NORM INEQUALITIES OF NORM-ATTAINABLE OPERATORS AND THEIR ORTHOGONAL EXTENSIONS

N. B. Okelo and J. O. Aminer Titus

School of Mathematics and Actuarial Science
Jaramogi Oginga Odinga University of Science and Technology,
Box 210-40601, Bondo, Kenya
bnyaare@yahoo.com;titusaminer@yahoo.com; mauamuga@gmail.com

Abstract

We present new norm inequalities of matrices of norm-attainable operators and characterize the maps that act on matrices of these operators. Moreover, we characterize completely bounded norms, give their orthogonal extensions and extensions via norm-convergence in NA(H)-classes.

Mathematics Subject Classification: 05B20, 15A60, 47A53, 47A10. Keywords: Convergence, Matrices, Maps, Norm-attainable Operators.

1 Introduction

The algebra of norm-attainable operators, NA(H), is one of the subclasses under consideration in this note. Consider an infinite dimensional complex Hilbert space H and B(H) the algebra of all bounded linear operators on H. A lot of results have been obtained in the study of the properties of several classes and matrices of operators acting on Hilbert spaces. Considering norm-attainable operators, there are nice results on them especially on the necessary and sufficient conditions for norm-attainability [2]. Recently, characterizations on this subclass of operators has been done in [4]. For more details on norm-attainable operators see [4-18]. In this paper, we study some important properties of norm-attainable operators and characterize the maps that act on matrices of these operators. See details on completely bounded maps in [1 and 19] and the references therein. Lastly, we give the orthogonal extensions of these norms.

2 Preliminaries and Notations

In this section we give some basic definitions and notations that we shall use in the sequel. **Definition 2.1.** Let $A, S \in B(H)$, A is said to be positive if $\langle Ax, x \rangle \geq 0$, $\forall x \in H$ and normal if $AA^* = A^*A$. S is an isometry(co-isometry) if $S^*S = SS^* = I$ where I is an identity operator in B(H).

From this stage and in the sequel, we denote a bounded linear operator, a positive operator and a norm-attainable operator in B(H) by A, A_P and A_N respectively. We also denote by $dim N(A_N)$, the dimension of the null space of A_N . We also denote the algebra of all norm-attainable operators by NA(H).

Definition 2.2. Let $\theta: B(H) \to B(H)$ be a bounded linear operator. θ is said to be completely bounded if $\sup \|\theta_n: \forall n \in \mathbb{N}\| < \infty$ and this supremum is called the completely bounded norm denoted by $\|\cdot\|_{CB}$.

We denote by CB[NA(H), NA(H)] the algebra of all completely bounded operators from NA(H) to NA(H). Clearly, this algebra is complete with respect to the completely bounded norm. HS-norm denotes the Hilbert-Schmidt norm.

Definition 2.3. Let H be a Hilbert space, B(H) the algebra of all bounded linear operators on H and let $N(H) \subseteq B(H)$ be a subalgebra. Let $M_{n,m}[B(H)]$ be a $n \times m$ matrix algebra with entries from B(H). Then the inclusion, $M_{n,m}[NA(H)] \subseteq M_{n,m}[B(H)]$ endows this subalgebra with a collection of matrix norms and we call N(AH) together with this collection of matrix norms on $M_{n,m}[NA(H)]$ an operator algebra. When m = n, we have

$$M_{n,m}[NA(H)] = M_{n,n}[NA(H)] = M_n[NA(H)].$$

3 Norm-attainable Operators

In this section, we study norm-attainable operators and some of their properties.

Definition 3.1. An operator $A_N \in NA(H)$ is said to be norm-attainable if there exists a unit vector $x \in H$, $||A_Nx|| = ||A_N||$.

Lemma 3.2. If A_N , $B_N \in NA(H)$ are norm-attainable then $A_N + B_N$, $A_N - B_N$ and λA_N , $\lambda \in \mathbb{C}$ are norm-attainable.

Proof. By direct summing of the operators A_N and B_N with a large enough rank-one projection, the sum and the difference of the two operators are normattainable. The case of coefficient λ is easy to see.

Lemma 3.3. For a norm-attainable operator $A_N \in NA(H)$, A_N is norm-attainable if its adjoint, A_N^* , is norm-attainable.

Proof. We show that a nonzero $A_N \in NA(H)$ is norm-attainable implies that A_N^* is norm-attainable. Let $A_N \in NA(H)$ be norm-attainable, then there exists a unit vector $x \in H$ such that $||A_Nx|| = ||A_N||$. That is $A_N^*A_Nx = ||A_N||^2x$. Let $\xi = \frac{A_Nx}{||A_N||}$, then ξ is a unit vector and hence $||A_N^*\xi|| = ||A_N|| = ||A_N^*||$.

Theorem 3.4. Let S' and S'' be isometries or co-isometries in a unit ball $NA(H)_1$. For a norm-attainable operator $A_N \in NA(H)_1$ we have $A_N = \frac{S' + S''}{2}$.

Proof. Let $A_N = S|T|$ be the polar decomposition of A_N . Now, since $A_N \in NA(H)_1$, T is a contraction (in fact, a positive contraction) in $NA(H)_1$, therefore, $I - T^2$ is also a positive contraction in $NA(H)_1$. Let K and K' respectively be defined by $K = T + i\sqrt{I - T^2}$ and $K' = T - i\sqrt{I - T^2}$. It is clear that $K^* = K'$ and hence, $KK^* = K^*K = I$ and $K'K'^* = K'^*K' = I$, so K and K' are unitaries and $T = \frac{K+K'}{2}$. If $dimN(A_N) < dimN(A_N^*)$, then S can be taken to be an isometry and therefore, putting S' = S|K| and S'' = S|K'|, then S' and S'' are isometries and

$$A_N = S|T| = S|\frac{K + K'}{2}| = \frac{S' + S''}{2} \tag{1}$$

If $dim N(A_N) > dim N(A_N^*)$, then S can be taken to be co-isometry and therefore, S' and S'' in Equation (1) can be taken as co-isometries.

Remark 3.5. If $dim N(A_P) = dim N(A_P^*)$, then S can be taken to be a unitary and therefore, S' and S'' in Equation (1) can be taken as unitaries.

Theorem 3.6. An operator $A \in NA(H)$ is normal if it is norm-attainable.

Proof. Assuming $A \in NA(H)$ is normal, we show that it is norm-attainable. Since A is normal, then $AA^* = A^*A$. By Lemma 3.3 its adjoint is norm-attainable. Consider a unit vector $x \in H$. Now $A(A^*x) = A^*(Ax)$. This implies that $||Ax||^2 = \langle Ax, Ax \rangle = \langle A^*Ax, x \rangle \leq ||A(A^*x)|| = ||A^*(Ax)|| \leq ||A^*|| ||A|| ||x|| = ||A||^2 ||x|| = ||A||^2$. Taking a positive square root on both sides yields the required results. The reverse inequality is trivial and hence this completes the proof.

4 Norm inequalities in NA(H)-Classes

Theorem 4.1. Consider a C^* -algebra B(H), NA(H) a subalgebra of B(H) and a map θ , such that $\theta: NA(H) \to B(H)$. Let $T_{N:j,k} \in M_n[NA(H)]$ be a norm-attainable operator. For n-tuples of θ , whereby $\theta_n: M_n[NA(H)] \to M_n[B(H)]$, we define $\theta_n[T_{N:j,k}] = [\theta(T_{N:j,k})]$, $\forall T_{N:j,k} \in M_n[NA(H)]$. Moreover, $||\theta|| \le ||\theta||_{CB}$ holds.

Proof. For simplicity, we take $T_{N:j,k} = T_{j,k}$ throughout the proof. Now, when n = 1, then by definition of θ_n , θ_1 and θ are coincidental [1] hence, $||\theta|| = ||\theta_1||$. We therefore give proofs when n = 2 and when n = 3. We use an analogous technique to the one used in [1]. For n = 2, let $[T_{j,k}] \in M_2[NA(H)]$, j, k = 1, 2, then for $\theta_2 : M_2[NA(H)] \to M_2[B(H)]$, we have, $\theta_2 \begin{bmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{bmatrix} = \begin{bmatrix} \theta(T_{1,1}) & \theta(T_{1,2}) \\ \theta(T_{2,1}) & \theta(T_{2,2}) \end{bmatrix}$ and

$$\begin{aligned} \left\| \theta_{2} \left[\left(\begin{array}{cc} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{array} \right) \right] \right\| &= \left\| \left[\begin{array}{cc} \theta(T_{1,1}) & \theta(T_{1,2}) \\ \theta(T_{2,1}) & \theta(T_{2,2}) \end{array} \right] \right\| \\ &= \left[\sum_{j=1}^{2} \sum_{k=1}^{2} \|\theta(T_{j,k})\|^{2} \right]^{\frac{1}{2}} \quad \text{by HS-norm} \\ &= \left(\|\theta(T_{1,1})\|^{2} + \|\theta(T_{1,2})\|^{2} + \|\theta(T_{2,1})\|^{2} + \|\theta(T_{2,2})\|^{2} \right)^{\frac{1}{2}} \\ &\geq \left[\|\theta(T_{1,1})\|^{2} \right]^{\frac{1}{2}} \\ &= \|\theta(T_{1,1})\| \\ &= \|\theta_{1}(T_{1,1})\|. \end{aligned}$$

Therefore,

$$||\theta_2|| = \sup\{||\theta_2([T_{j,k}]): [T_{j,k}] \in M_2[NA(H)]||\} \ge \sup\{||\theta_1(T_{1,1})||\} = ||\theta_1||.$$

and hence
$$||\theta_2|| \ge ||\theta_1||$$
.
When $n = 3$, $\theta_3 \begin{bmatrix} T_{1,1} & T_{1,2} & T_{1,3} \\ T_{2,1} & T_{2,2} & T_{2,3} \\ T_{3,1} & T_{3,2} & T_{3,3} \end{bmatrix} = \begin{bmatrix} \theta(T_{1,1}) & \theta(T_{1,2}) & \theta(T_{1,3}) \\ \theta(T_{2,1}) & \theta(T_{2,2}) & \theta(T_{2,3}) \\ \theta(T_{3,1}) & \theta(T_{3,2}) & \theta(T_{3,3}) \end{bmatrix}$ which

implies that

$$\left\| \theta_{3} \left[\left(\begin{array}{ccc} T_{1,1} & T_{1,2} & T_{1,3} \\ T_{2,1} & T_{2,2} & T_{2,3} \\ T_{3,1} & T_{3,2} & T_{3,3} \end{array} \right) \right] \right\| = \left\| \left[\begin{array}{ccc} \theta(T_{1,1}) & \theta(T_{1,2}) & \theta(T_{1,3}) \\ \theta(T_{2,1}) & \theta(T_{2,2}) & \theta(T_{2,3}) \\ \theta(T_{3,1}) & \theta(T_{3,2}) & \theta(T_{3,3}) \end{array} \right] \right\| \\
= \left[\left[\sum_{j=1}^{3} \sum_{k=1}^{3} ||\theta(T_{j,k})||^{2} \right]^{\frac{1}{2}} \right] \\
= \left[\left\| \theta(T_{1,1}) \right\|^{2} + \left\| \theta(T_{1,2}) \right\|^{2} + \left\| \theta(T_{1,3}) \right\|^{2} + \left\| \theta(T_{2,1}) \right\|^{2} + \left\| \theta(T_{2,2}) \right\|^{2} + \left\| \theta(T_{3,2}) \right\|^{2} + \left\| \theta(T_{3,2}) \right\|^{2} + \left\| \theta(T_{3,2}) \right\|^{2} \right] \\
= \left[\left\| \theta(T_{1,1}) \right\|^{2} + \left\| \theta(T_{1,2}) \right\|^{2} + \left\| \theta(T_{2,1}) \right\|^{2} + \left\| \theta(T_{2,2}) \right\|^{2} \right]^{\frac{1}{2}} \\
= \left[\sum_{j=1}^{2} \sum_{k=1}^{2} ||\theta(T_{j,k})||^{2} \right] \\
= \left[\left| \theta(T_{1,1}) \right|^{2} + \left| \theta(T_{2,1}) \right|^{2} \right] \\
= \left| \left| \theta(T_{2,1}) \right| \right|.$$

This implies that

$$||\theta_3|| = \sup\{||\theta_3[(T_{j,k})]: [T_{j,k}] \in M_3[NA(H)]||\}$$

 $\geq \sup\{||\theta_2[(T_{j,k})]: [T_{j,k}] \in M_2[NA(H)]||\}$
 $= ||\theta_2||$

and therefore, $||\theta_3|| \ge ||\theta_2||$. Lastly, consider $\theta_{n+1}: M_{n+1}[NA(H)] \to M_{n+1}[B(H)]$ defined by $\theta_{n+1}[(T_{j,k})] = [\theta(T_{j,k})]$ for all $j, k = 1, \ldots, n+1$. We obtain,

$$\|\theta_{n+1}[(T_{j,k})]\| = \|[\theta(T_{j,k})]\|$$

$$= \left[\sum_{j=1}^{n+1} \sum_{k=1}^{n+1} \|\theta(T_{j,k})\|^{2}\right]^{\frac{1}{2}}$$

$$\geq \left[\sum_{j=1}^{n} \sum_{k=1}^{n} \|\theta(T_{j,k})\|^{2}\right]^{\frac{1}{2}}$$

$$= \|\theta_{n}([T_{j,k}])\|$$

So, $\|\theta_{n+1}\| \geq \|\theta_n\|$ by taking supremum on both sides of the inequality above. By complete boundedness of the norm of θ , $||\theta||_{CB} = \sup\{||\theta_n|| : n \in \mathbb{N}\}$ which implies that $\|\theta\|_{CB} \geq \|\theta_n\| \ \forall \ n \in \mathbb{N}$. Therefore, $||\theta|| \leq ||\theta||_{CB}$ which completes the proof.

5 Orthogonal Extensions

In this section, we give norm-attainable operator-valued orthogonal extensions of matrix inequalities. Orthogonal extensions are known in different settings, but we include simple proofs, since more elaborate ones have appeared in literature.

Definition 5.1. Two operators T and P in NA(H) are said to be orthogonal if $\langle T, P \rangle = 0$. Operators T_j, T_k , (j, k = 0, 1, ...) are said to have orthogonal extensions if $\langle T_j, T_k \rangle = 0$.

Proposition 5.2. Let $(M_{j,k})$ be a positive definite $n \times n$ matrix and T_j , $(1 \le j \le n)$ are elements of NA(H), then $\sum_{j=1}^{n} \sum_{k=1}^{n} \langle T_j, T_k \rangle \ge 0$.

Proof. Consider an orthonormal basis $\{e_1, e_2, ..., e_m \text{ of the subspace of } NA(H)$ generated by the elements T_j , and we write $T_j = \sum_{r=1}^m T_j(r)e_r$. From Theorem 4.1 for each r we have positivity attained and taking summation over r completes the proof.

Theorem 5.3. The matrix $[T]_B^{i,j}$ of an orthogonal operator $T \in NA(H)$ in an arbitrary orthonormal basis B is orthogonal. Conversely, if in an orthonormal basis B the matrix of a linear operator $T \in NA(H)$ is orthogonal, then T is orthogonal.

Proof. Consider an orthonormal basis $B = e_1, ..., e_n$ in NA(H). Let T be a linear operator. Then $[T]_B^{i,j} = ([T(e_1)]_B^{i,j}, ..., [T(e_n)]_B^{i,j})$. Recall that for an orthonormal basis, the inner product in NA(H) is equal to the standard scalar product in \mathbb{R}^n of their respective coordinate column (or row) operators. Suppose that T is orthogonal, the set of Operators $T(e_1), ..., [T(e_n)]$ is orthonormal (since $e_1, ..., e_n$ is orthonormal). Hence the columns $[T(e_1)]_B^{i,j}, ..., [T(e_n)]_B^{i,j}$ are orthonormal, hence $[T]_B^{i,j}$ is an orthogonal matrix. Conversely, assume that the matrix $[T]_B^{i,j}$ is orthogonal. $\Longrightarrow T(e_1), ..., [T(e_n)]$ is an orthonormal set, i.e., T preserves all pairwise scalar products of the elements of the basis B. It follows then that T preserves all inner products of vectors of NA(H), i.e., T is an orthogonal operator. \square

Now it is easy to see that without loss of generality, fixing an orthonormal basis in NA(H), gives a 1-1 correspondence between orthogonal matrices and orthogonal operators. At this point we consider extensions via norm convergence.

6 Extensions via Norm-convergence

Norm inequalities can be extended via norm-convergence. We note that a sequence $\{T_j\}$ of operators converges strongly to T if $\lim_{j\to\infty} T_j x = T$, for all

 $x \in H$. Norm-convergence implies strong convergence while boundedness of $\sum_{j=1}^{n} T_{j}^{*}T_{j}$ is actually equivalent to strong convergence of $\sum_{j=1}^{n} T_{j}^{*}T_{j}$ since any norm-bounded, increasing sequence of self-adjoint operators converges strongly. It is interesting to show that either norm-convergence or strong convergence is inherited by the transformed sequence.

Considering weaker conditions, the norm of the limit of a weakly convergent sequence of operators in NA(H) may be strictly less than the norms of the terms in the sequence, corresponding to a loss of energy in oscillations, at a singularity, or by escape to infinity in the weak limit. Therefore, the expansion of any positive functional ϕ in any orthonormal basis contains coefficients that wander off to infinity. Hence, we note that if the norms of a weakly convergent sequence converge to the norm of the weak limit, then the sequence is strongly convergent.

It is known that the boundedness of the pointwise values of a family of linear functional ϕ implies the boundedness of their norms. We prove that a weakly convergent sequence is bounded, hence gives a necessary and sufficient condition for weak convergence of operators in NA(H).

Theorem 6.1. Let T_j be a sequence of operators in NA(H) and \mathcal{G} a dense subset of NA(H). Then T_j converges weakly to T if and only if $||T_j|| \leq \lambda$ for some constant λ . Moreover, $\langle T_j, P \rangle \to \langle T, P \rangle$ as $j \to \infty$ for all $P \in \mathcal{G}$.

Proof. Suppose that T_j is a weakly convergent sequence. By the definition of bounded linear functionals ϕ_n given by $\phi_n(T) = \langle T_j, T \rangle$ Then $\|\phi_n\| = \|T_j\|$. But $\phi_n(T)$ is convergent for each $T \in NA(H)$, it is a bounded sequence, and by uniform boundedness theorem $\{\|\phi_n\|\}$ is bounded. Hence both conditions are necessary and satisfied. Next, we prove the reverse inclusion. Suppose that T_j satisfies the two conditions. If $A \in NA(H)$, then for any $\beta > 0$ there is a $P \in \mathcal{G}$ such that $\|A - P\| < \beta$, and there is an M such that $|\langle T_j - T, P \rangle| < \beta$, for $j \geq M$. From the first condition in the theorem, and by Cauchy-Schwarz inequality it follows that for $j \geq M$

$$|\langle T_j - T, A \rangle| \leq |\langle T_j - T, P \rangle| + |\langle T_j - T, A - P \rangle|$$

$$\leq \beta + ||T_j - T|| + ||A - P||$$

$$= (1 + \lambda + ||T||)\beta.$$

Thus, it follows that $T_j \rightarrow T$ which completes the proof

Example 6.2. Suppose that e_i , (i = 1, 2, ...) is an orthonormal basis of NA(H). Then a sequence T_j is weakly convergent to T if and only if it is bounded and its coordinates converge, i.e. $\langle T_j, e_i \rangle \rightarrow \langle T, e_i \rangle$ for each i = 1, 2, ... Thus, the boundedness of the sequence is sufficient to ensure weak convergence in NA(H).

References

- [1] D. O. Ambogo and J. O. Agure, Growth of Norm of the Multiplicity Maps, Int. Math. Forum, 5, no. 51,(2010), 2505 2513.
- [2] H. K. Du, and H. X. Ji, Norm attainability of Elementary Operators and derivations, Northeast. Math. J. Vol.10 No. 3 (1994), 394-400.
- [3] P. R. Halmos, A Hilbert space problem book, second ed., Springer-Verlag, Berlin, 1982.
- [4] N. B. Okelo, J. O. Agure and D. O. Ambogo, Norms of elementary operators and characterization of norm attainable operators, Int. Journal of Math. Analysis, 24 (2010), 687-693.
- [5] N. B. Okelo, J. O. Agure and P. O. Oleche, Various Notions Of Orthogonality in Normed Spaces, Acta Mathematica Scientia, Vol.33 No. 5 (2013), 1387-1397.
- [6] N. B. Okelo, The norm-attainability of some elementary operators, Applied Mathematics E-Notes, Vol.13 (2013), 1-7.
- [7] N. B. Okelo, J. O. Agure and P. O. Oleche, Certain conditions for normattainability of elementary operators and derivations, International Journal of Mathematics and Soft Computing, Vol.3, No.1 (2013), 53 59.
- [8] N. B. Okelo, J. O. Agure and P. O. Oleche, On norm-attainability of elementary operators, International Journal of Science Research and Technology, Vol.1, No.1 (2013), 6-10.
- [9] N. B. Okelo and J. O. Agure, Orthogonality of elementary operators in normed spaces and their applications, SAMSA 2012 mathematics conference proceedings, (2012), 120 132.
- [10] N. B. Okelo and J. O. Agure, Conditions for norm-attainability of elementary operators and their applications to quantum mechanics, International conference proceedings of Jomo Kenyatta University of Agriculture and Technology, (2012), 776 781.
- [11] N. B. Okelo and O. T. Mewomo, Boundedness of continuous functionals in sequence spaces, TheSciTech Journal of Science and Technology, Vol. 1(1) (2012), 61-66.
- [12] N. B. Okelo, S. K. Kisengo and O. T. Mewomo, Orthogonality of order bounded finite rank operators in Banach spaces, TheSciTech Journal of Science and Technology, Vol. 1(1) (2012), 74-80.

- [13] N. B. Okelo and S. K. Kisengo, On the numerical range and spectrum of normal operators on Hilbert spaces, TheSciTech Journal of Science and Technology, Special Issue, Vol. 1, (2012), 59-65.
- [14] N. B. Okelo and J. O. Agure, A two-sided multiplication operator norm, Gen. Math. Notes, Vol. 2, No. 1, (2011), 18-23.
- [15] N. B. Okelo, On Dvoretsky's theorem and Norms of elementary operators, Int. Journal of pure and applied Sciences and technology, Vol 2. No. 2 (2011), 46-53.
- [16] N. B. Okelo, A survey of developments in operator theory on various classes of operators with applications in quantum physics, Global journal of Pure and Applied Sci. and tech. Vol. 1 (2011), 1-9.
- [17] N. B. Okelo, M. O. Okongo and S. A. Nyakiti, On Projective Tensor Norm and Norm-Attainable α -Derivations, Int. J. Contemp. Math. Sciences, Vol. 5, no. 40 (2010), 1969 1975.
- [18] N. B. Okelo, D. O. Ambogo and S. A. Nyakiti, On the Constants $C(\Omega)$ and $C_s(\Omega)$ of a C*-algebra and Norms of Derivations, International Mathematical Forum, Vol. 5, no. 53 (2010), 2647 2653.
- [19] C-Y. Suen, Completely bounded maps on C*-algebras, Proc. Amer. Math. Soc. 93 (1985), 81-87.