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Abstract— Pneumonia occurs commonly in HIV-infected 
patients. In this paper, we study a simple mathematical 
model for the co-infection of HIV/AIDS and Pneumonia. 
We establish that the model is well presented 
epidemiologically and mathematically. The disease-free 
equilibrium point is determined. We establish the basic 
reproduction number R0 for the model, which is a 
measure of the course of co-infection.  
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1. Introduction  

The study of infectious disease co-epidemics is critical 
to understanding how the diseases are related, and how 
prevention and treatment efforts can be most effective. 
HIV infection is considered a risk factor for pneumonia 
both in adults and children [6,14].The most causative 
agent is S. pneumoniae whose colonisation is increased 
by HIV infection [6, 14, 32]. Other causative agents 
include Staphylococcus aureus and Gram-negative 
bacteria and Pneumocystis jirovecii (PCP) [5,  6]. In a 
Kenyan study, the prevalence of oropharyngeal 
colonization with pneumococci is about 15 percent in 
HIV infected patients [14].Incidence of pneumonia is 
higher in HIV infected individuals than in HIV 
uninfected individuals [4,23, 24] and it increases with 
falling CD4 cell count [4, 8, 19]. The risk of invasive 
disease due to S. pneumoniae is estimated to be 40 times 
more in HIV infected children than HIV negative 
children [5] and about 25 times higher in HIV infected 
adults than HIV negative ones [4]. The rate of 
pneumonia episodes is 0.055 per year for HIV positive 
and 0.009 for HIV negative [8]. The rates of pneumonia 
per year ranged from 0.023 to 0.108 for CD4 cell 
 

 

count of > 500/mm3 to < 200/mm3 and the rate is 
0.02 per year for HIV negative individuals [8, 19]. 
Mortality due to pneumonia is higher in HIV positive 
individuals than in uninfected people [5, 24]. There is a 
three to six fold increase in mortality for HIV infected 
individuals with pneumonia than those that do not have 
it [24, 32]. The case fatality rate for acute pneumonia in 
HIV infected children is 3 to 6 times more than that for 
HIV negative children [5]. Antiretroviral (ARV) 
medicines or antiretroviral treatment (ART) are the main 
type of treatment for HIV/AIDS. ARTs should be 
initiated when patients have CD+4T count below 
200/mm3. It is not a cure but can only prolong the life of 
a person for many years. ART drugs have to be taken 
every day for the rest of a person’s life. ARTs keep the 
amount of HIV in the body at low level which retards 
any weakening of the immune system and allows the 
body to recover any damage that HIV might have 
caused. Highly Active Antiretroviral Therapy (HAART) 
which utilizes two or more drugs can reduce and 
maintain viral load below the limit of detection in many 
patients. 
   

2. Model Description and Formulation 
The total population at any time t, denoted by N(t) is 
subdivided into various mutually exclusive 
compartments depending on their disease status: 
Susceptible individuals to both diseases, S(t); individuals 
infected with HIV at any time, t, H(t); those infected 
with pneumonia , P(t); individuals infected with both 
HIV and pneumonia , HP(t) , the total number of 
individuals on HIV, pneumonia  and dual infection 
treatment at any time, t , T(t) and the number of AIDS 
patients , A(t). This means that  
 

N(t) = S(t) + H(t) + P(t) + HP(t) + T(t) + A(t)                                                                
(1) 
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The rates of infection of susceptible individuals with 
HIV and Pneumonia are k1, and k2 respectively. Let η 
and λ be AIDS and Pneumonia induced mortality 
respectively and suppose  is per capita natural death 
rate. The constant per capita recruitment rate into the 
susceptible population is ν. The rate at which HIV and 
pneumonia infected individuals progress for treatment 
are β1 and β2 respectively. Also let β3 be the rate at 
which the co-infection progress for treatment. Define σ 
as the treatment rate, ω as the natural recovery rate for 
pneumonia infectives and ϵ as the proportion of 
pneumonia fully recovered after treatment move to the 
susceptible class.  We assume that the recovered 
individuals do not acquire immunity to p 
neumonia or both diseases and thus become susceptible 
again. We assume that not all HIV infected individuals 
receive treatment probably due to poor access to health 
centres, lack of awareness or unwillingness to know the 
HIV status. So we define π to be the proportion of HIV 
infected individuals receiving treatment, meaning (1- 
π) does not receive treatment. From the above 
definitions and variable, we have the diagram below that 
illustrate the flow if individuals as they face the 
possibility of acquiring specific disease infection and co-
infection. 

 
Figure 1: Flow chart of the transmission dynamics of the 
co-infection of HIV/AIDS and Pneumonia 
Mathematical equation modeling the above description 
can be written as follows: 

ν + ɛ  

 

 
 

 
                                                                                                                                             

 

 

 
 

                                           (2)  
 

1. Positivity and Boundedness of solutions 
In this section, the basic properties of model system (2) 
useful for the study and proofs of the stability of the 
systems are given. The model properties are employed to 
establish the criteria for positivity of solutions and well-
posedness of the system. This model monitors the 
behaviour of the co-epidemic of the two diseases in 
human population size that varies and therefore it can be 
shown that the associated state variables are non-
negative for all time t ≥ 0 and that the solutions of the 
model (2) with positive initial data remains positive for 
all time t ≥ 0. We assume the associated parameters as 
nonnegative for all time t ≥ 0. 
 
Theorem 3.1 Every solution of the model equations (2) 
with initial conditions in R+

6  approaches and stays in Ψ 
as t → ∞ . 
 
Proof: To show that all feasible solutions are uniformly-
bounded in a set Ψ. We differentiate each term in (1) 
with respect to time, we have 
 

      (3)                                                                                 
Adding equations of system (2), we have 

 
 
 

 
                                     (4) 

                                                                                                                                                                                                                                                                                      
Simplifying equation (4) above gives 
 

                                                                  
(5) 
 
 
And following equation (1), we see that equation (5) 
reduces to 

          (6) 
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In the absence of Pneumonia and AIDS or/and co-
infection, equation (6) becomes 

                (7) 
                                                                                                               
Applying Birkhoff and Rota’s theorem [2] on 
differential inequality, we have 

                 (8) 
                                                                                                               
Hence by separation of variables, 

                       (9) 

                                                                                                            
Integrating (9) on both sides 

               (10) 

                                                                                                          
The integration gives   (11) 

                                                                       Where c is 
the constant of integration, Inequality (12) simplifies to 
 

               (12) 
 
                                                                                                                                                   
Where A is a constant. Now, setting t = 0 and applying 
the initial condition   
 
N(0) = N0 in (13), we get N0                                                                                
(13) 
 
Which upon substitution in (12) yields, 
 

      (14) 
 
                                                                                                                                                    
Making N the subject in (14) we have, 
 

          (15) 
 
                                                                                                                                                    
 
As t→∞ in (15), the population size,  which 

implies that  Thus the feasible solutions set 

of system (2) enter and remain in the region 
. In this case, 

whenever  thus, the host population reduces 

asymptotically to the carrying capacity. On the other 
hand, whenever , every solution with initial 

condition in R+
6 remains in that region for t > 0. Thus 

region Ψ is positively invariant. Thus every solution of 
the model equations (2) with initial conditions in R+

6  
approaches and stays in Ψ as t → ∞ .Therefore, the basic 
model is well posed both epidemiologically and 
mathematically. Hence it is sufficient to study the 
dynamics of our model in Ψ.  
 
The Existence, uniqueness and continuation results also 
hold for the model (2) in Ψ. Hence model (2) is well-
posed mathematically and epidemiologically and it is 
sufficient to consider its solutions in Ψ. 
 

 
2. Disease-free equilibrium point 

Disease-free equilibrium (DFE) points of a disease 
model are its steady-state solutions in the absence of 
infection or disease. We denote this point by E0.Let α1,   
α2 ,   α3  , and  α4   be per capita contact rates for 
infections .The model system (2) can be re-written as; 
 

  
 

  
 

      (2.1) 
                                                                                                                                              

  
 

  
 

  
 
The Disease Free Equilibrium (DFE) of the model 
system (2.1) is obtained by setting; 
 

 
 
At disease free equilibrium, it is assumed that there are 
no infections. Then we set 
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and substitute this in the system of equations (2.1), the 
system reduces to; 
 

 
 
Therefore 

 
Implying that 

 
 
But at disease free equilibrium, the susceptible 
population is equal to total population, that is to say    

 
So the Disease Free Equilibrium, E0 of the full model 
(2.1) is given by 
 
E0 = (  
 

3. The Basic Reproduction Number, R0 
The basic reproduction number is defined as the 
expected number of secondary infections produced by an 
index case in a completely susceptible population [3] 
We define the basic reproduction number, R0  as the 
number of secondary HIV (or Pneumonia ) infections 
due to a single HIV (or a single pneumonia -infective) 
individual. We determine R0 using the next generation 
operator approach [27]. The associated next generation 
matrices are 

 

 
The basic reproduction number R0 is the spectral radius 
of the matrix FV −1.  

 
 
The eigenvalues of the matrix FV −1 are    

,   , 0, 0, 0 

 
It follows that the basic reproduction number which is 
given by the largest Eigenvalue for the model of HIV 
and AIDS and Pneumonia co-infection with treatment 
denoted by R0 is given by 
 
                                   R0 =  

 
Denoting      R(HIV) =      and   R(pneu) =  

 
R(HIV) is a measure of the average number of secondary 
HIV infections caused by a single infective introduced 
into an entirely susceptible population. Similarly, R(pneu) 
is a measure of the average number of secondary 
pneumonia  infections in humans caused by a single 
infective human introduced into an entirely susceptible 
population. The following lemma follows from Theorem 
2 of [27]. 
Lemma 5.1: The the disease-free equilibrium E0 of the 
model (2.1) is locallyasymptotically stable whenever R0 
< 1 and unstable when R0 > 1. 
 

Conclusion  
The importance of an epidemiological model lies in its 
ability to provide meaningful biological interpretations 
and the possible disease control measures. The 
implication of this is that R(pneu)→ 0 and thus no new 
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pneumonia  infections, and rate of progression to AIDS 
class reduces. We recommend the treatment of 
pneumonia be promptly done to help boost the immune 
system which in turn reduces the progression rate to 
AIDS class. 
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