning technique by enabling variations to work on a given batch of data which is repeated

until the desired outcome is obtained(Syarif et al., 2012). By leveraging the misclassified

training cases that earlier models, boosting progressively creates an ensemble model. The

adaboost algorithm is one of the illustration of this approach(Mayr et al., 2014).

Stacking, combines the predictions of other models using an algorithm. It works and learns

from data by utilizing different algorithms at the base layer and one at the Meta layer. The

base layer algorithm’ outputs are combined to provide an input for the Meta layer algorithm.

The Meta layer algorithm receives input, and then generates an output that will be the final

model.

121

5.7.1. Stacking Ensemble

This study adopted Stacking, since its powerful ensemble learning technique, combines

predictions from diverse machine learning models to enhance predictive accuracy. The

method leverages the strengths of different models, reducing overfitting and increasing

robustness to outliers. Stacking's flexibility allows for the use of varied base models, adapting

to dataset characteristics. It excels in handling complex relationships and heterogeneous data.

The final stacked model may also offer improved interpretability. However, successful

implementation requires careful tuning, validation, and the selection of complementary base

models to avoid overfitting. Figure 5.17 shows the adopted stack, it contains the select Kbest

Feature Selection Algorithm for its ability to identify the appropriate features, three classifiers

base-learners KNeighbors for its ability classifies network traffic data based on the similarity,

RandomForest for its ability to detect anomalies and GaussianNB for its ability to classify

normal and abnormal distribution in the network traffic and one clustering classifier meta-

learner KMeans.

Figure 5. 17.Stacking Ensemble Approach

5.7.2. Feature Selection

To use machine learning algorithms efficiently, it is becoming increasingly important to

perform feature selection (V. Kumar & Minz, 2014). Features election, also referred to as

attribute selection or variable selection, is a process of selecting more relevant attributes, and

122

removing irrelevant or less relevant attributes or noisy data or features that do not add

additional value to a machine learning algorithm. Using only relevant features for machine

learning algorithms allows for faster processing and more accurate predictability(Yang & Zhu,

2011). A lot of work has been done on feature selection using traditional techniques like

Information Gain, the Gini Index, uncertainty, and correlation coefficients (Forman, 2003).

This study used the SelectKBest algorithm for feature selection. The SelectKBest method

chooses the top k best features from the input dataset based on a scoring measure. The feature

selection equation is represented as:

 fs(x) = x_selected ………eq… (5.1)

where fs is the feature selection, x is the input feature matrix and X_selected comprises the k

best features that were chosen. The parameter k for SelectKBest defines the number of

characteristics to be chosen.

5.7.3. Base Learners

The KNearest Neighbors (KNN) method classifies or predicts the target variable using the

feature space's k nearest neighbors. The KNearest Neighbors training equation is represented

as follows

 b1(x_train, y_train) = model_b1 ………eq… (5.2)

where b1 is the first base learner KNN, X_train is the training feature matrix and y_train is

the associated labels. The argument for KNearest Neighbors is k, which specifies the number

of neighbors to take into account.

The Random Forest (RF) method constructs a decision tree ensemble and generates

predictions based on the majority vote or average of the individual trees. The Random Forest

training equation can be represented as

 b2(x_train, y_train) = model_b2 ………eq… (5.3)

where b1 is the second base learner RF, X_train is the training feature matrix and y_train is

the associated labels. Random Forest settings include the number of trees, the maximum

depth, and other tree-specific characteristics.

123

To classify or forecast the target variable, the Gaussian Naive Bayes (GNB) method assumes

that features are independent and uses a Gaussian distribution. The Gaussian NB training

equation is represented as:

 b3(x_train, y_train) = model_b3 ………eq… (5.4)

where b3 is the third base learner GNB, X_train is the training feature matrix and y_train is

the associated labels. There are no settings to adjust for Gaussian NB.

5.7.4. Meta Learner

Logistic Regression (LR) employs the logistic function to represent the association between

the chosen characteristics and the intended variable. A representation of the Logistic

Regression training equation is:

 l (x_meta, y_meta) = model_l ………eq… (5.5)

where l is the LR, where X_meta is the meta-features (predictions from b1, b2, and b3) and

y_meta is the associated labels. The regularization term, solver technique, and convergence

criteria are some of the variables in logistic regression.

Stacking Ensemble's prediction (e) combines the predictions of each model (B1, B2, B3, and

L) after they have all been trained to provide the final prediction. The test feature matrix X_test

is used in the equation for the stacking ensemble prediction, which is written as

 e(x_test) = l(b1(fs(x_test)), b2(fs(x_test)), b3(fs(x_test))), ……eq… (5.6)

where X_test is the test feature matrix. To apply the equations and parameters for training and

prediction, it would typically follow the following steps:

Figure 5. 18. Meta learner prediction flows

124

5.7.5. Clustering Algorithm Based on KMeans

The primary goal of the K-means algorithm is to minimize the total sum of squared distances

between the data points and the centroids of their respective assigned clusters. The

representation is as follows.

 J (C, μ) = ∑ ||xi - μcj||
2 ………eq… (5.7)

The objective function, denoted as J (C, μ), is defined as the sum of the squared Euclidean

distances between each data point xi and its corresponding cluster center μcj, summed over all

data points. The objective function that requires minimization is denoted as J (C, μ). The set

C, denoted as C = {c1, c2, ..., cn}, represents the cluster assignments for each individual data

point in the dataset X. On the other hand, the set μ, denoted as μ = {μ1, μ2, μ3}, represents the

cluster centroids. The objective function computes the squared Euclidean distance between

every data point xi and its corresponding cluster centroid μcj. The objective is to minimize the

distance between each data point and its corresponding centroid, thereby indicating a closer

proximity.

The K-means algorithm is subject to two primary constraints: (1) It is imperative that every

individual data point is allocated to a single cluster. (2) The centroid of each cluster is

calculated as the average of the data points assigned to that cluster, denoted by the equations

x and y, respectively. The summation of cj equals k is equal to 1, for all j ranging from 1 to N,

and k ranging from 1 to 3.

 ∑ (cj = k) = 1, for all j = 1, 2, ..., N, and k = 1, 2, 3. ………eq… (5.8)

Constraint 1; guarantees that each data point is exclusively assigned to a single cluster. The

expression (cj = k) yields a value of 1 when the data point xj is assigned to cluster k, and 0

otherwise. The total of this term across all clusters should be equivalent to 1, signifying that

each data point possesses a distinct cluster assignment. The formula for calculating the mean

of a set of values xi, where each value is associated with a category cj, is given by

 μk = (1 / | {j: cj = k} |) ∑ (xi, cj = k), for all k = 1, 2, 3. ………eq… (5.9)

Constraint 2; involves the updating of cluster centroids in accordance with the assigned data

points. The centroid μk for each cluster k is determined by calculating the average of the data

points xi that are assigned to that specific cluster. The expression (xi, cj = k) denotes the

125

summation over the data points xi, subject to the condition that their cluster assignment cj is

equal to k. Additionally, | {j: cj = k} | represents the count of data points that have been

assigned to cluster k.

The K-means algorithm iteratively optimizes the cluster assignments and cluster centroids by

minimizing the objective function J (C, μ) while ensuring that the constraints are satisfied,

until convergence is achieved. The algorithm employs a two-step process, wherein it

iteratively updates the assignments by considering the closest centroid and recalculates the

centroids based on the assigned data points. The objective is to identify the configuration that

minimizes the total sum of squared distances. Figure 5.19 is the K-means clustering algorithm

based on k=3

Figure 5. 19. KMeans Clustering flow.

126

5.7.6. Performance Metric

Table 30 below shows output of the accuracy, precision, recall, and F1 score of the

SelectKBest feature selection algorithm. the performance metrics for each base learner (K-

Nearest Neighbors, Random Forest, and Gaussian Naive Bayes) and the meta learner (Logistic

Regression) using the predictions from the base learners in the stacking ensemble.

Table 5. 30. Performance metrics scores

Classification

Technique

Accuracy Precision Recall F1 Score

Select KBest 0.93466 0.94393 0.93466 0.95387

KNN 0.85767 0.86776 0.85765 0.85734

Random forest 0.92335 0.91254 0.96667 0.95667

Gaussian Naive Bayes 0.88899 0.82785 0.80956 0.79676

*Proposed ensemble 0.96667 0.96967 0.96667 0.96998

5.8. Feature Engineering and Feature Selection

The feature engineering process refers to the procedures involved in transforming raw data

into useful data for machine learning algorithm(s) to use. Outcome and predictor variables are

present in situations such as predictive machine learning algorithms. Through feature

engineering, the predictor variables are converted into a format that is suitable with various

machine learning methods.

5.8.1. Training and Testing Splitting

The data was split into train and test the reason being to prepare it be used as a learning point

for the machine learning algorithms and to have a portion of the data that will be used to test

the accuracy of the machine learning algorithms . The X-train was used to store the columns

that will be used to train the machine learning algorithms. X-test was used to evaluate the

accuracy of the output obtained after subjecting the data to the machine learning algorithms.

Y-test was used to store the output of the machine learning algorithms when they have been

tested with a real-life dataset and y-train was used as the columns that provides the input for

the machine learning algorithms to test the final accuracy. In this study, the training test of the

127

data took 70% while the testing set took 30%. The random_state was set to 101 so that for

each instance the code is run, everything is held constant. After that process, the values that

describe the splitting structure are obtained.

5.8.2. The Select KBest Feature Selection Algorithm

The Select KBest process was used during the feature selection process for the features that

are necessary for the machine learning algorithm. It is imported from the

sklearn.feature_selection library, it also picks the methods that can be used during the process.

Before the process is carried out, data had to be encoded using various label encoding feature

engineering techniques and be split into train and test sets. This can be applied in instances

when the data being used has strings in the columns. Appendix 1: Code Box 34 was used to

identify columns with object data type and Table 5.31 shows the columns with the object data

type. The object data type forms one of the greatest foundations for the data encoding process.

Table 5. 31. Columns with the object data type

 srcip sport dstip dsport proto state service
ct_ftp_

cmd
attack_cat

19 175.45.176.3 21223 149.171.126.18 32780 udp INT - 0 Exploits

20 175.45.176.2 23357 149.171.126.16 80 tcp FIN http 0 Exploits

21 175.45.176.0 13284 149.171.126.16 80 tcp FIN http 0 Reconnaissance

38 175.45.176.2 13792 149.171.126.16 5555 tcp FIN - 0 Exploits

39 175.45.176.2 26939 149.171.126.10 80 tcp FIN http 0 Exploits

56 175.45.176.0 39500 149.171.126.15 80 tcp FIN http 0 DoS

57 175.45.176.0 29309 149.171.126.14 3000 tcp FIN - 0 Generic

76 175.45.176.0 61089 149.171.126.18 80 tcp FIN http 0 Exploits

77 175.45.176.0 23910 149.171.126.15 80 tcp FIN http 0 DoS

78 175.45.176.3 44762 149.171.126.12 80 tcp FIN http 0 Exploits

128

Table 5. 32. Confirmation of columns with the object data type.

Table 5.32 shows a confirmation that the extraction process of the columns with the object

data type had been accurately identified.

For the SelectKBest algorithm to work, it must have an output variable that can be used as a

reference point to compare the strength of each column one to the other. The commonly used

variable to filter out the column is Y. A further confirmation was done to ensure that the

number of rows is in the original nature during the entire process which is shown Appendix

1: Code Box 35. A similar process was repeated for the input columns which were to be

evaluated one against the other. The columns were stored in the variable X. The top 10

columns in X were the ones to be used in the machine learning algorithm. A further test was

done to confirm the number of rows in X is equal to that of Y to avoid any form of bias as

shown Appendix 1: Code Box 36. For each of the objects identified from the above process,

were encoded using the LabelEncoder() function which is stored in the variable lbl_enc as

shown in Appendix 1: Code Box 37 .

Moving forward, the Chi2 squared test as shown Appendix 1: Code Box 38 was used because

it is flexibility to handle data with different types of columns. Also, you can customize the

code to enter the exact number of columns that may be required in the model. After that

process, the following columns in Table 5.33 were obtained and they were the ones to be

subjected to the machine learning algorithms (this could also be achieved by performing

correlation matrix of all the features).

srcip object

sport object

dstip object

dsport object

proto object

state object

service object

ct_ftp_cmd object

attack_cat object

dtype: object

129

Table 5. 33. Selected features for machine learning algorithm.

ct_flw_htt

p_mthd
is_ftp_l

ogin
ct_ftp_

cmd
ct_srv
_src

ct_srv
_dst

ct_dst_
ltm

ct_sr
c_
ltm

ct_src_dpor
t_ltm

ct_dst_spor
t_ltm

ct_dst_src
_ltm

19 0 0 0 1 1 1 1 1 1 1

20 1 0 0 3 2 2 1 1 1 1

21 1 0 0 5 2 2 1 1 1 1

38 0 0 0 1 1 1 1 1 1 1

39 1 0 0 3 1 1 1 1 1 1

5.8.3. Importation of the Machine Learning Algorithms.

The following libraries were imported see Appendix 1: Code Box 39 and used together for

the implementation of the machine learning algorithms that were used in this study.

The Itertools library facilitates fast and memory-efficient iteration through datasets for various

functions. Numpy is employed for array manipulation and mathematical operations. Seaborn

and Matplotlib are utilized for creating visualizations to aid comprehension of data outputs.

The sklearn.datasets module provides datasets for experimental use before deploying

algorithms on the final dataset. The sklearn.linear_model library stores predefined functions

and parameters, useful for algorithms like logistic regression. The sklearn.neighbors module

imports the K-Nearest Neighbors algorithm, while sklearn. naive Bayes offers functions for

implementing the Gaussian Naïve Bayes algorithm. The sklearn. ensemble algorithm includes

the Random Forest Classifier, which enhances prediction accuracy through decision tree

subsets. The stacking classifier serves as an ensemble algorithm using multiple classifiers'

predictions as new features. Visualizations of machine learning outputs are created using the

plot_learning_curves and plot_decision_regions libraries from the mlextend.plotting module.

5.8.4. Preparation for the Machine Learning Algorithms.

In the code Appendix 1: Code Box 40 was used to store all columns that was to be used for

the training and testing of the machine learning algorithms. Though that was the case, the

column that was guiding in the process of making the predictions (attack_cat) was dropped

and retained in the variable y.

130

The clf1 variable was used to store the function that will assist in the implementation of the K-

Nearest Neighbors algorithm. The clf2 variable was used to store the Random Forest Classifier

that is composed of decision trees as its main functionality. clf3 was used as a support platform

for the Gaussian Naïve Bayes machine learning algorithm. Lastly, sclf was used to store the

Stacking Classifier algorithm that combines the three algorithms that was used in the study.

Appendix 1: Code Box 41, the data was then split into three clusters for each of the

classification in the surface being attacked. The random state is also set to 0 so that for every

time the code is repeated, the same output is obtained. The processed_plot variable is used to

store the outputs for the K-Means machine learning algorithm. From the process as seen

Appendix 1: Code Box 42 three clusters were obtained from the K-Means machine learning

algorithm.The three outputs were then mapped to the surface they relate to interms of attacks

as shown in Appendix 1: Code Box 43, a sample is shown in Table 5.34.

Table 5. 34. Mapping to attacks surfaces.

 results

0 Hosts

1 Hosts

22213 Users

22214 Hosts

22215 rows × 1
columns

The mapping was further done to the data subjected to the SelectKBest algorithm. Alongside

it is the KMeanss cluster that was assigned to it. Appendix 1: Code Box 44 Table 5.35

shows the output.

131

Table 5. 35. Sample of Mapping the outputs to the SelectKBest algorithm data

 0 1 2 3 4 5 6 7 8 KMeans_cluster results ys

12917 0 0 6 6 2 2 2 2 2 1 1 Users

12778 0 0 1 4 1 0 0 0 0 0 0 Hosts

9059 0 0 6 6 1 5 1 1 1 1 1 Users

19977 0 0 2 2 2 2 2 2 2 0 0 Hosts

13128 0 0 7 2 0 0 0 0 0 0 0 Hosts

18121 0 0 0 5 1 0 0 0 0 0 0 Hosts

21411 0 0 6 4 0 0 0 0 0 0 0 Hosts

10297 0 0 17 17 10 10 10 2 10 2 2 Media

18457 0 0 11 11 2 2 2 2 2 1 1 Users

3297 0 0 0 0 0 0 0 0 0 0 0 Hos

Appendix 1: Code Box 45 Table 5.36 shows shows the respective code and sample output of

the attacks to their attack surface.

Table 5. 36. sample output for the attack surfaces.

 srcip sport dstip dsport proto state outputs

170723 175.45.176.0 1334 149.171.126.11 445 tcp FIN Hosts

75296 175.45.176.0 42860 149.171.126.11 80 tcp FIN Hosts

103361 175.45.176.1 47439 149.171.126.18 53 udp INT Users

168423 175.45.176.1 47439 149.171.126.18 53 udp INT Users

154214 175.45.176.1 1043 149.171.126.18 53 udp INT Hosts

140037 175.45.176.3 39779 149.171.126.11 1723 tcp FIN Hosts

120785 175.45.176.1 47439 149.171.126.18 53 udp INT Media

163492 175.45.176.1 47439 149.171.126.18 53 udp INT Hosts

84095 175.45.176.1 42928 149.171.126.12 111 scps INT Users

130654 175.45.176.1 47439 149.171.126.18 53 udp INT Users

5.8.5. Analysis of Attacks to Their Surfaces.

In order to map and visualize the attacks to the surfaces Appendix 1: Code Box 46 was used.

The output was placed in a dataset called distribution. The groupby function is used to

compare one column value to the other column(s) analytically by methods such as sum and

mean. In this instance, the groupby function counts the number of attacks per surface and sorts

them in descending order.

132

5.8.6. Visualization of Attacks to Their Surface.

The process starts by classifying the three attack surfaces to different datasets. The host, media

and users’ surfaces are placed in host, media and users’ datasets respectively as shown in

Appendix 1: Code Box 47 the filtered datasets for the attack surface counts are then stored

into individual arrays h, m and u as shown in Appendix 1: Code Box 48, Appendix 1: Code

Box 49 shows the attacks in h, m and u, Appendix 1: Code Box 50 was used to make

visualization for attack surface distribution per attack. Figure 5.20 and Table 5.37 shows the

attack distribution for each surface of attack.

Figure 5. 20. Attack Distribution for Each Surface of Attack.

133

Table 5. 37. Attack Distribution for Each Surface of Attack.

Attacks Host Attacks Media Attacks User Attacks

Exploits 4393(40.98 %) 2364(22.05%) 3963(36.97%)

Generic 2884(57.1%) 730(14.45%) 1437(28.45%)

Fuzzers 1705(62.66%) 454(16.69%) 562(20.65%)

Reconnaissance 1195(69.96%) 227(13.29%) 286(16.74%)

DoS 654(58.65%) 226(20.27%) 235(21.08%)

Backdoors 215(32.14%) 226(33.78%) 228(34.08%)

Analysis 80(59.7%) 3(2.24%) 51(38.06%)

Shellcode 65(89.04%) 1(1.37%) 7(9.59%)

Worms 23(95.83%) 0(0%) 1(4.17%)

5.9. Identification and Retrieval of Stride Based Attacks from

CAPEC Repository.

To achieve this process the CAPEC repository dataset was uploaded in the machine learning

platform, they were three datasets namely capec1, capec2, capec3 the process was achieved

using code in Appendix 1: Code Box 51. The three datasets had the following respective

shapes Capec1.shape (546, 20), capec2.shape (546, 20), Capec3.shape (601, 20) giving

it a cumulative of (1693, 20). The column names were renamed to a new format that can be

easily managed during the wrangling process. The renaming process starts by subjecting the

new column names as seen in Appendix 1: Code Box 52 into a list which were then subjected

to the datasets as seen in Appendix 1: Code Box 53 and giving out the dataset features on

Table 5.38.

Table 5. 38. CAPEC Dataset Features.

5.9.1. Filtering Of UNSW-NB_15 Attacks from CAPEC.

The attacks in UNSW-NB_15 dataset was filtered out of the CAPEC repository datasets. To

do so, the filter used a string-based approach to extract the strings that match the data that was

entered into the system, this approach was adopted from (Xiaohong Yuan et al., 2014b).

134

The generic attacks from CAPEC were extracted using the Generic string name as shown in

as seen in Appendix 1: Code Box 54 and were stored in the gen dataset. From this filter one

attack was obtained CAPEC ID 468: Generic Cross-Browser Cross-Domain Theft. Table 5.39

shows the output generated.

Table 5. 39. Generic attacks from CAPEC.

ID Name

468 Generic Cross-Browser Cross-Domain Theft

The exploit attacks from CAPEC were extracted using the Exploit string name which

yielded fourteen attacks as shown in Table 5.39. Appendix 1: Code Box 55 was used for this

purpose.

Table 5. 40. Exploits attacks from CAPEC.

ID Name

21 Exploitation of Trusted Identifiers

22 Exploiting Trust in Client

43 Exploiting Multiple Input Interpretation Layers

50 Password Recovery Exploitation

121 Exploit Non-Production Interfaces

149 Explore for Predictable Temporary File Names

160 Exploit Script-Based APIs

180 Exploiting Incorrectly Configured Access Control Security Levels

217 Exploiting Incorrectly Configured SSL

663 Exploitation of Transient Instruction Execution

665 Exploitation of Thunderbolt Protection Flaws

679 Exploitation of Improperly Configured or Implemented Memory Protections

680 Exploitation of Improperly Controlled Registers

681 Exploitation of Improperly Controlled Hardware Security Identifiers

The fuzzer attacks from CAPEC were extracted using various string names and were stored

in various datasets. The string "Fuzzers" and "Fuzzer" yielded no results in this scenario it is

recommended that a finer search is done by reducing the character length of a string, so “fuz”

was used and yielded four attacks as seen in as seen in Appendix 1: Code Box 56. Table 5.41

shows the output.

135

Table 5. 41. Fuzzers’ attacks from CAPEC.

ID Name

28 Fuzzing

215 Fuzzing for application mapping

261
Fuzzing for garnering other adjacent user/sensitive
data

122 Fuzzing for garnering J2EE/.NET

For denial-of-service attacks (DOS) two strings were used to maximize the search that is

“Denial” and “DoS” yielded two attacks Capec ID 341 and ID 582 as seen in as seen in

Appendix 1: Code Box 57 and Table 5.42.

Table 5. 42. DOS attacks from CAPEC for dos and dos2 respectively.

ID Name

582 DEPRECATED: Violating Implicit Assumptions Reg...

ID Name

469 HTTP DoS

582 DEPRECATED: Violating Implicit Assumptions Reg...

The reconnaissance attacks from CAPEC were extracted using the Reconnaissance string

name and were stored in the rec dataset which yielded one attack as seen in Appendix 1: Code

Box 58 and Table 5.43.

.
Table 5. 43. Reconnaissance attacks from CAPEC.

ID Name

529 Malware-Directed Internal Reconnaissance

The analysis attempts from CAPEC were extracted using the Analysis string name and were

stored in the an dataset two attacks were yielded as seen in Appendix 1: Code Box 59 and

Table 5.44.

Table 5. 44. Analysis attacks from CAPEC

ID Name

192 Protocol Analysis

621 Analysis of Packet Timing and Sizes

136

The shell attacks from CAPEC were extracted using the Shell string name and were stored in

the sc dataset as seen in Appendix 1: Code Box 60 and Table 5.45.

Table 5. 45. Shell attacks from CAPEC.

ID Name

650 Upload a Web Shell to a Web Server

A filter of both backdoors attacks and worm’s attacks yielded not a single attack within the

CAPEC repository as seen in Appendix 1: Code Box 61.

5.9.2. Merging of Attacks In UNSW-NB_15 Found In CAPEC.

The UNSW-NB_15 attacks that were found in the CAPEC repository were merged together

to form a single dataset named filt, as seen in Appendix 1: Code Box 61 .Table 5.46 shows

the output, the total number of attacks retrieved were twenty-five.

Table 5. 46. UNSW-NB_15 found in CAPEC.

ID Attack

21 Exploitation of Trusted Identifiers
22 Exploiting Trust in Client
43 Exploiting Multiple Input Interpretation Layers
50 Password Recovery Exploitation

121 Exploit Non-Production Interfaces
149 Explore for Predictable Temporary File Names
160 Exploit Script-Based APIs
180 Exploiting Incorrectly Configured Access Control Security Levels
217 Exploiting Incorrectly Configured SSL
663 Exploitation of Transient Instruction Execution
665 Exploitation of Thunderbolt Protection Flaws
679 Exploitation of Improperly Configured or Implemented Memory Protections
680 Exploitation of Improperly Controlled Registers
681 Exploitation of Improperly Controlled Hardware Security Identifiers
468 Generic Cross-Browser Cross-Domain Theft
122 Fuzzing for garnering J2EE/.NET

28 Fuzzing
215 Fuzzing for application mapping

261 Fuzzing for garnering other adjacent user/sensitive data
469 HTTP DoS
582 Violating Implicit Assumptions Reg...
529 Malware-Directed Internal Reconnaissance
192 Protocol Analysis
621 Analysis of Packet Timing and Sizes
650 Upload a Web Shell to a Web Server

137

5.9.3. Mapping UNSW-NB_15 Attacks Identified CAPEC To STRIDE Threat

Model

For the researcher to be able to achieve the mapping process the first stem was to look at the

description of the twenty-five attacks found in CAPEC. Table 5.47 shows those attacks

Table 5. 47. UNSW-NB_15 Attacks Category vis a vis CAPEC Attack Patterns

UNSBw 15 Attack CAT CAPEC ID CAPEC Attacks patterns

Exploits (14 attacks)

121 Exploit Non-Production Interfaces
149 Explore for Predictable Temporary File Names
160 Exploit Script-Based APIs
180 Exploiting Incorrectly Configured Access Contr...

21 Exploitation of Trusted Identifiers
217 Exploiting Incorrectly Configured SSL

22 Exploiting Trust in Client
43 Exploiting Multiple Input Interpretation Layers
50 Password Recovery Exploitation

663 Exploitation of Transient Instruction Execution
665 Exploitation of Thunderbolt Protection Flaws
670 Exploitation of Improperly Configured or Imple...
680 Exploitation of Improperly Controlled Registers
681 Exploitation of Improperly Controlled Hardware...

Generic (1 attack) 468 Generic Cross-Browser Cross-Domain Theft

Fuzzers (4 attack)

122 Fuzzing for garnering J2EE/.NET-ba...
215 Fuzzing for application mapping
261 Fuzzing for garnering other adjacent user/sens...

28 Fuzzing

DOS (2 attacks)
469 HTTP DoS
582 Violating Implicit Assumptions Reg...

reconnaissance (1) 529 Malware-Directed Internal Reconnaissance

analysis(2attacks)
192 Protocol Analysis
621 Analysis of Packet Timing and Sizes

Shellcode (1 attack) 650 Upload a Web Shell to a Web Server

5.10. Mapping Process of CAPEC Attacks to STRIDE

To aid in search process, a database schema was developed containing CAPEC attack

patterns with their respective mapping to STRIDE categories Figure 5.21 illustrates the

schema

138

Figure 5. 21. CAPEC/STRIDE database Schema.

The mapping table makes it simple to search the CAPEC attack patterns associated with a

specific STRIDE category. With this in mind, an algorithm was developed with the following

presumptions.

i. In terms of the most valuable patterns in the CAPEC collection are extensive patterns, stud

and hook respectively.

ii. As a general rule, it is preferable to choose an attack pattern that has a high chance of being

successful rather than one that has a low chance.

iii. A severe attack pattern is more useful or noteworthy.

iv. An attack pattern requiring little or no attacker expertise is more valuable or significant than

one requiring a lot of attacker skill.

v. Depending on their effect values, some STRIDE types prioritize components with high CIA

impact more than others. An attack method with a high Confidentiality Impact but low

Availability Impact is better for Spoofing threats than Denial of Service threats.

vi. A more significant benefit can be expected from an attack pattern with a more compelling

attack motivation.

As shown by Table 5.48 out of the 25 attacks that were detected only two attacks was not

mapped to the threat model that is CAPEC ID 122 Fuzzing for garnering J2EE/.NET-based

stack traces and ID 582 violating implicit assumptions regarding XML Content because it was

deprecated in the repository and is now considered privilege abuse

139

Table 5. 48. Mapping of STRIDE to CAPEC.

5.11. Risk Analysis of the Filtered Attacks.

An effective security risk analysis will seek out, assess, and implement key safeguards. Its

other primary focus is on avoiding vulnerabilities and bugs in software. Through a risk

assessment, a company may get a bird's eye view of its whole portfolio of applications from

the perspective of a potential attacker. For managers, this means better choices about budgets,

equipment, and the use of security measures. In light of this, doing an analysis is a crucial part

of any effective risk management plan.

Risk analysis was done on the identified 23 attacks that were mapped to STRIDE threat model,

two parameters within the dataset was used in conducting the analysis that is “likelihood of

attacks” and “typical severity”. The first step was a variable fh2 was declared to store the two

UNSBw 15
Attack CAT

CAPEC
ID CAPEC Attacks S T R I D E

Exploits

21 Exploitation of Trusted Identifiers

22 Exploiting Trust in Client

43 Exploiting Multiple Input Interpretation Layers

50 Password Recovery Exploitation

121 Exploit Non-Production Interfaces

149 Explore for Predictable Temporary File Names

160 Exploit Script-Based APIs

180
Exploiting Incorrectly Configured Access Control Security
Levels

217 Exploiting Incorrectly Configured SSL

663 Exploitation of Transient Instruction Execution

665 Exploitation of Thunderbolt Protection Flaws

679
Exploitation of Improperly Configured or Implemented
Memory Protections

680 Exploitation of Improperly Controlled Registers

681
Exploitation of Improperly Controlled Hardware Security
Identifiers

Generic 468 Generic Cross-Browser Cross-Domain Theft

Fuzzers

122 Fuzzing for garnering J2EE/.NET
28 Fuzzing

215 Fuzzing for application mapping
261 Fuzzing for garnering other adjacent user/sensitive data

DOS
469 HTTP DoS
582 Violating Implicit Assumptions Reg...

reconnaissance 529 Malware-Directed Internal Reconnaissance

analysis
192 Protocol Analysis

621 Analysis of Packet Timing and Sizes

Shellcode 650 Upload a Web Shell to a Web Server

140

parameters of the attacks as show in Appendix 1: Code Box 63. Table 5.49 shows the output

obtained.

Table 5. 49. Risk Analysis of Filtered Attacks.

ID Name
Likelihood
Of Attack

Typical
Severity

121 Exploit Non-Production Interfaces Low High
180 Exploiting Incorrectly Configured Access Contr... High Medium
21 Exploitation of Trusted Identifiers High High
22 Exploiting Trust in Client High High
43 Exploiting Multiple Input Interpretation Layers Medium High
50 Password Recovery Exploitation Medium High

679 Exploitation of Improperly Controlled Registers Medium High
215 Fuzzing for application mapping High Low
28 Fuzzing High Medium

650 Upload a Web Shell to a Web Server Medium High

5.11.1. Quantitative Risk Analysis.

Quantitative risk analysis involves the use of numeric values to rank the level of various risks

to the technological infrastructure. Since the logs in CAPEC were qualitative, they are

converted into quantitative values as shown Appendix 1: Code Box 64 . To start the process,

a duplicate of the 23 found attacks is made so that referencing to the original version of the

data could be easily done. Using a 4*4 risk matrix each qualitative value was assigned its

respective quantitative value. Table 5.50 shows the sample output.

Table 5. 50. Quantitative Risk Analysis of the Filtered Attacks.

ID Name Likelihood Of Attack Typical Severity

121 Exploit Non-Production Interfaces 1 3
180 Exploiting Incorrectly Configured Access Contr... 3 2
21 Exploitation of Trusted Identifiers 3 3
22 Exploiting Trust in Client 3 3
43 Exploiting Multiple Input Interpretation Layers 2 3
50 Password Recovery Exploitation 2 3

679 Exploitation of Improperly Controlled Registers 2 3
215 Fuzzing for application mapping 3 1
28 Fuzzing 3 2

650 Upload a Web Shell to a Web Server 2 3

To generate the risk, score the values are obtained by the product of the likelihood of attack

and typical severity as illustrated in Appendix 1: Code Box 65 then stored in the filtfh4 dataset.

Table 5.51 shows the risk score obtained.

141

Table 5. 51. Risk Score of the Filtered Attacks.

ID Name Likelihood Of Attack Typical Severity Risk Score

121 Exploit Non-Production Interfaces 1 3 3
180 Exploiting Incorrectly Configured Access Contr... 3 2 6
21 Exploitation of Trusted Identifiers 3 3 9
22 Exploiting Trust in Client 3 3 9
43 Exploiting Multiple Input Interpretation Layers 2 3 6
50 Password Recovery Exploitation 2 3 6

679 Exploitation of Improperly Controlled Registers 2 3 6
215 Fuzzing for application mapping 3 1 3
28 Fuzzing 3 2 6

650 Upload a Web Shell to a Web Server 2 3 6

Table 5. 52. Quantitative risk analysis of all the filtered attacks

 ID Name
Likelihood
Of Attack

Typical
Severity

468 Generic Cross-Browser Cross-Domain Theft 2 2
121 Exploit Non-Production Interfaces 1 3

149 Explore for Predictable Temporary File Names 2 2

160 Exploit Script-Based APIs 2 2

180
Exploiting Incorrectly Configured Access Control Security
Levels

3 2

21 Exploitation of Trusted Identifiers 3 3

217 Exploiting Incorrectly Configured SSL 1 2

22 Exploiting Trust in Client 3 3

43 Exploiting Multiple Input Interpretation Layers 2 3

50 Password Recovery Exploitation 2 3

663 Exploitation of Transient Instruction Execution 1 4

681
Exploitation of Improperly Configured or Implemented
Memory Protections

2 4

680 Exploitation of Improperly Controlled Registers 2 3

681
Exploitation of Improperly Controlled Hardware Security
Identifiers

2 4

215 Fuzzing for application mapping 3 1

261 Fuzzing for garnering other adjacent user/sensitive data 2 2

28 Fuzzing 3 2

469 HTTP DoS 2 1

582 Violating Implicit Assumptions Reg...Deprecated 2 2

529 Malware-Directed Internal Reconnaissance 2 2

192 Protocol Analysis 1 1

621 Analysis of Packet Timing and Sizes 2 1

650 Upload a Web Shell to a Web Server 2 3

Out of the 23 attacks 13 attacks had missing values either in likelihood of attack or typical

severity hence it was hard to compute a risk score. To solve the problem, all the missing values

142

were replaced with the average score which is 2 as shown in Appendix 1: Code Box 66 and

the generated output in Table 5.52.

To generate the final quantitative risk, score the Appendix 1: Code Box 67 and Table5.53

gives the final output of the quantitative risk score.

Table 5. 53. Quantitative Risk Score of all the Filtered Attacks.

 ID Name
Likelihood
Of Attack

Typical
Severity

Risk
Score

468 Generic Cross-Browser Cross-Domain Theft 2 2 4

121 Exploit Non-Production Interfaces 1 3 3

149 Explore for Predictable Temporary File Names 2 2 4

160 Exploit Script-Based APIs 2 2 4

180 Exploiting Incorrectly Configured Access Control Security Levels 3 2 6

21 Exploitation of Trusted Identifiers 3 3 9

217 Exploiting Incorrectly Configured SSL 1 2 2

22 Exploiting Trust in Client 3 3 9

43 Exploiting Multiple Input Interpretation Layers 2 3 6

50 Password Recovery Exploitation 2 3 6

663 Exploitation of Transient Instruction Execution 1 4 4

681
Exploitation of Improperly Configured or Implemented Memory
Protections

2 4 8

680 Exploitation of Improperly Controlled Registers 2 3 6

681 Exploitation of Improperly Controlled Hardware Security Identifiers 2 4 8

215 Fuzzing for application mapping 3 1 3

28 Fuzzing 3 2 6

582 Violating Implicit Assumptions 2 2 4

469 HTTP DoS 2 1 2

582 Violating Implicit Assumptions Reg...Deprecated 2 2 4

529 Malware-Directed Internal Reconnaissance 2 2 4

192 Protocol Analysis 1 1 1

621 Analysis of Packet Timing and Sizes 2 1 2

534 Upload a Web Shell to a Web Server 2 3 6

143

5.11.2. Qualitative Risk Analysis.

The final risk score was mapped to its respective qualitative value as shown in Appendix 1:

Code Box 68 and the output obtained as shown in the Table 5.54

Table 5. 54. Qualitative Risk Mapping Score of all the Filtered Attacks.

 ID Name
Likelihood Of

Attack
Typical
Severity

Risk
Score

468 Generic Cross-Browser Cross-Domain Theft 2 2 Medium
121 Exploit Non-Production Interfaces 1 3 Low
149 Explore for Predictable Temporary File Names 2 2 Medium
160 Exploit Script-Based APIs 2 2 Medium
180 Exploiting Incorrectly Configured Access Contr... 3 2 Medium
21 Exploitation of Trusted Identifiers 3 3 High

217 Exploiting Incorrectly Configured SSL 1 2 Low
22 Exploiting Trust in Client 3 3 High
43 Exploiting Multiple Input Interpretation Layers 2 3 Medium
50 Password Recovery Exploitation 2 3 Medium

663 Exploitation of Transient Instruction Execution 1 4 Medium
679 Exploitation of Improperly Configured or Imple... 2 4 High
680 Exploitation of Improperly Controlled Registers 2 3 Medium

681
Exploitation of Improperly Controlled
Hardware...

2 4 High

215 Fuzzing for application mapping 3 1 Low
261 Fuzzing for garnering other adjacent user/sens... 2 2 Medium
28 Fuzzing 3 2 Medium

469 HTTP DoS 2 1 Low
582 Violating Implicit Assumptions Reg... 2 2 Medium
529 Malware-Directed Internal Reconnaissance 2 2 Medium
192 Protocol Analysis 1 1 Low
621 Analysis of Packet Timing and Sizes 2 1 Low

650 Upload a Web Shell to a Web Server 2 3 Medium

144

Table 5.55 shows the 23 attacks categorized in relation to High, Medium and low Risk

attacks

Table 5. 55. High, Medium, low Risk attacks

ID High Risk Attacks

21 Exploitation of Trusted Identifiers

22 Exploiting Trust in Client

679 Exploitation of Improperly Configured or Imple...

681 Exploitation of Improperly Controlled Hardware...

 ID Medium Risk Attacks

468 Generic Cross-Browser Cross-Domain Theft

149 Explore for Predictable Temporary File Names

160 Exploit Script-Based APIs

180 Exploiting Incorrectly Configured Access Contr...

43 Exploiting Multiple Input Interpretation Layers

50 Password Recovery Exploitation

663 Exploitation of Transient Instruction Execution

680 Exploitation of Improperly Controlled Registers

261 Fuzzing for garnering other adjacent user/sens...

28 Fuzzing

582 Violating Implicit Assumptions Reg...

529 Malware-Directed Internal Reconnaissance

650 Upload a Web Shell to a Web Server

 ID Low Risk Attacks

217 Exploiting Incorrectly Configured SSL

215 Fuzzing for application mapping

469 HTTP DoS

192 Protocol Analysis

621 Analysis of Packet Timing and Sizes

5.12. Defense Mechanism for the Attacks

The following Code in Appendix 1: Code Box 69 was executed to extract the defense

mechanisms available for the 23 attacks. Table 5.56 shows the defense mechanism extracted.

Out of the 23 attacks only 17 had defense mechanisms six attacks namely Exploit Script-

Based APIs, Explore for Predictable Temporary File Names, fuzzing for garnering other

adjacent user/sensitive data, Generic Cross-Browser Cross-Domain Theft, Protocol Analysis,

and Violating Implicit Assumptions Regarding XML Content (aka XML Denial of Service

(XDoS)) had no defense mechanisms.

145

Table 5. 56. Defense Mechanisms for the Filtered Attacks.

Attack Defense Mechanism
Analysis of
Packet Timing
and Sizes

• The solution here is to distort packet sizes and timing at the VPN layer by adding padding
to normalize packet sizes and timing delays, this will reduce information leakage through
timing.

Exploit Non-
Production
Interfaces

• Ensure that non-production interfaces are not present in production systems and that
these interfaces are exclusively utilized in development environments.

Exploitation of
Improperly
Configured or
Implemented
Memory
Protections

• Make sure that the protected and unprotected memory ranges are separated and do not
overlap. If memory areas must overlap, take use of memory priority methods. Ensure that
the original and mirrored memory areas are protected in the same way. Ensure that only
immutable code or data is stored in ROM or write-once memory.

Exploitation of
Improperly
Controlled
Hardware
Security
Identifiers

• Examine the production of security IDs for anomalies in design and frequent flaws.
Examine security identifier decoders for design flaws and frequent flaws. In both pre-
silicon and post-silicon contexts, test security identifier definition, access, and
programming flow.

Exploitation of
Improperly
Controlled
Registers

• Create appropriate access control rules for software access to hardware registers and
ensure that these policies are implemented in line with the design specifications. Check
security lock bit safeguards for design discrepancies and common flaws. In both pre-
silicon and post-silicon contexts, test the security lock programming flow. Use automated
techniques to ensure that values cannot be reprogrammed and that write-once fields are
locked on writing zeros.

• Ensure that measurement data is kept in read-only registers or has access restrictions to
avoid tampering by an untrusted agent.

Exploitation of
Transient
Instruction
Execution

• Implement DAWG (Dynamically Allocated Way Guard) - processor cache properly
divided between different programs/processes that do not share resources::

• Implement KPTI (Kernel Page-Table Isolation) to completely separate user-space and
kernel space page tables.

• Configure Architectural Design of Microcode to limit abuse of speculative execution and
out-of-order execution::

• Disable Shared Array Buffer for Web Browsers.

• Disable Copy-on-Write between Cloud Virtual Machines.

• Configure Privilege Checks on Cache Flush Instructions.

• Implement Non-inclusive Cache Memories to prevent Flush+Reload Attacks
Exploitation of
Trusted
Identifiers

• Utilize strong federated identity such as SAML to encrypt and sign identity tokens in
transit.

• Use industry standards session key generation mechanisms that utilize high amount of
entropy to generate the session key. Many standard web and application servers will
perform this task on your behalf.

• If the identifier is used for authentication, such as in the so-called single sign on use
cases, then ensure that it is protected at the same level of assurance as authentication
tokens.

• If the web or application server supports it, then encrypting and/or signing the identifier
(such as cookie) can protect the ID if intercepted.

• Use strong session identifiers that are protected in transit and at rest.

146

• Utilize a session timeout for all sessions, for example 20 minutes. If the user does not
explicitly logout, the server terminates their session after this period of inactivity. If the
user logs back in then a new session key is generated.

• Verify authenticity of all identifiers at runtime.
Exploiting
Incorrectly
Configured
Access Control
Security Levels

• Configure the access control correctly.

Exploiting
Incorrectly
Configured SSL

• Usage of configuration settings, such as stream ciphers vs. block ciphers and setting
timeouts on SSL sessions to extremely low values lessens the potential impact. Use of
later versions of TLS (e.g. TLS 1.1+) can also be effective, but not all clients or servers
support the later versions.

Exploiting
Multiple Input
Interpretation
Layers

• An iterative approach to input validation may be required to ensure that no dangerous
characters are present. It may be necessary to implement redundant checking across
different input validation layers.

• Ensure that invalid data is rejected as soon as possible and do not continue to work with
it. Make sure to perform input validation on canonicalized data (i.e. data that is data in its
most standard form). This will help avoid tricky encodings getting past the filters. Assume
all input is malicious.

• Create an allow list that defines all valid input to the software system based on the
requirements specifications. Input that does not match against the allow list would not
be permitted to enter into the system.

Exploiting Trust
in Client

• Ensure that client process and/or message is authenticated so that anonymous
communications and/or messages are not accepted by the system.

• Do not rely on client validation or encoding for security purposes.

• Utilize digital signatures to increase authentication assurance.

• Utilize two factor authentication to increase authentication assurance.

• Perform input validation for all remote content.
Fuzzing • Test to ensure that the software behaves as per specification and that there are no

unintended side effects.

• Ensure that no assumptions about the validity of data are made. Use fuzz testing during
the software QA process to uncover any surprises, uncover any assumptions or
unexpected behavior.

Fuzzing for
application
mapping

• Construct a 'code book' for error messages. When using a code book, application error
messages aren't generated in string or stack trace form, but are catalogued and replaced
with a unique (often integer-based) value 'coding' for the error. Such a technique will
require helpdesk and hosting personnel to use a 'code book' or similar mapping to decode
application errors/logs in order to respond to them normally. Wrap application
functionality (preferably through the underlying framework) in an output encoding
scheme that obscures or cleanses error messages to prevent such attacks. Such a
technique is often used in conjunction with the above 'code book' suggestion. Obfuscate
server fields of HTTP response. Hide inner ordering of HTTP response header. Customizing
HTTP error codes such as 404 or 500. Hide HTTP response header software information
filed. Hide cookie's software information filed. Obfuscate database type in Database API's
error message.

HTTP DoS • Configure web server software to limit the waiting period on opened HTTP sessions Use
load balancing mechanisms

Malware-
Directed Internal
Reconnaissance

• Keep patches up to date by installing weekly or daily if possible.

• Identify programs that may be used to acquire peripheral information and block them by
using a software restriction policy or tools that restrict program execution by using a
process allow list.

147

Password
Recovery
Exploitation

• Use multiple security questions (e.g. have three and make the user answer two of them
correctly).

• Let the user select their own security questions or provide them with choices of questions
that are not generic.

• E-mail the temporary password to the registered e-mail address of the user rather than
letting the user reset the password online.

• Ensure that your password recovery functionality is not vulnerable to an injection style
attack.

Upload a Web
Shell to a Web
Server

• Make sure your web server is up-to-date with all patches to protect against known
vulnerabilities.

• Ensure that the file permissions in directories on the web server from which files can be
execute is set to the least privilege settings, and that those directories contents is
controlled by an allow list.

148

CHAPTER 6

DISCUSSIONS AND FINDINGS

6.1. Summary of Findings

The overall objective of this study was to develop a holistic security pattern-based model for

the network architecture and test its adoption towards the enhancement of network security.

To achieve this the study assessed the techniques, models, frameworks that guide in the design

and development of a secure network architecture. conceptualized and developed security

pattern-based model for the network architecture, tested the conceptual security pattern-based

model and evaluated the generated patterns contribution to network security assurance.

The first specific objective was addressed by conducting an extensive literature review to

identify existing techniques, models, and frameworks related to secure network architecture.

Identified limitations in the existing literature that the study aimed to address.

the second specific objective was addressed, based on the literature review, the study

conceptualized a security pattern-based model for network architecture by defining the key

components and principles of the proposed model which constituted the extended OSI, the

three-layer Network Security Domain, CAPEC Pattern Repository, STRIDE threat model, and

Risk Assessment which were used to develop the model and clearly articulated how the model

addressed the problem of network attacks security

In the third specific objective was achieved by conducting a simulation of the developed

security pattern-based model with scenarios to test the model's effectiveness in enhancing

network security and Gathered data on the model's performance.

The fourth specific objective was achieved by defining the specific criteria for evaluating the

contribution of generated patterns to network security assurance, Analyzing the results against

the defined evaluation criteria and then discussing the strengths and weaknesses of the

generated security patterns

As discussed in the chapter 5 for the purpose of testing the model it was split in three stages

as illustrated in Figure 5.1, 5.2 and 5.3. With their respective input and output processes. In

the first stage of the model Figure 5.1 the output was to identify the attacks and their respective

targeted attacked network surface. Feature selection process using the select Kbest feature

149

selection algorithm was conducted on the dataset to identify the appropriate features which

was subsequently subjected to machine learning algorithms (KNeighbors classifier, Random

Forest classifier and GaussianNB) to achieve the goal in this process. it was noted the 50.5 %

(11214) of the attacks targeted the Host layer, 30.5 % (6770) targeted the user layer while 19

% (4231) targeted the media layer.

From UNSW-NB dataset its shows that a higher percentage of the attack were mainly

targeting the upper layers of the network architecture that is transport, session, presentation

and application layers, followed by attacks that target the users of the network and finally

attacks on network hardware. From these findings it depicts generally what you would

“typically” expect in terms of attacks in a typical network, since for a hacker the low hanging

fruits for target are mainly the upper layers because their mode of operation and

communication the cuts across networks and the internet offers a wide surface area of attacks

followed by users and finally the hardware since they a hard to access unless you are an insider

who is authorized. In relation to risk assessment more emphasis on protection should be placed

on the upper layers of this network though it should be noted that networks are different and

business operations are different hence attack surface vary hence every network should be

analyzed to determine which layer is highly susceptible to attacks.

In the first stage of the model the study also explored the attacks and their distribution on each

surface as shown in visualization Figure 5.20 and percentage distribution in each surface on

Table 5.37. Generally, the exploits constituted 48% of the attacks followed by generic

(22.7%), Fuzzers (12.2%), Reconnaissance (7.69%), Dos (5.02%), Backdoor (3.01%),

analysis (0.6%), Shellcode (0.33%) and worms (0.11%). Exploits attacks generally constitute

infiltrations or codes that would take advantage of applications security vulnerabilities they

are payloads that are generally included within malwares or processes. According to survey

conducted by (InfoSec Insights, 2020) the leading motivation of hackers is financial gain,

Verizon’s 2020 Data Breach Investigations Report (DBIR) shares that 86% of the data

breaches they analyzed were financially motivated through breach of databases and

application using malware (Verizon, 2021).

The second stage of the model in Figure 5.2 the output was to identify relevant attacks. To

achieve the output in Figure 5.1 (first stage) which is the input in the second stage in Figure

150

5.2 was subjected to the CAPEC repository to check for their existing attack patterns which

was further mapped to STRIDE categories eventually generating relevant attacks. Using a

string-based approach a search of the nine categories of attacks as identified in Figure 5.1

(first stage) were done within the CAPEC repository and their respective find of 25 attack

patterns shown in Table 5.39 (1generic attack), Table 5.40 (14 exploits attacks), Table 5.41

(4 Fuzzers attacks), Table 5.42 (3 Dos attacks), Table 5.43 (1 Reconnaissance attacks). Table

5.44 (2 Analysis attacks) and Table 5.45 (1 Shell Attack). It should be noted that two attacks

namely backdoors and worms that were in UNSW-NB attacks did not yield any attack patterns

within CAPEC repository. Lastly within this part of model a mapping of the 25 CAPEC

patterns to STRIDE was done out of where by only two patterns ID: 122 and 582 could not

be mapped due to it being deprecated within the repository as shown in Table 5.47.

The third stage Figure 5.3 was to generate defensive patterns in this process a risk analysis

process was conducted on the patterns to identify the risk levels of each attack as shown in

Table 5.55 Later defense mechanisms for the patterns were generated as shown with Table

5.56.

6.2. Generation of Worms and Backdoor Patterns for CAPEC

Repository.

Since the worm and backdoor attack patterns were missing from the CAPEC the study set out

to generate the pattern for the two attacks. The patterns in Table 6.1 and 6.2 below were based

from literature, concerning the worms the researcher looked at infamous worms, structure of

worms, how worms attack, their propagation and activation methods, worm’s anti detection

techniques, categories of worms, how worms are designed, how to detect worms and defenses

against worms. In relation to backdoors the researcher looked how backdoor are used to attack,

how they are design, various backdoor techniques and defenses against backdoors

respectively.

151

6.2.1. General Worm Pattern

Table 6.1. shows a general worm attack generated by the researcher.

Table 6. 1. Worm Attack Pattern and Defense

Name Worm Attacks

Abstraction Detailed

Status Draft

Description "A worm is a program, which can self-replicate and propagate over the network,
with or without human intervention, and has malicious intent. Worms are
malware that self-replicate and infect other computers while remaining active on
compromised systems. They replicate to infect uninfected machines. It achieves
this by abusing automated and unnoticed portions of an operating system.
Worms are usually discovered when their uncontrolled reproduction consumes
system resources, delaying or stopping other operations.

Alternate
Terms

Likelihood Of
Attack

High

Typical
Severity

High

Related
Attack
Patterns

This is a parent pattern.

Execution
Flow

The attack takes advantage of an enabling vulnerability in the network, hosts and
operating system and installs itself. After gaining access to devices, a worm
replicates and selects new targets. After the worm infects the device, the attacker
has access to the host—often as a privileged user. Attackers use a local exploit to
escalate their privilege level to the administrator level.

Prerequisites For email worms it requires naivety of email users and lack of email malware
filter.
For P2P/ file sharing worms is unregulated file sharing software
For IM worms click baits through the chat software
For internet work is vulnerabilities in the OS such as weak passwords

Skills
Required

Generally Social engineering and deception skills from the side of the attacker,
conducting network scanning and sniffing.

Resources
Required

Unpatched host, High speed Internet, compromised email system, privileged file
system properties like read/write.

Indicators You receive an e-mail or a chat from an entity that that poses as a system
administrator that you need to perform an update by downloading a particular
software and the link is provided.

Consequence
s

Scope: Confidentiality Technical Impact: Access to confidential data, Staling of
data
Scope: Availability Technical Impact: deletion of files, Denial of service
Scope: Integrity Technical Impact: alteration of files

152

Mitigations Detection techniques.

Traffic analysis: Check for growth in traffic volume especially exponential hits on

servers, Check for rise in number of scan sweeps especially exponential in unique

sources, Check for change in traffic patterns for hosts within the network.

Resources required include Packet capture tools, Packet capture tools.

Honey Pot Monitoring: Set up host with services configured for a worm attack.

Take a snapshot using low level tools to provide basic a baseline measurement

that can be used any alteration. Use tripwire or any other related tool for

recursive examination of file properties, any change on attributes should signal a

malicious activity. Use a network monitor to log all inbound and outbound traffic

from the host to look for suspicious packet, you can either employ snort or real

secure tools to achieve this process. Isolate the host for offline analysis or mount

the disk image to another host for analysis low level tools like coroner can be

used to achieve this process.

Black Hole Monitoring: Identify locally unused subnets within your address space

and route them to a single router. Monitor the number of request for access to

the unallocated network space, using internal routers that advertise routes. View

the network or the subnet as hole and anything that is goes into it as a traffic of

interest. Using scanners monitor all traffic including SYN packets from worms for

the basis of worm analysis. Use LaBrea tool to capture the first data packet of the

connection and use it to classify the type of traffic. Data for analysis of this

process can be sourced from the exported flow logs of routers and layer three

switches, which gives the information about attempts to access the unallocated

network space. Place passive network monitor at both the entrance of the

network and the router interface that serves the network black hole to collect

suspicious traffic.

Signature based Detection:

Network Payload Signatures: Analyze payload matching signatures based on
string comparison of application protocols and network characteristics to detect
malicious patterns.
Log file analysis: analyze the log files both application and system logs to finger
print the behavior of a worm by looking at errors issued when it probes a
machine.
File signature analysis: use anti malware tools which contains most of the
signature analysis tools

• Use chkrootkit, to recursively analyzes files on the system and examines for

known malicious files and patterns.

• check_wtmpx, to examine the integrity of the login logfiles for signs of tampering.

• chklastlog, to examine the integrity of the file for signs of modification.

• chkproc, a binary tool that looks for differences between the observable process

table and the actual kernel mappings in the /proc Filesystem. Differences would

153

be indicative of a kernel module designed to hide the presence of attackers or

malware.

• ifpromisc and strings, two small auxiliary applications that can be used to

establish a trustworthy baseline for the entire process.

Defense techniques.

Host based:

Implement host based firewalls to act as failover for the network firewall. Perform

course grained configuration on network ports and services that should be

accessed so that worm cannot access the system though unauthorized paths.

Perform fine grained configuration on which hosts are allowed to connect to the

services

Implement anti-virus with an up to date definitions for both clients and servers to

detected worm executables and either quarantine them or remove them from

systems on the network. For large networks implement a centralized AV solution

for easy of management of configuration and push mechanisms for definitions.

Do not let servers run with system level rights they should be left on unprivileged

user ID unless when doing configurations, implement by binding a reserved

listening socket to accept inbound connections for system to run in a limited

privilege space. Configure ACLs dropping privileges to immediately revoke the

elevated user ID value once the operations at that level are complete

On the processes running on elevated rights have the child processes to handle the

workload under the control of a privileged process

Sand boxing of applications i.e. portioning system access for applications to

minimize any damage an attacker will make to a small subset of the file system

Use network scanners to identify and disable unneeded services and features to

reduce the exposure of services running on any host

Patch known vulnerable holes

Set baseline measurements to establish the normal traffic levels for a network and

its component hosts to detect hosts that are aggressively seeking new targets.

Network Based Defenses:

Setup and configure both perimeter firewall and subnet firewalls for failover

purposes

Configure firewall security policy that blocks inbound access to workstation

systems and denies external access to unauthorized servers not under central

administrative control

154

Identify the hosts that need to be accessed from the external network, then restrict

communication between these hosts and the trusted internal clients, and filter

services that do not need to receive external access

Implement proxy-based defenses to act as a holding space for data temporarily as

it awaits being transferred to the client, while there it can be monitored and

selectively passed or modified to remove objectionable material, such as attack

data or a potentially malicious payload.

Attacking the worm to disable or stagnate its spread like messaging the network

to shut down, Forge replies to a query that listening port’s the worms are using to

shut down.

Implement User training and awareness programs to educate users on dangers

and how to detect them.

Example
Instances

Using electronic mail and exploiting a known vulnerability in the e-mail client;
Spreading by open Windows networking file shares, infecting the file system on
the target computer; Attacking Web clients by uploading an exploit to the home
page of an infected site.

Related
Weaknesses

Overflow Buffers (100):: Clickjacking(103):: Brute Force(112):: Sniffing Network
Traffic(158)::

Taxonomy
Mappings

Worm attacks

Notes

155

6.2.2. General Backdoor Attack Pattern

Table 6. 2. General Backdoor Attack Pattern

Name Backdoors attack

Abstraction Standard

Status Draft

Description Backdoor attacks seek to circumvent any security measures; and Acquire root

access, i.e., administrator privileges, to a system. Once a malicious actor has

access to your network or endpoints, they can run a succession of more

sophisticated malware. They may do so in stages. An attacker begins with a

modest degree of access and gradually increases their privileges until they have

complete access to your systems. This sequential method assists the attacker in

evading discovery. Once the backdoor is installed, thieves will be able to monitor

your every move and get access to your devices. They may take complete

control of your digital life without your knowledge.

Alternate
Terms

Likelihood Of
Attack

High

Typical
Severity

High

Related
Attack
Patterns

This is a Parent Pattern

Execution
Flow

This attacks begin with the discovery of a weak spot or compromised program

on a device to exploit, this might be a weakness in an application, an

unsecured port on the network, an account with a weak password, or a piece

of malware placed on a device. The attacker then employs sophisticated

techniques to convince your device, network, or online account that the

backdoor is a legitimate program. Once the device has been hacked, the

backdoor can be used to install malware such as cryptojackers, rootkits, or

ransomware, steal data and monitor user behavior, or just crash your device.

Prerequisites Weak login credentials, physical access to the machine itself, phishing tricks,
unpatched anti malware, Trojan malwares, Key loggers.

Skills
Required

The attacker must have Social engineering skills to trick the user into installing

a Trojan to open a backdoor, programing skills to perform processes like remote

file inclusion, Without extra work or expertise, an attacker can utilize privileged

features to which they already have access. The attacker is simply needs to have

access to a compromised account. Certain more advanced attacks may involve

knowledge of protocols and probing techniques that aid in variable control. A

malevolent person may attempt to comprehend the authentication method in

order to circumvent it.

156

The attacker may also requires real-time access to network traffic in order to

extract required information from the stream. While there are tools available to

automate some operations, properly utilizing these technologies in an attack

scenario demands a thorough grasp of the underlying principles.

Resources
Required

A tool capable of displaying network communication flow like , Abel, tcpdump

Wireshark, , Cain etc. must also be able to convey their phishing plan to victims

(through email, instant chat, or other means), as well as a website or other

platform on which victims may submit personal information.

Indicators Your personal files are encrypted and you are request to pay to be given a

decryption key, high consumption of network resources the CPU and RAM

without the corresponding PIDs,

Consequences SCOPE: Confidentiality TECHNICAL IMPACT: Sniff password.

SCOPE: Access Control, TECHNICAL IMPACT: Gain Privileges

SCOPE: Authentication, TECHNICAL IMPACT: Bypass Protection Mechanism

SCOPE: Confidentiality: Read Data

SCOPE: Access Control: TECHNICAL IMPACT: Read Data:

SCOPE: Authorization TECHNICAL IMPACT: Execute Unauthorized Commands:

SCOPE: Access Control: TECHNICAL IMPACT: Modify Data:

SCOPE: Integrity TECHNICAL IMPACT: Alter Execution Logic:

Mitigations Detection techniques.

Deploy Anti-malware firewalls to scan files, URLs, and processes against threat

databases employ the following steps

1. On the infected system, install the antivirus software. If the antivirus was

already installed on the computer when it became infected, replace it.

2. Verify that both the program and the virus definitions are current.

3. Turn off your computer's internet connection. Detach the network adapter

from the computer and physically disconnect the cord. Turn down the router

and/or modem as well if you suspect router malware.

4. Reboot into safe mode and do a thorough system scan.

5. Reboot your computer and do another complete system scan. Include any

network devices.

6. Restore your computer to a previous date to undo any changes done to files

by the backdoor malware.

7. Repeat steps 1-6 for each device connected to the network. Backdoor

infections replicate similarly to worms, therefore scan the whole network

before lowering the red warning level. Deploy firewalls to continuously

monitor all operating programs, communication requests, and file changes.

157

Locate the malware through an iterative process of discovery and analysis

Deploy VPN with built-in backdoor detection and removal tool

In case of a supply chain attacks and hardware backdoors Install a firmware

version that is not susceptible to the backdoor. If that fails, you'll need to

dispose of the infected hardware.

Ascertain that the Cybersecurity team conducts a thorough examination of the

site's access records for anything unusual.

Defense techniques.

Avoid purchasing hardware from dubious sources. Ascertain that everything

you purchase is covered by a manufacturer and seller guarantee.

Avoid relying on the system's default login credentials. A strong password that

is unique to you is the best defense against backdoors and viruses. Whenever

feasible, use multi-factor authentication.

Downloading files or installing software from untrusted sources is not

recommended.

Avoid connecting to the Internet using insecure public connections. Purchase

VPNs immediately to secure your connection.

Maintain an up-to-date antivirus and perform frequent complete system

scans.

By periodically upgrading the firmware, you may repair vulnerabilities.

Conduct code reviews to detect and seal vulnerabilities related to programing

logic

Conduct network scans to identify unsecured and unfiltered port and

remediate

Enforce password complexity policy through a centralized access control

directory services.

Example
Instances

Audio and video records can be sent from an enemy to a C2 server or a similar

device. A Car Whisperer attack allows an attacker to record and collect sounds

from a vehicle's audio peripherals. When a vehicle's Bluetooth hands-free

system is in pairing mode, an intruder may try to connect to it if they are nearby.

As long as an authentication mechanism is in place, an attacker may be able to

play music or voice recordings, as well as start a recording and record

conversations taking place within the car. The pairing security key must be reset

158

Table 6.2 shows a general backdoor attack pattern generated by the researcher.

6.3. Qualitative Analysis of Worms and Backdoor Patterns.
The developed worm and backdoor patterns are analyzed in this section, and two unique

criteria are used to evaluate them as described below.

Security patterns are used as a means of resolving specific forces. They're designed to deal

with security risks and should be adaptive, effective, and simple to implement and use, thus

we're attempting to identify these common factors that can be applied to any new security

pattern and used as a baseline for a qualitative analysis. These criteria, as well as the outcomes

of the comparison, are detailed in Section 5.3.1.

The second set of requirements may be stated as the ability of a certain security pattern to

respond to various types of attacks as outlined by (Howard & LeBlanc, 2003).The STRIDE

model was proposed by Howard and LeBlanc to represent the many types of attacks that might

to its default value or brute-forced for authentication to be successful (which

may be less practical in an outside environment) According to the level of

sensitivity, this scenario might be exceedingly dangerous. If an enemy is within

10-15 meters of the target device, he or she can utilize a technique known as

Bluebugging, which is similar to Bluesnarfing. As a result of Bluebugging,

attackers are able to listen to and record calls, forward calls, send SMS, and

access the phonebook.

Automated software upgrades are distributed to government and commercial

users that contain a concealed backdoor by a subcontractor working for the

developer of the product.

An attacker having access to and the capacity to change the

configuration/programming of FPGAs in organizational systems presents a

Trojan backdoor that may be exploited to alter the behavior of the original

system, potentially jeopardizing the secrecy of data being processed.

Related
Weaknesses

Authentication Abuse (114)::Authentication Bypass (115) ::Command
Injection(248):: Altered Installed BIOS(532):: Data Injected During
Configuration(536):: Altered Component Firmware(638):: Alteration of a
Software Update(669)::Design for FPGA Maliciously Altered(674).

Taxonomy
Mappings

Backdoor attacks

Notes

159

occur within a system. We assess the worm and backdoor security patterns based on how

effectively a network system adopting a given security pattern would respond to each probable

attack type. Section 5.3.2. Provides a quick overview of the attack categories based on the

STRIDE model.

6.3.1. Evaluating Worm and Backdoor Patterns on The Basis Of Their

Forces

The patterns were initially evaluated using the following criteria, which are often included in

the forces associated with each of these patterns:

Adaptability: When a pattern can accept shifting threats, it is considered to be adaptable.

For instance, the worm and backdoor patterns should be capable of defending against any

multi stage attacks from Media Layer all the way to user layer.

Auditability: A pattern is considered to be auditable if it includes a mechanism for maintaining

an audit trail. For instance, if all actions are documented, and an external attack occurs, an

audit trail facilitates the examination of the events that precipitated the attack, uncover

evidence of the attack, and provide recommendations on how to enhance the system. The audit

trail may not be defined as part of the pattern itself, but may be included as a feature of a

common system. What important is the ability to collect valuable information within the

pattern's classes.

Complexity: If a pattern is not overly complicated, it is simple to handle. However, if we

employ a particularly sophisticated security pattern, the administrators who apply the pattern

in a real-time context may have difficulty establishing the system, which can sometimes lead

to security flaws.

Cost: We can estimate the cost of adopting a security pattern. Depending on deployment

requirements or the need for specialist assistance, various patterns or variants of the same

pattern may have varied prices. Depending on the application, we might choose the one with

the lowest cost, even if it is not as secure as another.

Deployability: We can figure out how easy it will be to use the units of these patterns in a real-

world system. Because of this, the overhead will change.

160

Effectiveness: There is a good chance that a pattern is going to work well if the infrastructure

provided by it can handle a certain type of threat. For example, a worm security pattern should

be able to detect a wide range of worm attacks and respond to them in the right way.

Modifiability: A pattern is changeable or extendable if it can rapidly be tweaked or expanded

to accommodate new threats, functions, or variants of its functionalities.

Overhead: The amount of overhead in a pattern may be calculated. A security pattern could

contain methods that take a long time, need a long series of operations, or require the exchange

of numerous messages, for example. If the overheads of two patterns or variants of the same

pattern are different, one pattern may be selected for a given application.

Scalability: A pattern is considered scalable if it can easily accommodate extra users, entries,

or stakeholder participants. If a corporation uses a security pattern for day-to-day email

security, the pattern's units should be able to manage the circumstance when the number of

workers or email traffic doubles in a short period of time.

Usability: Usability refers to how easily a security pattern's unit may be configured and

utilized in a real-world context. Administrators will make mistakes if the pattern does not give

a clear security picture.

Table 6. 3. Evaluating Worm and Backdoor Patterns on The Basis Of Their Forces.

Pattern

A
d

a
p

ta
b

il
it

y

A
u

d
it

a
b

il
it

y

C
o

m
p

le
xi

ty

C
o

st

D
e
p

lo
y
a
b

il
it

y

E
ff

fe
ct

iv
e
n

e
ss

M
o

d
if

ia
b

il
it

y

O
v
e
rh

e
a
d

S
ca

la
b

il
it

y

U
sa

b
il
it

y

Worm H H H M M H H M L H

Backdoor M H H M M H H M H M
Legend: L – Satisfies Low; M – Satisfies Medium; H – Satisfies High

6.3.2. Evaluation of Worm and Backdoor Patterns Based On STRIDE.

The criteria for this evaluation may be stated as how effectively a certain security pattern

responds to various types of attacks as outlined by (Howard & LeBlanc, 2003).The STRIDE

model was proposed by Howard and LeBlanc to represent the many types of attacks that might

occur in a system. STRIDE categories have been explained in Chapter 2 Table 2.8.

161

Table 5.4 lists the criteria for evaluating the worm and backdoor patterns using the STRIDE

model to determine attack types. However, we have specified the assessment parameters,

which are D P and E which represents, is it possible to detect an attack using the security

pattern? Is it possible for the security pattern to protect against the attack in question? Is it

capable of providing extra or enhanced security? Respectively.

Table 6. 4. Evaluating the Worm and Backdoor Patterns Using STRIDE

PATTERN SP
O

O
FI

N
G

TA
M

P
ER

IN
G

R
EP

IU
D

IA
TI

O
N

IN
FO

R
M

A
TI

O
N

D

IS
C

LO
SU

R
E

D
EN

IA
L

O
F

SE
R

V
IC

E
EL

EV
ET

IO
N

 O
F

P
R

EV
IL

ED
G

E

Worm E P D P E D

Backdoor D P D E P E

Legend: D-Detection of threat.

P-Protection against threats.

E-Enhances protection.

162

CHAPTER 7

CONCLUSION AND RECOMMENDATIONS

7.1. Conclusions.

The findings of this study clearly demonstrates that the use of this model can go a long way

in improving the security of network. It can greatly assist network security specialist to

determine the surface of the network architecture is subjected to attacks which is currently a

challenge with the convectional Network security tools. After the attack and attack surface

has been identified the security specialists can leverage of on an attack pattern repository to

determine the available defense mechanism after conducting a risk assessment of the

identified attacks. The net effect of all this is that timely decisions can be made in relation to

protecting networks against attacks and recovering faster from attacks.

7.2. Contribution of the Research.

This study makes significant contributions to the existing body of knowledge in the field of

network security through several key avenues. Firstly, it addresses a crucial gap by advocating

for a holistic approach to network defense. This departure from the current fragmented

security measures underscores the need for a coordinated and comprehensive strategy,

offering a fresh perspective on enhancing network security.

A major contribution lies in the introduction of a security pattern-based model. By integrating

diverse frameworks and constructs, such as the Cisco three-layer hierarchical model, OSI

network architecture model, CAPEC attack pattern Repository, STRIDE threat Model, Risk

Management Framework, and Pattern Theory, the study proposes a unique and adaptable

model for safeguarding network architecture. This innovative approach adds depth to existing

knowledge by providing a framework that goes beyond traditional, siloed security solutions.

Furthermore, the study brings empirical validation to the forefront. Adopting machine

learning techniques, the research provides evidence-based insights into the effectiveness of

the proposed security model. This empirical dimension offers a practical foundation for the

theoretical framework, ensuring that the proposed model is not only conceptual but also

demonstrably effective in real-world scenarios.

163

The identification and evaluation of two new attack patterns (worms and backdoors) not

present in existing repositories contribute to the evolving understanding of cyber threats. This

recognition of potential blind spots in current security models emphasizes the need for

continuous evolution in defense strategies to effectively counter emerging threats.

Layer-specific analysis adds granularity to the study's contributions. By examining the

distribution of cyber-attacks across different network layers and categorizing attacks by

exploit type, the research provides nuanced insights. This detailed understanding allows for

more targeted and effective security measures, enhancing the practical applicability of the

study's findings.

Lastly, the study contributes to knowledge synthesis by integrating diverse frameworks.

Acknowledging the multifaceted nature of network security challenges, this integration

provides a more comprehensive approach for practitioners and researchers alike. The study,

therefore, not only expands the theoretical foundations but also offers practical insights for

the development of more robust and adaptive defense strategies in the ever-evolving landscape

of network security.

7.3. Recommendations.

Future research should focus on refining and validating the proposed security pattern-based

model through iterative testing in diverse network environments. Exploring advanced

machine learning techniques, conducting longitudinal analyses of cyber threats, and

integrating behavioral analytics are crucial for enhancing the model's sophistication and

adaptability. Cross-industry applicability assessments, the development of effective threat

intelligence sharing mechanisms, and investigations into human factors in security are

essential for broader and more effective implementation. Evaluating the model's robustness

against advanced attacks, conducting cost-benefit analyses, and examining regulatory

compliance implications are key areas for further exploration. Additionally, a holistic

assessment of the impact on end-user experience is recommended to strike a balance between

robust security measures and a seamless user interface.

164

REFERENCES.

Abomhara, M., Gerdes, M., & Køien, G. M. (2015). A stride-based threat model for telehealth

systems. Norsk informasjonssikkerhetskonferanse (NISK, 8(1), 82–96.

Abraham, R., Arora, D., Coles, M., Eckert, M., Heitman, M., Manion, A., & Yooun, A. (2015).

Common vulnerability scoring system v3. 0: Specification document. First.

Abrar, H., Hussain, S. J., Chaudhry, J., Saleem, K., Orgun, M. A., Al-Muhtadi, J., & Valli, C.

(2018). Risk analysis of cloud sourcing in healthcare and public health industry. IEEE

Access, 6, 19140–19150.

Abuonji, P., & Rodrigues, A. (2018). A Stratified Cyber Security Vigilance Model: An Augmentation

of Risk-Based Information System Security. https://doi.org/10.14738/TNC.65.5166

Adams, M., & Coplien, J. (1996). Fault-tolerant telecommunication system patterns. Pattern

Languages of Program Design. Addison-Wesley.

Agerbo, E., & Cornils, A. (1998). How to preserve the benefits of design patterns. Proceedings of

the 13thACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages

and Applications, 134–143.

Al Sukkar, G., Saifan, R., Khwaldeh, S., Maqableh, M., & Jafar, I. (2016). Address resolution

protocol (ARP): Spoofing attack and proposed defense.

Alabady, S. (2009). Design and Implementation of a Network Security Model for Cooperative

Network. Int. Arab. J. e Technol, 1(2), 26–36.

Alberts, C., Dorofee, A., Stevens, J., & Woody, C. (2003). Introduction to the OCTAVE Approach.

Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.

Alexander, C. (1977). A pattern language: Towns, buildings, construction. Oxford University Press.

https://archive.org/details/patternlanguage00chri/page/n5

Alexander, C. (1979a). The Timeless Way Of Building. Oxford University Press.

https://archive.org/details/TheTimelessWayOfBuilding/page/n1

165

Alexander, C. (1979b). The timeless way of building (Vol. 1). New york: Oxford university press.

Alferd, N. G., & M, S. (2017). Equifax data breach may affect nearly half the US population.

https://www.cnet.com/news/equifax-data-leak-hits-nearly-half-of-the-us-population/

Algaley, S. A., & Yousif, Y. A. (2022).

AlgoSec, Y. B. (2013). Uncovering the Dangers of Network Security Complexity.

https://www.wired.com/insights/2013/01/uncovering-the-dangers-of-network-security-

complexity/

Almubairik, N. A., & Wills, G. (2016). Automated penetration testing based on a threat model. 2016

11th International Conference for Internet Technology and Secured Transactions (ICITST,

413–414.

Altman, N., & Krzywinski, M. (2017). Ensemble methods: Bagging and random forests. Nature

Methods, 14(10), 933–935.

Altuhhova, O., Matulevičius, R., & Ahmed, N. (2012). Towards definition of secure business

processes. International Conference on Advanced Information Systems Engineering, 1–15.

Alzahrani, B. A., Vassilakis, V. G., & Reed, M. J. (2013). Mitigating brute-force attacks on Bloom-

filter based forwarding. 2013 Conference on Future Internet Communications (CFIC, 1–7.

Ambler, S. W. (1998). Process patterns. Cambridge University Press.

Amini, A., Jamil, N., Ahmad, A. R., & Zaba, M. R. (2015). Threat modeling approaches for securing

cloud computin. Journal of Applied Sciences, 15(7), 953–967.

Ammar, Y., & Hany, H. (2003). Pattern-oriented Analysis and Design: Composing Patterns to

Design Software Systems. Pearson Education Inc.

Ansar, S. A., & Khan, R. A. (2018). A phase-wise review of software security metrics. In

Networking Communication and Data Knowledge Engineering (pp. 15–25). Springer.

Anu, P., & Vimala, S. (2017). A survey on sniffing attacks on computer networks. 2017

International Conference on Intelligent Computing and Control (I2C2, 1–5.

166

Appleton, B. (2000). Patterns and Software: Essential Concepts and Terminology.

http://www.bradapp.com/docs/patterns-intro.html

Arora, V. (2010). Comparing different information security standards: COBIT vs. ISO, 27001.

Atighetchi, M., Soule, N., Watro, R., & Loyall, J. (2014). The Concept of Attack Surface Reasoning.

https://doi.org/10.13140/2.1.1491.6484

Awan, I. (2014). DEBATING THE TERM CYBER-TERRORISM: ISSUES AND PROBLEMS.

Undefined. https://www.semanticscholar.org/paper/DEBATING-THE-TERM-CYBER-

TERRORISM%3A-ISSUES-AND-Awan/18066b03bef29209009b55bfd6301f88a0e0f949

Aydinli, D. (2015). Software project management anti-patterns in innovation projects.

Aytug, H., Khouja, M., & Vergara, F. E. (2003). Use of genetic algorithms to solve production and

operations management problems: A review. International Journal of Production Research,

41(17), 3955–4009.

Baker, Y. S., Agrawal, R., & Bhattacharya, S. (2013). Analyzing security threats as reported by the

united states computer emergency readiness team (US-CERT. 2013 IEEE International

Conference on Intelligence and Security Informatics, 10–12.

Barnum, S., & Sethi, A. (2007). Attack patterns as a knowledge resource for building secure

software. In OMG Software Assurance Workshop: Cigital.

Bauer, B., & Patrick, A. (2014). A Human Factors Extension to the Seven-Layer OSI Reference

Model. https://www.andrewpatrick.ca/OSI/10layer.html

Beal, V. (2021). What is Open Systems Interconnection Model? | Webopedia [Blog]. Open Systems

Interconnection Model. https://www.webopedia.com/definitions/osi/

Beck, K. (1987). Using Pattern Languages for Object-Oriented Programs. OOPSLA-87 workshop

on the Specification and Design for Object-Oriented Programming. Oxford University

Press.

Beck, K., & Coplien, J. O. (1996). Industrial experience with design patterns. Proceedings of

8thInternational Conference on Software Engineering, 103–114.

167

Bell, D., & LaPadula, L. (1975). Secure computer systems: Mathematical foundations and model.

Technical Report M74–244. MITRE Corporation.

Berczuk, S. P., & Appleton, B. (2003). Software configuration management patterns: Effective

teamwork, practical integration. Addison-Wesley Professional.

Bergin, J. (2000). Fourteen pedagogical patterns. Proceedings of the 5thEuropean Conference on

Pattern Languages of Programming.

Bhalekar, P. D., & Shaikh, M. Z. (2019). A NOVEL SURVEY ON DoS ATTACKS.

Biskup, J. (2009). Elements of a Security Architecture. In Security in Computing Systems:

Challenges, Approaches and Solutions (pp. 303–354). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-540-78442-5_10

Bocetta, S. (2019). Network Security. https://www.networkcomputing.com/network-

security/problem-complex-networks-getting-harder-secure

Bodeau, D. J., & McCollum, C. D. (2018). System-of-systems threat model. MITRE CORP

MCLEAN VAHOMELAND SECURITY SYSTEMS ENGINEERING AND

DEVELOPMENT INSTITUTE.

Bodeau, D. J., McCollum, C. D., & Fox, D. B. (2018a). Cyber threat modeling: Survey, assessment,

and representative framework (M. I. T. R. E. C. O. R. P. M. C. L. E. A. N. V. A. MCLEAN,

Ed.).

Bodeau, D. J., McCollum, C. D., & Fox, D. B. (2018b). Cyber threat modeling: Survey, assessment,

and representative framework. MITRE CORP MCLEAN VA MCLEAN.

Bodeau, D. J., McCollum, C. D., & Fox, D. B. (2018c). Cyber threat modeling: Survey, assessment,

and representative framework (M. I. T. R. E. C. O. R. P. M. C. L. E. A. N. V. A. MCLEAN,

Ed.).

Bogdanoski, M. (2013). CYBER TERRORISM– GLOBAL SECURITY THREAT. : :

CONTEMPORARY MACEDONIAN DEFENCE - INTERNATIONAL SCIENTIFIC

DEFENCE, SECURITY AND PEACE JOURNAL.

168

https://www.academia.edu/11151330/CYBER_TERRORISM_GLOBAL_SECURITY_TH

REAT

Booth, H., Rike, D., & Witte, G. A. (2013). The national vulnerability database (nvd): Overview.

Borchers, J. O. (1999). Designing interactive musicsystems: A pattern approach. Proceedings of the

8thInternational Conference on Human Computer Interaction Ergonomics and User

Interfaces, 276–280.

Bourgeois, D., & Bourgeois, D. T. (2014). Chapter 6: Information Systems Security.

https://bus206.pressbooks.com/chapter/chapter-6-information-systems-security/

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern-Oriented

Software Architecture - Volume 1: A System of Patterns. Wiley Publishing.

Cain, B. G., & Coplien, J. O. (1996). Social patterns in productive software development

organisations. Annals of Software Engineering, 2(1), 259–286.

Campbell, M. (2019). Smart edge: The effects of shifting the center of data gravity out of the cloud.

Computer, 52(12), 99–102.

CAPEC. (2021). CAPEC - CAPEC List Version 3.4. https://capec.mitre.org/data/index.html

capec.mitre.org. (2021). CAPEC - Common Attack Pattern Enumeration and Classification

(CAPEC). https://capec.mitre.org/

Chandola, V., Eilertson, E., Ertoz, L., Simon, G., & Kumar, V. (2006). Data Warehousing and Data

Mining Techniques for Computer Security. In In ch. Data mining for cyber security.

Springer.

Checkpoint. (2021). Network Security Architecture. Check Point Software.

https://www.checkpoint.com/cyber-hub/network-security/what-is-network-security/network-

security-architecture/

Chugh, A. (2020). Is Kaggle Worth It For Data Scientists? | Built In. https://builtin.com/data-

science/is-kaggle-worth-it-data-scientists

Ciampa, M. (2011). Security+ Guide to Network Security Fundamentals. Cengage Learning.

169

Ciampa, M. (2017a). Comptia security+ guide to network security fundamentals. Cengage Learning.

Ciampa, M. (2017b). Understanding importance of Information Security. In Comptia security+

guide to network security fundamentals (pp. 24–27). Cengage Learning.

Cio-wiki. (2021). OCTAVE (Operationally Critical Threat, Asset and Vulnerability Evaluation)—

CIO Wiki. https://cio-

wiki.org/wiki/OCTAVE_(Operationally_Critical_Threat,_Asset_and_Vulnerability_Evaluat

ion)

Claise, B., Trammell, B., & Aitken, P. (2013). Specification of the IP flow information export

(IPFIX) protocol for the exchange of flow information. In RFC 7011 (Internet Standard.

Internet Engineering Task Force.

C.L.A.S.P. (2019). CLASP Concepts. https://www.owasp.org/index.php/CLASP_Concepts

Cline, M. (1996). The pros and cons of adopting and applying design patterns in the real world.

Communications of the ACM, 39(10), 47–49.

Coad, P. (1992). Object-oriented patterns. Communications of the ACM - Special issue on analysis

and modeling in software development (Vol. 35, Issue 9, pp. 152–159).

https://courses.cs.washington.edu/courses/cse503/04sp/readings/designpattern.pdf

Cockcroft, S. (2020). What is the NIST Framework? ITNOW, 62(4), 48–49.

Cole, e, Fossen, j, Northcutt, c, & Pomeranz, h. (2003). SANS Security Essentials withCISSP

CBK. SANS Press.

Cole, B. (2020). What is Risk Management and Why is it Important? SearchCompliance.

https://searchcompliance.techtarget.com/definition/risk-management

Cool, C., & Xie, H. (2000). Patterns of information use, avoidance and evaluation in a corporate

engineering environment. PROCEEDINGS OF THE ANNUAL MEETING-AMERICAN

SOCIETY FOR INFORMATION SCIENCE, 37, 462–472.

Coplien, J. (1991). Advanced C++ programming styles and idioms. Addison-Wesley Longman

Publishing Co., Inc.

170

Coplien, J. (2000). C++ idioms patterns. Pattern Languages of Program Design, 4, 167–197.

Coplien, J., & Schmidt, D. (1995). Pattern languages of program design. ACM Press/Addison-

Wesley Publishing Co.

Corgi. (2020). Defense in Depth and Layered Network Security | Free Essay Example.

StudyCorgi.Com. https://studycorgi.com/defense-in-depth-and-layered-network-security/

Crutchley, S. (2002). Information Security: Addressing the human factor. SC Infosecurity News.

http://www.infosecnews.com/opinion/2002/06/19_03.htm

curry. (2013). Engineering Security Solutions at Layer 8 and Above « Speaking of Security – The

RSA Blog and Podcast.

https://web.archive.org/web/20130524214239/http://blogs.rsa.com/engineering-security-

solutions-at-layer-8-and-above/

CVSS. (2019). CVSS v3.1 Specification Document. FIRST — Forum of Incident Response and

Security Teams. https://www.first.org/cvss/specification-document

cyberoam. (nd). Cyberoam Layer 8 Technology – Cyberoam.

https://www.cyberoam.com/layer8.html

Daş, R., Karabade, A., & Tuna, G. (2015). Common network attack types and defense mechanisms.

2015 23nd Signal Processing and Communications Applications Conference (Siu, 2658–

2661.

Dauch, K., Hovak, A., & Nestler, R. (2009). Information assurance using a defense in-depth

strategy. 2009 Cybersecurity Applications & Technology Conference for Homeland

Security, 267–272.

den Braber, F., Hogganvik, I., Lund, M. S., Stølen, K., & Vraalsen, F. (2007). Model-based security

analysis in seven steps—A guided tour to the CORAS method. BT Technology Journal,

25(1), 101–117. https://doi.org/10.1007/s10550-007-0013-9

Devanabu, P. T., & S, S. (2000). Software engineering for security. Proceedings of the Confrence on

The Futre of Software Engineering, 227–239.

171

Dhillon, D. (2011). Developer-driven threat modeling: Lessons learned in the trenches. IEEE

Security & Privacy, 9(4), 41–47.

Disterer, G. (2013). ISO/IEC 27000, 27001 and 27002 for information security management.

Journal of Information Security, 4(2).

Dolbeau, A. (2022, April 28). Threat modeling: Which method should you choose for your

company? (Stride, Dread, QTMM, LINDDUN, PASTA). Positive Thinking Company.

https://positivethinking.tech/insights/threat-modeling-which-method-should-you-choose-for-

your-company-stride-dread-qtmm-linddun-pasta/

Donaldson, S. E., Siegel, S. G., Williams, C. K., & Aslam, A. (2015). Cybersecurity frameworks. In

Enterprise Cybersecurity (pp. 297–309).

Dougherty, C., Sayre, I., seacord, R., Svoboda, D., & Togashi, K. (2009). Secure Design Patterns.

Carnegie Mellon University.

Douglass, B. P. (2002). Real-Time Design Patterns: Robust Scalable Architecture for Real-Time

Systems. Addison-Wesley Longman Publishing Co., Inc.

Eakin, E. (2003). Architecture’s irascible reformer. The New York Times.

Elejla, O. E., Anbar, M., & Belaton, B. (2017). ICMPv6-based DoS and DDoS attacks and defense

mechanisms. IETE Technical Review, 34(4), 390–407.

Ellison, R. J., & Woody, C. (2010). Supply-chain risk management: Incorporating security into

software development. 2010 43rd Hawaii International Conference on System Sciences, 1–

10.

Engebretson, P. H., & Pauli, J. J. (2009). Leveraging Parent Mitigations and Threats for CAPEC-

Driven Hierarchies. 2009 Sixth International Conference on Information Technology: New

Generations, 344–349. https://doi.org/10.1109/ITNG.2009.24

Engebretson, P. H., Pauli, J. J., & Streff, K. (2008). Abstracting Parent Mitigations from the CAPEC

Attack Pattern Dictionary. In Security and Management (pp. 245–250).

172

Eric. (2016, August 23). Importance of OSI Model WALT Labs WALT Labs. WALT Labs.

https://waltlabs.io/osi-model-security/

Eskierka, J. A. (2011). Proposing a succession planning and leadership development program for

the St. Paul fire department (Doctoral dissertation, The College of St. Scholastica.

Fernandez, E. (2009). Security Patterns and A Methodology to Apply them. Advances in

Information Security, 45.

Fernández, E., Jurjens, J., Vanhilst, M., & Pernul, G. (2010). Using Security Patterns to Develop

Secure Systems. Software Engineering for Secure Systems: Industrial and Research

Perspectives. https://doi.org/10.4018/978-1-61520-837-1.ch002

Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification.

J. Mach. Learn. Res., 3(Mar), 1289–1305.

Fricke, A., & Volter, M. (2000). A pedagogical pattern language about teaching seminars

effectively. Proceedings of the 5thEuropean Conference on Pattern Languages of

Programs.

Galloway, L.-A. (2019). Application Security. https://www.darkreading.com/application-security/a-

secure-development-approach-pays-off/a/d-id/1331154

Gamma, e, Helm, R., Johnson, R., & J, V. (1995). Design patterns: Elements of reusable object-

oriented software. Addison-Wesley Longman Publishing Co., Inc.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993). Design patterns: Abstraction and reuse of

object-oriented design. ECOOP’93—Object-Oriented Programming: 7th European

Conference Kaiserslautern, Germany, July 26–30, 1993 Proceedings 7, 406–431.

Ganssle, J. (1992). The art of programming embedded systems. Academia Press.

Gardner, K. M., & Rush, A. (1998). Cognitive patterns. Cambridge University Press.

Gegick, M., & Williams, L. (2005a). Matching attack patterns to security vulnerabilities in

softwareintensive designs. ACM SIGSOFT Software Engineering Notes, 30, 1–7.

https://doi.org/10.1145/1082983.1083211

173

Gegick, M., & Williams, L. (2005b). Matching attack patterns to security vulnerabilities in software-

intensive system designs. Proceedings of the 2005 Workshop on Software Engineering for

Secure Systems—Building Trustworthy Applications, 1–7.

Goldberg, S. (2017, June 22). Surveillance without Borders: The “Traffic Shaping” Loophole and

Why It Matters. The Century Foundation. https://tcf.org/content/report/surveillance-without-

borders-the-traffic-shaping-loophole-and-why-it-matters/

Gonzalez, C. (2022, February 7). 8 Threat Modeling Methodologies: Prioritize & Mitigate Threats.

Exabeam. https://www.exabeam.com/information-security/threat-modeling/

Graft, D., Pabrai, M., & Pabrai, U. (1990). Methodology for Network Security Design. In IEEE

Communications Magazine—IEEE Commun. Mag. (Vol. 28, p. 682).

https://doi.org/10.1109/PCCC.1990.101685

Greg, M. (2019). OSI: Securing the Stack, Layer 8 -- Social engineering and security policy.

SearchNetworking. https://searchnetworking.techtarget.com/tip/OSI-Securing-the-Stack-

Layer-8-Social-engineering-and-security-policy

Gregg, M., Bandes, R., Franklin, B., Mays, G., Ries, C., & Watkins, S. (2006). Hack the Stack:

Using Snort and Ethereal to Master the 8 Layers of an Insecure Netork. Syngress

Publishing.

Gregoire, J., Buyens, K., De Win, B., Scandariato, R., & Joosen, W. (2007). On the Secure Software

Development Process CLASP and SDL Compared. Proc. of the 3rd International Workshop

on Software Engineering for Secure Systems, 1.

Grenander, E. P. D. A. M. U., Grenander, U., Miller, U. G. M., Miller, M. I., & Miller, M. (2007).

Pattern Theory: From Representation to Inference. OUP Oxford.

https://books.google.co.ke/books?id=0MsTDAAAQBAJ

Groat, S., Tront, J., & Marchany, R. (2012). Advancing the defense in depth model. 2012 7th

International Conference on System of Systems Engineering (SoSE, 285–290.

174

Hamid, B. (2014). Modeling of Secure and Dependable Applications Based on a Repository of

Patterns: The SEMCO Approach. Reliability Digest, Special, 9–17.

Hanmer, R. (2007). Patterns for fault-tolerant software. John Wiley & Sons, Ltd.

Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE transactions on pattern

analysis and machine intelligence, 12(10), 993–1001.

Harrison, N. (2006). The Language of Shepherding, A Pattern Language for Shepherds and Sheep.

In A. D. Manolescu, M. Voelter, & J. Noble (Eds.), Pattern Languages of Program Design

5 (Vol. 5). Addison-Wesly.

Hassan, A. B., Lass, F. D., & Makinde, J. (2012). Cybercrime in Nigeria: Causes, Effects and the

Way Out. Undefined. https://www.semanticscholar.org/paper/Cybercrime-in-Nigeria%3A-

Causes%2C-Effects-and-the-Way-Hassan-

Lass/59a569f479acd78372c7f58086bde498f526dbe7

Hastings, N. E., & McLean, P. A. (1996). TCP/IP spoofing fundamentals. Conference Proceedings

of the 1996 IEEE Fifteenth Annual International Phoenix Conference on Computers and

Communications, 218–224.

Hewitt, K. (2020). Importance of Network Security Risk Management l SecurityScorecard.

https://securityscorecard.com/blog/importance-of-network-security-risk-management

Hnamte, V., & Hussain, J. (2021). An Extensive Survey on Intrusion Detection Systems: Datasets

and Challenges for Modern Scenario. 2021 3rd International Conference on Electrical,

Control and Instrumentation Engineering (ICECIE, 1–10.

Hoglund, G., & McGraw, G. (2005). Exploiting Software: How to Break Code (Vol. 1). Addison-

Wesley.

Holl, K. (2003). OSI defense in depth to increase application security. In SANS Security Essentials

GSEC Practical Assignment Version (p. 1).

Horkoff, J., & Yu, E. (2016). Interactive goal model analysis for early requirements engineering.

Requirements Engineering, 21(1), 29–61.

175

Howard, M., & LeBlanc, D. (2003). Writing secure code. Pearson Education.

Howard, M., & Lipner, S. (2006). The security development lifecycle (Vol. 8). Microsoft Press.

Hunt, C. (2002). TCP/IP network administration (Vol. 2). O’Reilly Media, Inc.".

Hussain, S., Kamal, A., Ahmad, S., Rasool, G., & Iqbal, S. (2014). Threat modelling methodologies:

A survey. Sci. Int.(Lahore, 26(4), 1607–1609.

Iguer, H., Medromi, H., Sayouti, A., & TALLAL, S. (2013). A new architecture multi-agents based

combining EBIOS and ISO 27001 in IT risk management. Proc. ICEER, 13.

Infosec Insights. (2020, December 31). Hacker Motivation: Why Do Hackers Hack? InfoSec

Insights. https://sectigostore.com/blog/hacker-motivation-why-do-hackers-hack/

Iqbal, M. (2004). Defining Cyberterrorism, 22 J. Marshall J. Computer & Info. L. 397 (2004). UIC

John Marshall Journal of Information Technology & Privacy Law, 22(2).

https://repository.law.uic.edu/jitpl/vol22/iss2/2

ISO/IEC 27005:2011. (2018). ISO/IEC 27005:2011(en), Information technology—Security

techniques—Information security risk management.

https://www.iso.org/obp/ui/es/#iso:std:iso-iec:27005:ed-2:v1:en

ITU. (2014). Understanding cybercrime: Phenomena, challenges and legal response. ITU.

https://www.itu.int:443/en/publications/ITU-D/Pages/publications.aspx

Izurieta, C., & Bieman, J. M. (2013). A multiple case study of design pattern decay, grime, and rot

in evolving software systems. Software Quality Journal, 21, 289–323.

Jasud, P. V. (2017). The OSI Model: Overview on the Seven Layers of Computer Networks.

International Journal for Innovative Research in Science & Technology, 4(3), 116–124.

Jézéquel, J. M., Train, M., & Mingins, C. (2000). Design patterns and contracts. Addison-Wesley

Professional.

Jufri, M. T., Hendayun, M., & Suharto, T. (2017). Risk-assessment based academic information

System security policy using octave Allegro and ISO 27002. 2017 Second International

Conference on Informatics and Computing (ICIC, 1–6.

176

Jureta, I. J., Borgida, A., Ernst, N. A., & Mylopoulos, J. (2010). Techne: Towards a New Generation

of Requirements Modeling Languages with Goals, Preferences, and Inconsistency Handling.

2010 18th IEEE International Requirements Engineering Conference, 115–124.

https://doi.org/10.1109/RE.2010.24

Jürjens, J. (2005). Secure Systems Development with UML. Springer.

Kaiya, H., Kono, S., Ogata, S., Okubo, T., Yoshioka, N., Washizaki, H., & Kaijiri, K. (2014).

Security Requirements Analysis Using Knowledge in CAPEC. In L. Iliadis, M. Papazoglou,

& K. Pohl (Eds.), Advanced Information Systems Engineering Workshops (Vol. 178, pp.

343–348). Springer International Publishing. https://doi.org/10.1007/978-3-319-07869-4_32

Kamiri, J., & Mariga, G. (2021). Research Methods in Machine Learning: A Content Analysis.

International Journal of Computer and Information Technology (2279-0764, 10(2).

Kanakogi, K., Washizaki, H., Fukazawa, Y., Ogata, S., Okubo, T., Kato, T., Kanuka, H., Hazeyama,

A., & Yoshioka, N. (2021). Tracing CAPEC Attack Patterns from CVE Vulnerability

Information using Natural Language Processing Technique (p. 6996).

https://doi.org/10.24251/HICSS.2021.841

Karahasanovic, A., Kleberger, P., & Almgren, M. (2017). Adapting threat modeling methods for the

automotive industry. Proceedings of the 15th ESCAR Conference, 1–10.

Kaspersky. (2020). The Human Factor in IT Security: How Employees are Making Businesses

Vulnerable from Within. https://www.kaspersky.com/blog/the-human-factor-in-it-security/

Kaur, D., & Singh, P. (2014). Various OSI layer attacks and countermeasure to enhance the

performance of WSNs during wormhole attack. International Journal on Network Security,

5(1), 62.

Kaur, H., & Kumari, V. (2020). Predictive modelling and analytics for diabetes using a machine

learning approach. Applied computing and informatics.

Kavianpour, A., & Anderson, M. C. (2017). An overview of wireless network security. 2017 IEEE

4th International Conference on Cyber Security and Cloud Computing (CSCloud, 306–309.

177

KDD Cup 1999 Data. (1999). http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Keerthi, V. K. (2016). Taxonomy of SSL/TLS attacks. International Journal of Computer Network

and Information Security, 8(2), 15.

Kevin, D. (2017). The 5 Biggest Data Breaches of 2017. https://www.observeit.com/blog/biggest-

data-breaches-2017/

Khan, R., McLaughlin, K., Laverty, D., & Sezer, S. (2017a). STRIDE-based threat modeling for

cyber-physical systems. 2017 IEEE PES Innovative Smart Grid Technologies Conference

Europe (ISGT-Europe, 1–6.

Khan, R., McLaughlin, K., Laverty, D., & Sezer, S. (2017b). STRIDE-based threat modeling for

cyber-physical systems. 2017 IEEE PES Innovative Smart Grid Technologies Conference

Europe (ISGT-Europe, 1–6.

Khosrowshahi, D. (2017). 2016 Data Security Incident. https://www.uber.com/newsroom/2016-

data-incident

Kizza, J. M., Kizza, W., & Wheeler. (2013). Guide to computer network security. Springer.

Klingmann, A. (2010). Brandscapes: Architecture in the experience economy. Mit Press.

Koch, R., Golling, M., & Rodosek, G. D. (2014). Towards comparability of intrusion detection

systems: New data sets. TERENA Networking Conference, 7.

Kocher, P., Lee, R., B., M., G., & Raghunath, A. (2004). Security as a New Dimension in Embedded

System Design. https://doi.org/10.1145/996566.996771

Kohnfelder, L., & Garg, P. (1999). The threats to our products. Microsoft Interface, Microsoft

Corporation.

Köksal, Ö., & Tekinerdogan, B. (2019). Architecture design approach for IoT-based farm

management information systems. Precision Agriculture, 20(5), 926–958.

Koltuksuz, A. (2013). Cover Use of Cyberspace and Technology by Terrorists. In Technological

Dimensions of Defence against Terrorism (Vol. 115, pp. 106–109).

178

Konev, A., Shelupanov, A., Kataev, M., Ageeva, V., & Nabieva, A. (2022). A Survey on Threat-

Modeling Techniques: Protected Objects and Classification of Threats. Symmetry, 14(3).

https://doi.org/10.3390/sym14030549

Korba, A. A., Nafaa, M., & Salim, G. (2013). Survey of routing attacks and countermeasures in

mobile ad hoc networks. 2013 UKSim 15th International Conference on Computer

Modelling and Simulation, 693–698.

Kostova, B., Gürses, S., & Troncoso, C. (2020). Privacy engineering meets software engineering.

On the challenges of engineering privacy bydesign.

Kumar, A., Sharma, A. K., & Singh, A. (2012). Performance Evaluation of DVMRP Multicasting

Network over ICMP Ping Flood for DDoS. Performance Evaluation, 4(6).

Kumar, G. (2016). Denial of service attacks–an updated perspective. Systems Science & Control

Engineering, 4(1), 285–294.

Kumar, S., Dalal, S., & Dixit, V. (2014). The OSI model: Overview on the seven layers of computer

networks. International Journal of Computer Science and Information Technology

Research, 2(3), 461–466.

Kumar, V., & Minz, S. (2014). Feature selection: A literature review. SmartCR, 4(3), 211–229.

Lakhani, F., & Faisal, N. (2015). Design patterns-from architecture to embedded software

development. International Journal of Computer Science Issues (IJCSI, 12(1), 146.

Lamarca, B. I. (2020). Cybersecurity Risk Assessment of the University of Northern Philippines

using PRISM Approach. IOP Conference Series. Materials Science and Engineering,

769(1).

Lamsweerde, A. (2004a). Elaborating Security Requirements by Construction of Intentional Anti-

Models. Proceedings of the 26th International Conference on Software Engineering, 148–

157.

179

Lamsweerde, A. (2004b). Elaborating security requirements by construction of intentional anti-

models. In Proceedings—International Conference on Software Engineering (Vol. 26, p.

157). https://doi.org/10.1109/ICSE.2004.1317437

LeBlanc, D. (2007). DREADful. http://blogs.

Leveson, N. G. (1995). Safeware: System safety and computers. ACM.

Li, T., & Horkoff, J. (2014). Dealing with Security Requirements for Socio-Technical Systems: A

Holistic Approach. https://doi.org/10.13140/2.1.1708.1604

Li, T., Horkoff, J., Beckers, K., Paja, E., & Mylopoulos, J. (2015). A Holistic Approach to Attack

Modeling and Analysis. iStar.

Li, T., Horkoff, J., Paja, E., Beckers, K., & Mylopoulos, J. (2015). Analyzing Attack Strategies

Through Anti-goal Refinement. In J. Ralyté, S. España, & Ó. Pastor (Eds.), The Practice of

Enterprise Modeling (pp. 75–90). Springer International Publishing.

https://doi.org/10.1007/978-3-319-25897-3_6

Li, T., Paja, E., Mylopoulos, J., Horkoff, J., & Beckers, K. (2015). Holistic Security Requirements

Analysis: An Attacker’s Perspective. https://doi.org/10.1109/RE.2015.7320439

Li, X., Li, K., Qiao, D., Ding, Y., & Wei, D. (2019). Application research of machine learning

method based on distributed cluster in information retrieval. 2019 International Conference

on Communications, Information System and Computer Engineering (CISCE, 411–414.

Li, Y., Li, D., Cui, W., & Zhang, R. (2011). Research based on OSI model. 2011 IEEE 3rd

International Conference on Communication Software and Networks, 554–557.

Liebowitz, M. (2011). 2011 set to be worst year ever for security breaches.

http://www.securitynewsdaily.com/756-2011-worst-year-ever-security-

linddun. (2020). LINDDUN. LINDDUN. https://www.linddun.org/linddun

Lund, M. S., Solhaug, B., & Stølen, K. (2010). Model-driven risk analysis: The CORAS approach.

Springer Science & Business Media.

180

MacKinnon, L., Bacon, L., Gan, D., Loukas, G., Chadwick, D., & Frangiskatos, D. (2013). Cyber

security countermeasures to combat cyber terrorism. In B. Akhgar & S. Yates (Eds.),

Strategic Intelligence Management: National Security Imperatives and Information and

Communications Technologies (pp. 234–256). Butterworth-Heinemann.

http://gala.gre.ac.uk/id/eprint/9957/

Madory, D. (2018, July 12). Shutting down the BGP Hijack Factory. APNIC Blog.

https://blog.apnic.net/2018/07/12/shutting-down-the-bgp-hijack-factory/

Maghrabi, L., Pfluegel, E., & Noorji, S. F. (2016). Designing utility functions for game-theoretic

cloud security assessment: A case for using the common vulnerability scoring system. 2016

International Conference On Cyber Security And Protection Of Digital Services (Cyber

Security, 1–6.

Maheshwari, V., & Prasanna, M. (2016). Integrating risk assessment and threat modeling within

SDLC process. 2016 International Conference on Inventive Computation Technologies

(ICICT, 1, 1–5.

Mahmood, S., Mohsin, S. M., & Akber, S. M. A. (2020). Network security issues of data link layer:

An overview. 2020 3rd International Conference on Computing, Mathematics and

Engineering Technologies (iCoMET, 1–6.

Manavi, M. T. (2018). Defense mechanisms against distributed denial of service attacks: A survey.

Computers & Electrical Engineering, 72, 26–38.

Mang, P., & Reed, B. (2012). Designing from place: A regenerative framework and methodology.

Building Research & Information, 40(1), 23–38.

Manninen, O. (2018). Cybersecurity in agricultural communication networks: Case dairy farms.

Manns, M. L., & Rising, L. (2000). Fearless change: Patterns for introducing new ideas. Addison

Wesley.

Marback, A., Do, H., He, K., Kondamarri, S., & Xu, D. (2013a). A threat model‐based approach to

security testing. Software: Practice and Experience, 43(2), 241–258.

181

Marback, A., Do, H., He, K., Kondamarri, S., & Xu, D. (2013b). A threat model‐based approach to

security testing. Software: Practice and Experience, 43(2), 241–258.

Martin, A. (2006). The Common Attack Pattern Enumeration and Classification (CAPEC) Initiative.

Martin, Y. S., & Kung, A. (2018). Methods and tools for GDPR compliance through privacy and

data protection engineering. 2018 IEEE European Symposium on Security and Privacy

Workshops (EuroS&PW, 108–111.

Martinović, M., Lovaković, D., & Ćosić, T. (2014). Network Security Issues in Regard to OSI

Reference Model Layers. 6thInternational Scientific and Expert Conference TEAM2014.

Mayer, N. (2009). Modelbased Management of Information System Securit yRisk.

Mayer, N., Aubert, J., Grandry, E., Feltus, C., Goettelmann, E., & Wieringa, R. (2018). An

integrated conceptual model for information system security risk management supported by

enterprise architecture management. Software & Systems Modeling.

https://doi.org/10.1007/s10270-018-0661-x

Mayr, A., Binder, H., Gefeller, O., & Schmid, M. (2014). The evolution of boosting algorithms.

Methods of Information in Medicine, 53(06), 419–427.

McGraw, G., & Hoglund, G. (2004). Exploiting software: How to break code. Invited Talk, Usenix

Security Symposium, San Diego, 9–13.

McGraw, G., & Young, L. (2016). Build Security In Maturity Model (BSIMM) – Practices from

Seventy Eight Organizations. https://resources.sei.cmu.edu/library/asset-

view.cfm?assetid=450642

Mead, N. R., Shull, F., Vemuru, K., & Villadsen, O. (2018a). A hybrid threat modeling method.

Carnegie MellonUniversity-Software Engineering Institute-Technical Report-CMU/SEI-

2018-TN-002.

Mead, N. R., Shull, F., Vemuru, K., & Villadsen, O. (2018b). A hybrid threat modeling method.

Carnegie MellonUniversity-Software Engineering Institute-Technical Report-CMU/SEI-

2018-TN-002.

182

Mell, P., Scarfone, K., & Romanosky, S. (2007). A complete guide to the common vulnerability

scoring system version 2.0. In Published by FIRST-forum of incident response and security

teams (Vol. 1, p. 23).

Microsoft. (2019). Microsoft Security Development Life Cycle. https://www.microsoft.com/en-

us/securityengineering/sdl/practices

Mihailescu, V. L. (2012). Risk analysis and risk management using MEHARI. J. Appl. Bus. Inf.

Syst, 3(4), 143–162.

Miller, C. (2013). Security Considerations in Managing COTS Software | CISA.

https://www.cisa.gov/uscert/bsi/articles/best-practices/legacy-systems/security-

considerations-in-managing-cots-software

Millett, S. (2010). Professional ASP.Net Design Patterns. Wiley Publishing Inc.

Möckel, C., & Abdallah, A. E. (2010). Threat modeling approaches and tools for securing

architectural designs of an e-banking application. 2010 Sixth International Conference on

Information Assurance and Security, 149–154.

Mohanakrishnan. (2021). Top 10 Threat Modeling Tools in 2021 | Spiceworks It-security.

https://www.spiceworks.com/it-security/vulnerability-management/articles/top-threat-

modeling-tools/

Mouratidis, H., & Giorgini, P. (2007). Secure Tropos: A Security-Oriented Extension of the Tropos

methodology. International Journal of Software Engineering and Knowledge Engineering,

17(2), 285–309.

Moustafa, N., & Slay, J. (2015). UNSW-NB15: A comprehensive data set for network intrusion

detection systems (UNSW-NB15 network data set). 2015 Military Communications and

Information Systems Conference (MilCIS), 1–6.

Nagpal, R. (2002). Cyber terrorism in the context of globalization. II World Congress on Informatics

and Law.

183

Najafabadi, M. M., Khoshgoftaar, T. M., Kemp, C., Seliya, N., & Zuech, R. (2014). Machine

learning for detecting brute force attacks at the network level. 2014 IEEE International

Conference on Bioinformatics and Bioengineering, 379–385.

Neil, T. (2012). Mobile Design Pattern Gallery. O’Reilly Media Inc.

Neumann, P. (2004). Principled Assuredly Trustworthy Composable Architectures (Final Report to

DARPA, CDRL A001. SRI International.

Niekerk, J., V., Solms, R., & V. (2006). Understanding Information Security Culture: A Conceptual

Framework. Conference: Proceedings of the ISSA 2006 from Insight to Foresight. Sandton.

https://www.researchgate.net/publication/220803272_Understanding_Information_Security

_Culture_A_Conceptual_Framework

Nishant, S. (2012). Security Assessment via Penetration Testing: Network and System

Administrator’s Approach: Security, Network and System Administrator, Penetration

Testing [(Masters Thesis).]. https://www.duo.uio.no/handle/10852/34904

Noble, J. (1998). Towards a pattern language for object oriented design. Proceedings Technology of

Object-Oriented Languages, 2–13.

Norman, J., & Joseph, P. (2017). Security in Application Layer Protocols of IoT: Threats and

Attacks. In Security Breaches and Threat Prevention in the Internet of Things (pp. 76–95).

IGI Global.

Nweke, L. O., & Wolthusen, S. (2020). A review of asset-centric threat modelling approaches.

Olagunju, R. E., Aremu, R. C., & Ogundele, J. (2013). Incessant Collapse Of Buildings In Nigeria:

An Architect’s View. IISTE Journal of Civil and Environmental Research, 3(4)), 49–54.

Osakwe, M. (2020, September 17). 4 Reasons Why the OSI Model Still Matters. Nightfall AI.

https://nightfall.ai/4-reasons-why-the-osi-model-still-matters

Pace, K. (2014). A Layered Security Model: OSI and Information Security. SANS Institute.

https://www.giac.org/paper/gsec/3908/layered-security-model-osi-information-

security/106272

184

Pahwa, K., & Agarwal, N. (2019). Stock market analysis using supervised machine learning. 2019

International Conference on Machine Learning, Big Data, Cloud and Parallel Computing

(COMITCon, 197–200.

Parmar, H., & Gosai, A. (2015). Analysis and study of network security at transport layer.

International Journal of Computer Applications, 121(13), 35–40.

Pauli, J. J., & Engebretson, P. H. (2008). Hierarchy-driven approach for attack patterns in software

security education. Fifth International Conference on Information Technology: New

Generations (Itng 2008, 1156–1157.

Pearson. (2016). 7 Popular Layer 2 Attacks | 7 Popular Layer 2 Attacks | Pearson IT Certification.

https://www.pearsonitcertification.com/articles/article.aspx?p=2491767

Petter, S., Khazanchi, D., & Murphy, J. D. (2010). A design science based evaluation framework for

patterns. ACM SIGMIS Database: The DATABASE for Advances in Information Systems,

41(3), 9–26.

Poston, H. (n.d.). Role and purpose of threat modeling in software development—Infosec Resources.

Retrieved August 17, 2022, from https://resources.infosecinstitute.com/topic/role-and-

purpose-of-threat-modeling-in-software-development/

Potteiger, B., Martins, G., & Koutsoukos, X. (2016). Software and attack centric integrated threat

modeling for quantitative risk assessment. Proceedings of the Symposium and Bootcamp on

the Science of Security, 99–108.

Prakash, A. (2020). Cloud IaaS Threat Modelling. https://www.linkedin.com/pulse/cloud-iaas-

threat-modelling-atul-prakash

Prechelt, L. B., & Unger, L. (2001). A controlled experiment in maintenance, comparing design

patterns to simpler solutions. IEEE Transactions on Software Engineering, 27(12), 1134–

1144.

185

Progoulakis, I., Rohmeyer, P., & Nikitakos, N. (2021). Cyber Physical Systems Security for

Maritime Assets. Journal of Marine Science and Engineering, 9(12), Article 12.

https://doi.org/10.3390/jmse9121384

pryzybla, M. (2020). What are the possible/potential benefits of solving/completing Kaggle

competitions for a prospective graduate student? Quora. https://www.quora.com/What-are-

the-possible-potential-benefits-of-solving-completing-Kaggle-competitions-for-a-

prospective-graduate-student

Reed, D. (2003). Applying the OSI Seven Layer NetworkModel To Information Security. SANS

Institute Reading Room. https://www.sans.org/reading-

room/whitepapers/protocols/applying-osi-layer-network-model-information-security-1309

Rehman, S., & Mustafa, K. (2013). SOFTWARE SECURITY RISK MITIGATION USING

OBJECT ORIENTED DESIGN PATTERNS. International Journal of Research in

Engineering and Technology, 2(7).

Repository, P. P. (2014). http://wiki.c2.com/?PortlandPatternRepository

Reuters. (2017). http://fortune.com/2017/10/10/deloitte-clients-hacking/

Riaz, R., Rizvi, S. S., Riaz, F., Hameed, N., & Shokat, S. (2007). Analysis of Web based Structural

Security Patterns by. International Journal of Computer Science and Network Security,

7(10).

Richardson, S. (2022, June 3). Modularizing Security Design—Network Design. Cisco Certified

Expert. https://www.ccexpert.us/network-design-2/modularizing-security-design.html

Ring, M., Landes, D., & Hotho, A. (2018). Detection of slow port scans in flow-based network

traffic. PloS One, 13(9), 0204507.

Ring, M., Wunderlich, S., Grüdl, D., Landes, D., & Hotho, A. (2017). A toolset for intrusion and

insider threat detection. In Data Analytics and Decision Support for Cybersecurity (pp. 3–

31). Springer.

186

Ring, M., Wunderlich, S., Scheuring, D., Landes, D., & Hotho, A. (2019). A Survey of Network-

based Intrusion Detection Data Sets. Comput. Secur.

https://doi.org/10.1016/j.cose.2019.06.005

Rising, L. (1998). The Pattern Handbook: Techniques, Strategies and Application (L. Rising, Ed.).

Cambidge University Press.

Ruggiero, P., & Foote, J. (2011). https://www.us-

cert.gov/sites/default/files/publications/cyber_threats-to_mobile_phones.pdf

Rushby, J. (2001). Security Requirements Specifications: How and What ? Extended.

https://www.semanticscholar.org/paper/Security-Requirements-Specifications-%3A-How-

and-What-Rushby/3f59a1dec34ab5f92933d1878c61e64722bac7eb

Saini, H., & Rao, Y. S. (2012). Cyber-Crimes and their Impacts: A Review 1.

Saitta, P., Larcom, B., & Eddington, M. (2005). Trike v. http://dymaxion.

Salerno, s, Sanzgiri, A., & Upadhyaya, S. (2011). Exploration of Attacks on Current Generation

Smartphones. Procedia Computer Science, 5, 546–553.

https://doi.org/10.1016/j.procs.2011.07.071.

Santos, V., Goldman, A., & De Souza, C. R. (2015). Fostering effective inter-team knowledge

sharing in agile software development. Empirical Software Engineering, 20, 1006–1051.

Sapronov, K. (2015). The human factor and information security. https://securelist.com/the-human-

factor-and-information-security/36067/

Sarkar, D., Bali, R., & Sharma, T. (2018). Machine Learning Basics. In D. Sarkar, R. Bali, & T.

Sharma (Eds.), Practical Machine Learning with Python: A Problem-Solver’s Guide to

Building Real-World Intelligent Systems (pp. 3–65). Apress. https://doi.org/10.1007/978-1-

4842-3207-1_1

Sas, A. (2019). Number of cyber security incidents handled by CERT.

https://www.statista.com/statistics/1028557/poland-cybersecurity-incidents/

187

Scandariato, R., Wuyts, K., & Joosen, W. (2015). A descriptive study of Microsoft’s threat modeling

technique. Requirements Engineering, 20(2), 163–180.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197–227.

Schmidt, D. (1995). Using design patterns to develop reusable object-oriented communication

software. Communication ACM, 38(10), 65–74.

Schmidt, D. C., Stal, M., Rohnert, H., & Buschmann, F. (2013). Pattern-oriented software

architecture, patterns for concurrent and networked objects (Vol. 2). John Wiley & Sons.

Schneier, B. (1999). Attack trees. Dr. Dobb’s Journal, 24(12), 21–29.

Schumacher, M. (2003a). Security Engineering with Patterns (G. Goos, J. Hartmanis, & J. Leeuwen,

Eds.). Springer-Verlag.

Schumacher, M. (2003b). Security Engineering with Patterns: Origins, Theoretical Models, and

New Applications. Springer-Verlag.

Schumacher, M. (2003c). Security engineering with patterns: Origins, theoretical models, and new

applications (Vol. 2754). Springer Science & Business Media.

Schumacher, M., E.D, B., Hybertson, B., F, S., & P. (2006). Security Patterns,Integrating Security

and Systems Engineering. In Security Patterns,Integrating Security and Systems

Engineering. John Wiley & Sons Ltd.

Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., & Sommerlad, P. (2013a).

Security Patterns: Integrating security and systems engineering. John Wiley & Sons.

Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., & Sommerlad, P. (2013b).

Security Patterns: Integrating security and systems engineering. John Wiley & Sons.

Seehusen, F. (2015). Using CAPEC for Risk-Based Security Testing (p. 92).

https://doi.org/10.1007/978-3-319-26416-5_6

Selin, J. (2019). Evaluation of threat modeling methodologies.

188

Sena, J., & Geus, P. (2002). A Protection Model for Network Communications Based on Security

Levels. International Conference on Security and Management (SAM’02). International

Conference on Security and Management, Las Vegas, NV, USA.

Shah, N. (2018, May 1). The Security Risks Presented by Complex Networks. Fortinet Blog.

https://www.fortinet.com/blog/business-and-technology/decrease-your-customers--network-

complexity-for-increased-securi.html

Shakiba-Herfeh, M., Chorti, A., & Poor, H. V. (2021). Physical layer security: Authentication,

integrity, and confidentiality. In Physical Layer Security (pp. 129–150). Springer.

Sharafaldin, I., Gharib, A., Lashkari, A. H., & Ghorbani, A. A. (2018). Towards a reliable intrusion

detection benchmark dataset. Software Networking, 2018(1), 177–200.

Shaw, K. (2022, March 14). The OSI model explained and how to easily remember its 7 layers.

Network World. https://www.networkworld.com/article/3239677/the-osi-model-explained-

and-how-to-easily-remember-its-7-layers.html

Shevchenko, N. (2018). Threat Modeling: 12 Available Methods.

https://insights.sei.cmu.edu/sei_blog/2018/12/threat-modeling-12-available-methods.html

Shevchenko, N., Chick, T. A., O’Riordan, P., Scanlon, T. P., & Woody, C. (2018a). Threat

modeling: A summary of available methods. Carnegie Mellon University Software

Engineering Institute Pittsburgh United States.

Shevchenko, N., Chick, T. A., O’Riordan, P., Scanlon, T. P., & Woody, C. (2018b). Threat

modeling: A summary of available methods. Carnegie Mellon University Software

Engineering Institute Pittsburgh United States.

Shevchenko, N., Frye, B. R., & Woody, C. (2018a). Threat modeling for cyber-physical system-of-

systems: Methods evaluation. Carnegie Mellon University Software Engineering Institute

Pittsburgh United States.

189

Shevchenko, N., Frye, B. R., & Woody, C. (2018b). Threat modeling for cyber-physical system-of-

systems: Methods evaluation. Carnegie Mellon University Software Engineering Institute

Pittsburgh United States.

Shi, L., Li, Y., Loo, B. T., & Alur, R. (2021). Network Traffic Classification by Program Synthesis.

International Conference on Tools and Algorithms for the Construction and Analysis of

Systems, 430–448.

Shostack, A. (2014a). Threat modeling: Designing for security. John Wiley & Sons.

Shostack, A. (2014b). Threat Modeling: Designing for Security (1st edition). Wiley.

Shull, F. (2016). Evaluation of threat modeling methodologies. Software Engineering Institute,

Carne-gie Mellon University. https://securityintelligence.com/threat-modeling-in-the-enter-

prise-part-2-understanding-the-process/

Sietz, D. (2011). Dryland vulnerability: Typical patterns and dynamics in support of vulnerability

reduction efforts [(Doctoral dissertation,]. Universitätsbibliothek der Universität Potsdam.

Simeonova, S. (2016). Threat Modeling in the Enterprise, Part 2: Understanding the Process.

Security Intelligence. https://securityintelligence.com/threat-modeling-in-the-enter-prise-

part-2-understanding-the-process/

Small, J. (2012). PATTERNS IN NETWORK SECURITY: AN ANALYSIS PATTERNS IN NETWORK

SECURITY RECURSIVE INTER-NETWORK ARCHITECTURE NETWORKS(Doctrol

Thesis. B.S., University of Massachusetts.

Smith, E. (2008). Using secondary data in educational and social research. McGraw-Hill Education

(UK.

Smith, J. M. (2012). Elemental design patterns. Addison-Wesley.

Smys, S., Basar, A., & Wang, H. (2020). Hybrid intrusion detection system for internet of things

(IoT. Journal of ISMAC, 2(04), 190–199.

Solomon, S. (2016, February 4). Application Layer Security Within the OSI Model. Checkmarx.

https://www.checkmarx.com/blog/application-layer-security-within-osi-model/

190

Stanganelli, J. (2016a). Selecting a Threat Risk Model for your Organization, Part Two. eSecurity

Planet.

Stanganelli, J. (2016b). Selecting a Threat Risk Model for your Organization, Part Two. eSecurity

Planet.

Stewart, R., & Metz, C. (2001). SCTP: new transport protocol for TCP/IP. IEEE Internet

Computing, 5(6), 64–69.

Stojkovic, V., & Steele, G. (2005). Modeling, Simulation, and Visualization of a Network Using the

Easel Programming Language. Proceedings of the 9th Colloquium for Information Systems

Security Education, 6, 9.

Stoneburner, G., Goguen, A., & Feringa, A. (2002). Risk management guide for information

technology systems. Nist Special Publication, 800(30), 800–830.

Strom, B. E., Applebaum, A., Miller, D. P., Nickels, K. C., Pennington, A. G., & Thomas, C. B.

(2018). Mitre att&ck: Design and philosophy. In Technical report. The MITRE Corporation.

Surman, G. (2002). Understanding security using the osi model. SANS Institute InfoSec Reading

Room.

Swire, P. (2018). A pedagogic cybersecurity framework. Communications of the ACM, 61(10), 23–

26.

Syarif, I., Zaluska, E., Prugel-Bennett, A., & Wills, G. (2012). Application of bagging, boosting and

stacking to intrusion detection. In International Workshop on Machine Learning and Data

Mining in Pattern Recognition (pp. 593–602). Springer.

Szabo, R., Kind, M., Westphal, F. J., Woesner, H., Jocha, D., & Csaszar, A. (2015). Elastic network

functions: Opportunities and challenges. IEEE Network, 29(3), 15–21.

Taibi, T. (Ed.). (2007). Design pattern formalization techniques. Igi Global.

Talen, E. (2015). Do-it-yourself urbanism: A history. Journal of Planning History, 14(2), 135–148.

Tarandach, I., & Coles, M. J. (2020). Threat Modeling. O’Reilly Media, Inc.".

191

Tatam, M., Shanmugam, B., Azam, S., & Kannorpatti, K. (2021). A review of threat modelling

approaches for APT-style attacks | Elsevier Enhanced Reader.

https://doi.org/10.1016/j.heliyon.2021.e05969

Thuraisingham, B. (2004). Chapter 3 Data Mining for Counter-Terrorism.

Tiso, J. (2011). Designing Cisco network service architectures (ARCH): Foundation learning guide.

Cisco press.

UcedaVelez, T. (2012). Real world threat modeling using the pasta methodology (Technical Report.

Open Web Application Security Project (OWASP)). OWASP App Sec EU.

https://www.owasp.org/im-ages/a/aa/AppSecEU2012_PASTA.pdf

UcedaVelez, T., & Morana, M. M. (2015). Risk Centric Threat Modeling: Process for attack

simulation and threat analysis. John Wiley & Sons.

Unger, B., & Tichy, W. F. (2000). Do design patterns improve communication? An experiment with

pair design. Proceedings of the International Workshop on Empirical Studies of Software

Maintenance.

upravnik. (2016, January 26). Cisco three-layer hierarchical model. Study CCNA. https://study-

ccna.com/cisco-three-layer-hierarchical-model/

Verizon. (2021). 2020 DBIR Summary of Findings. Verizon Enterprise.

https://enterprise.verizon.com/resources/reports/dbir/2020/summary-of-findings/

Verizon 2013 Annual Review. (2013).

https://www.verizon.com/about/sites/default/files/annual_reports/2013/index.html

Vesiluoma, S. (2009). Understanding and supporting knowledge sharing in software engineering.

Vokac & M. (2004). On the practical use of software design patterns [PhD Thesis.]. University of

Oslo.

Walker, K. (2021, January 28). Cloud Security Alliance’s New Internet of Things (IoT) Security

Controls Framework Allows for Easier Evaluation, Implementation of Security Controls

within IoT Architectures.

192

https://www.businesswire.com/news/home/20210128005024/en/Cloud-Security-

Alliance%E2%80%99s-New-Internet-of-Things-IoT-Security-Controls-Framework-Allows-

for-Easier-Evaluation-Implementation-of-Security-Controls-within-IoT-Architectures

wallarm. (2020). What is threat modeling Definition, Methods , Example.

https://www.wallarm.com/what/what-is-threat-modeling

Warburton, D. (2017). Terror threat as Heathrow Airport security files found dumped in the street.

https://www.mirror.co.uk/news/uk-news/terror-threat-heathrow-airport-security-11428132

Wideł, W., Audinot, M., Fila, B., & Pinchinat, S. (2019). Beyond 2014: Formal Methods for Attack

Tree–based Security Modeling. ACM Computing Surveys (CSUR, 52(4), 1–36.

Wildcard. (2021). Threat Modeling [New Service]. Wildcard Corp.

https://wildcardcorp.com/services/cybersecurity/threat-modeling

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., & Mons, B.

(2016). The FAIR Guiding Principles for scientific data management and stewardship.

Scientific data, 3(1), 1–9.

Wuyts, K. (2015). Privacy Threats in Software Architectures.

Wuyts, K., Sion, L., & Joosen, W. (2020a). Linddun go: A lightweight approach to privacy threat

modeling. 2020 IEEE European Symposium on Security and Privacy Workshops

(EuroS&PW, 302–309.

Wuyts, K., Sion, L., & Joosen, W. (2020b). Linddun go: A lightweight approach to privacy threat

modeling. 2020 IEEE European Symposium on Security and Privacy Workshops

(EuroS&PW, 302–309.

Wuyts, K., Van Landuyt, D., Hovsepyan, A., & Joosen, W. (2018). Effective and efficient privacy

threat modeling through domain refinements. Proceedings of the 33rd Annual ACM

Symposium on Applied Computing, 1175–1178.

193

Xiong, W., & Lagerström, R. (2019). Threat modeling–A systematic literature review. Computers &

Security, 84, 53–69.

Yang, P., & Zhu, Q. (2011). Finding key attribute subset in dataset for outlier detection. Knowledge-

Based Systems, 24(2), 269–274.

Yao, S., Guan, J., Ding, S., Zhang, H., & Song, F. (2014). Modeling and Analysis of Network

Survivability under Attack Propagation. International Conference on Applications and

Techniques in Information Security, 96–108.

Yazar, Z. (2002). A qualitative risk analysis and management tool–CRAMM. SANS InfoSec Reading

Room White Paper, 11, 12–32.

Yin, C., Zhu, Y., Liu, S., Fei, J., & Zhang, H. (2018). An enhancing framework for botnet detection

using generative adversarial networks. 2018 International Conference on Artificial

Intelligence and Big Data (ICAIBD, 228–234.

Yoder, J., & Barcalow, J. (1998). Architectural Patterns for EnablingApplication Security. PLoP

1997 Conference. https://www.idi.ntnu.no/emner/tdt4237/2007/yoder.pdf

Yuan, X., Nuakoh, E. B., Beal, J. S., & Yu, H. (2014a). Retrieving relevant CAPEC attack patterns

for secure software development. Proceedings of the 9th Annual Cyber and Information

Security Research Conference, 33–36. https://doi.org/10.1145/2602087.2602092

Yuan, X., Nuakoh, E., Beal, J., & Yu, H. (2014b). Retrieving relevant CAPEC attack patterns for

secure software development. https://doi.org/10.1145/2602087.2602092

Yuan, X., Nuakoh, E., Williams, I., & Yu, H. (2015). Developing Abuse Cases Based on Threat

Modeling and Attack Patterns. J. Softw. https://doi.org/10.17706/jsw.10.4.491-498

Zhang, C. (2011). An empirical assessment of the software design pattern concept. Durham

University.

Zhao, J., Gu, J., & Liu, J. (2011). Research on Layer 2 Attacks of 802.11-Based WLAN.

International Conference on Information Computing and Applications, 503–509.

Zhou, Z. H. (2012). Ensemble methods: Foundations and algorithms. CRC press.

194

Zhu, H. (2014). Cyberpatterns: Towards a Pattern Oriented Study of Cyberspace. In C. Blackwell,

H. Zhu, & Cyberpatterns (Eds.), Unifying Design Patterns with Security and Attack Patterns

(p. 7). Springer international.

Zhu, Q., & Basar, T. (2012). 17 A hierarchical security architecture for smart grid.

Zhu, Y. (2015). Attack Pattern Ontology: A Common Language for Cyber-Security Information

Sharing. TU Delft Publication, Master Thesis.

195

APPENDIX

Appendix 1. Code Boxes

Code Box 1. Importation of Libraries and Modules.

Code Box 2. Importation on un_1, un_2, un_3, un_4 datasets.

196

Code Box 3. Showing Variable Col Listing Column Header Names.

Code Box 4. Assigning Of Column Header Name to Individual Data Frame.

Code Box 5. Filtering of Malicious logs from the un_1 Dataset.

Code Box 6. Filtering of Malicious logs from the un_2 Dataset.

 Code Box 7. Filtering of Malicious logs from the un_3 Dataset.

Code Box 8. Filtering of Malicious logs from the un_4Dataset.

Code Box 9. Merging of four datasets.

197

Code Box 10. Cumulative Malicious dataset.

Code Box 11. Cumulative Malicious dataset.

Code Box 12. Count of Protocols Used to Perpetuate Malicious Activities.

Code Box 13. Classification of malicious protocols into dataFrames.

Code Box 14. Merging of Highly Significant Malicious Protocols.

198

Code Box 15. Boolean Filtering For Low Significant Malicious Protocols.

Code Box 16. Cumulating of Other Protocols.

Code Box 17. Value Count of Nunas and Tmalpt Dataframe.

Code Box 18. Computing the % of Attack Distribution.

Code Box 19. Tree map visualization code of malicious traffic.

199

Code Box 20. Box 4. 19. Attack Count per Port

.

Code Box 21. Attack Category Time Duration in the Malicious Dataset.

Code Box 22. Attack category time duration for TCP UDP UNAS.

200

Code Box 23. Mean Duration of Attacks per Protocol.

Code Box 24. Extracting the column with missing Values.

Code Box 25. Describing the column with missing Values.

201

Code Box 26. Filling missing Values with Mean.

Code Box 27. Filling missing Values with Median.

Code Box 28. Backward filling missing values.

202

Code Box 29. Dropping and replacing missing values with new dataset

Code Box 30. Confirming the columns of dropped and new dataset

Code Box 31. Adding of new filled columns with mean

203

Code Box 32. Confirmation of adding of new filled columns with mean

Code Box 33. Confirmation of the adding of new filled columns with forward filling, backward filling and median

Code Box 34 Identifying columns with object data type

204

Code Box 35 Creation of the evaluation column Y

Code Box 36 Creation and Confirmation of the test column X

Code Box 37. Encoding objects with Label Encoder

Code Box 38 Deploying Chi2 on X and Y sets

205

Code Box 39 Importing Machine Learning Algorithms

Code Box 40 Preparation for the machine learning algorithms

206

Code Box 41. Splitting of data into three clusters for classification of attack surface.

 Code Box 42. Three clusters obtained from K-means

Code Box 43. Three clusters mapped to their respective surface

Code Box 44. Mapping the outputs to the select Kbest algorithm

207

Code Box 45. Simple output for the attack surfaces

Code Box 46. Mapping surface of attacks to the respective attacks

Code Box 47. Classifying the three-attack surface to different datasets.

Code Box 48 47. Filtering surface to individual dataset.

Code Box 49 Attack distribution per surface

208

Code Box 48. Visualizing attack distribution per surface.

Code Box 49 Importation of CAPEC datasets.

Code Box 50 List for storing the column names

Code Box 51 Subjecting New Columns to the dataset

209

Code Box 52. Extracting generic attacks

Code Box 53 Extracting exploits attacks

Code Box 54 Extracting Fuzzer attacks

Code Box 55 Extracting DoS attacks.

Code Box 58. Extracting reconnaissance attacks

210

Code Box 59. Extracting analysis attacks

Code Box 60. Extracting Shell attacks.

Code Box 56 Extracting Backdoor and virus attacks.

Code Box 57. Merging of attacks in UNSW-NB_15 found in CAPEC

Code Box 58. STRIDE/CAPEC Mapping Algorithm.

211

Code Box 59. Converting CAPEC Qualitative log to Quantitative

Code Box 60 Converting CAPEC Qualitative log to Quantitative.

Code Box 61. Missing Value with average of 2.

Code Box 67. Replacing Missing Value with Average of 2.

212

Code Box 68 Final risk Score Mapping

Code Box 69 Extracting defense mechanisms

Appendix 2: Machine learning libraries and modules

1. Data Handling:

• Pandas library: Used for handling DataFrames.

• NumPy library: Used for mathematical operations and array handling.

• Matplotlib.pyplot: Used for basic data visualizations.

• Seaborn: Utilized for more customizable and flexible visualizations compared to Matplotlib.

• Squarify: Used for treemaps to provide a comparative visualization of values.

2. Data Splitting and Preprocessing:

• model_selection module: Applied for train-test split, especially recommended for balanced large

datasets like UNSW-NB15.

• preprocessing module: Used to transform data into various formats before applying machine

learning algorithms.

3. Model Evaluation:

• metrics module: Utilized for evaluating the accuracy of various machine learning algorithms.

4. Feature Selection:

• feature_selection module: Used to identify and select columns that contribute significantly to the

final output.

• SelectKBest: Another method for selecting the best-performing columns for machine learning

algorithms, also applicable for dimensionality reduction.

5. Algorithms Classifiers and clustering:

K-Nearest Neighbors (KNN):

213

• Type: Supervised Learning (Classification, Regression)

• Summary: KNN is a simple, instance-based learning algorithm. It classifies or predicts the

output of a data point based on the majority class or average value of its k-nearest neighbors in

the feature space. The choice of 'k' determines the number of neighbors considered.

Random Forest (RF):

• Type: Supervised Learning (Classification, Regression)

• Summary: Random Forest is an ensemble learning method that builds a multitude of decision

trees during training. It combines their predictions to improve accuracy and control overfitting.

Each tree is constructed using a subset of the data and features, and the final prediction is an

aggregate of individual tree predictions.

Gaussian Naive Bayes (GNB):

• Type: Supervised Learning (Classification)

• Summary: Naive Bayes is a probabilistic algorithm based on Bayes' theorem. The "Gaussian"

variant assumes that the features follow a normal distribution. It is called "Naive" because it

assumes that features are conditionally independent given the class label. Despite its simplicity

and assumptions, Naive Bayes can perform well in various classification tasks.

Logistic Regression (LR):

• Type: Supervised Learning (Classification)

• Summary: Despite its name, logistic regression is used for binary classification problems. It

models the probability that an instance belongs to a particular class. The logistic function is

applied to a linear combination of input features, mapping the result to a probability between 0

and 1. A threshold is then applied to make the final classification decision.

K-Means Clustering:

• Type: Unsupervised Learning (Clustering)

• Summary: K-Means is a clustering algorithm that partitions data points into 'k' clusters based on

similarity. It assigns each data point to the cluster whose mean represents the point's features.

The algorithm iteratively refines the cluster assignments until convergence. K-Means is widely

used for grouping data in unsupervised learning scenarios.

6. Validation and Testing:

• cross_val_score module: Employed to evaluate the accuracy of various machine learning

algorithms on a subset of a dataset.

• chi2 module: Used for statistical testing of the difference between expected and observed

outputs.

7. Visualization and Interpretation:

• Mlextend library: Used for creating visualizations, including decision regions after clustering

using algorithms like KMeans.

214

8. Specific Configurations:

• For the KNeighbors Classifier, the value of K was set to 3 for clustering according to host,

media, or users.

9. Considerations and Limitations:

• Decision trees can become complex with an increase in attributes and are sensitive to training

data changes.

• Optimal K value is crucial in KNeighbors Classifier to avoid overfitting or computational

complications.

• LogisticRegression uses a logistic function for prediction, differentiating it from linear

regression.

215

Appendix 3: List of Publications

1. Yoga, C. A., Rodrigues, A. J., & Abeka, S. O. (2023). Holistic Security Pattern-Based Model

to Protect Network Architecture. Holistic Security Pattern-Based Model to Protect Network

Architecture, 130(1), 11-11.

2. Castro A Yoga, Anthony J Rodrigues and Silvance O Abeka. Hybrid Machine Learning

Approach for Attack Classification and Clustering in Network Security. International Journal

of Computer Applications 185(31):45-51, August 2023.

216

Appendix 4: Board of Postgraduate Research Approval

217

Appendix 4:Ethical approval

