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Abstract

We present new norm inequalities of matrices of norm-attainable
operators and characterize the maps that act on matrices of these oper-
ators. Moreover, we characterize completely bounded norms, give their
orthogonal extensions and extensions via norm-convergence in NA(H)-
classes.
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1 Introduction

The algebra of norm-attainable operators, NA(H), is one of the subclasses
under consideration in this note. Consider an infinite dimensional complex
Hilbert space H and B(H) the algebra of all bounded linear operators on H.
A lot of results have been obtained in the study of the properties of several
classes and matrices of operators acting on Hilbert spaces. Considering norm-
attainable operators, there are nice results on them especially on the necessary
and sufficient conditions for norm-attainability [2]. Recently, characterization-
s on this subclass of operators has been done in [4]. For more details on
norm-attainable operators see [4-18]. In this paper, we study some important
properties of norm-attainable operators and characterize the maps that act on
matrices of these operators. See details on completely bounded maps in [1 and
19] and the references therein. Lastly, we give the orthogonal extensions of
these norms.

2 Preliminaries and Notations

In this section we give some basic definitions and notations that we shall use
in the sequel.
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Definition 2.1. Let A, S ∈ B(H), A is said to be positive if ⟨Ax, x⟩ ≥
0, ∀ x ∈ H and normal if AA∗ = A∗A. S is an isometry(co-isometry) if
S∗S = SS∗ = I where I is an identity operator in B(H).

From this stage and in the sequel, we denote a bounded linear operator, a
positive operator and a norm-attainable operator in B(H) by A, AP and AN

respectively. We also denote by dimN(AN), the dimension of the null space of
AN . We also denote the algebra of all norm-attainable operators by NA(H).

Definition 2.2. Let θ : B(H) → B(H) be a bounded linear operator. θ is said
to be completely bounded if sup ∥θn : ∀ n ∈ N∥ < ∞ and this supremum is
called the completely bounded norm denoted by || · ||CB.

We denote by CB[NA(H), NA(H)] the algebra of all completely bounded op-
erators from NA(H) to NA(H). Clearly, this algebra is complete with respect
to the completely bounded norm. HS-norm denotes the Hilbert-Schmidt norm.

Definition 2.3. Let H be a Hilbert space, B(H) the algebra of all bounded
linear operators on H and let N(H) ⊆ B(H) be a subalgebra. Let Mn,m[B(H)]
be a n × m matrix algebra with entries from B(H). Then the inclusion,
Mn,m[NA(H)] ⊆ Mn,m[B(H)] endows this subalgebra with a collection of ma-
trix norms and we call N(AH) together with this collection of matrix norms
on Mn,m[NA(H)] an operator algebra. When m = n, we have

Mn,m[NA(H)] = Mn,n[NA(H)] = Mn[NA(H)].

3 Norm-attainable Operators

In this section, we study norm-attainable operators and some of their proper-
ties.

Definition 3.1. An operator AN ∈ NA(H) is said to be norm-attainable if
there exists a unit vector x ∈ H, ∥ANx∥ = ∥AN∥.

Lemma 3.2. If AN , BN ∈ NA(H) are norm-attainable then AN +BN , AN −
BN and λAN , λ ∈ C are norm-attainable.

Proof. By direct summing of the operators AN and BN with a large enough
rank-one projection, the sum and the difference of the two operators are norm-
attainable. The case of coefficient λ is easy to see.

Lemma 3.3. For a norm-attainable operator AN ∈ NA(H), AN is norm-
attainable if its adjoint, A∗

N , is norm-attainable.
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Proof. We show that a nonzero AN ∈ NA(H) is norm-attainable implies that
A∗

N is norm-attainable. Let AN ∈ NA(H) be norm-attainable, then there
exists a unit vector x ∈ H such that ∥ANx∥ = ∥AN∥. That is A∗

NANx =
∥AN∥2x. Let ξ = ANx

∥AN∥ , then ξ is a unit vector and hence ∥A∗
Nξ∥ = ∥AN∥ =

∥A∗
N∥.

Theorem 3.4. Let S ′ and S ′′ be isometries or co-isometries in a unit ball
NA(H)1. For a norm-attainable operator AN ∈ NA(H)1 we have AN = S′+S′′

2
.

Proof. Let AN = S|T | be the polar decomposition of AN . Now, since AN ∈
NA(H)1, T is a contraction (in fact, a positive contraction) in NA(H)1, there-
fore, I − T 2 is also a positive contraction in NA(H)1. Let K and K ′ respec-
tively be defined by K = T + i

√
I − T 2 and K ′ = T − i

√
I − T 2. It is clear

that K∗ = K ′ and hence, KK∗ = K∗K = I and K ′K ′∗ = K ′∗K ′ = I, so K
and K ′ are unitaries and T = K+K′

2
. If dimN(AN) < dimN(A∗

N), then S can
be taken to be an isometry and therefore, putting S ′ = S|K| and S ′′ = S|K ′|,
then S ′ and S ′′ are isometries and

AN = S|T | = S|K +K ′

2
| = S ′ + S ′′

2
(1)

If dimN(AN) > dimN(A∗
N), then S can be taken to be co-isometry and

therefore, S ′ and S ′′ in Equation (1) can be taken as co-isometries.

Remark 3.5. If dimN(AP ) = dimN(A∗
P ), then S can be taken to be a unitary

and therefore, S ′ and S ′′ in Equation (1) can be taken as unitaries.

Theorem 3.6. An operator A ∈ NA(H) is normal if it is norm-attainable.

Proof. Assuming A ∈ NA(H) is normal, we show that it is norm-attainable.
Since A is normal, then AA∗ = A∗A. By Lemma 3.3 its adjoint is norm-
attainable. Consider a unit vector x ∈ H. Now A(A∗x) = A∗(Ax). This
implies that ∥Ax∥2 = ⟨Ax,Ax⟩ = ⟨A∗Ax, x⟩ ≤ ∥A(A∗x)∥ = ∥A∗(Ax)∥ ≤
∥A∗∥∥Ax∥ ≤ ∥A∗∥∥A∥∥x∥ = ∥A∥2∥x∥ = ∥A∥2. Taking a positive square root
on both sides yields the required results. The reverse inequality is trivial and
hence this completes the proof.
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4 Norm inequalities in NA(H)-Classes

Theorem 4.1. Consider a C*-algebra B(H), NA(H) a subalgebra of B(H)
and a map θ, such that θ : NA(H) → B(H). Let TN :j,k ∈ Mn[NA(H)] be
a norm-attainable operator. For n-tuples of θ, whereby θn : Mn[NA(H)] →
Mn[B(H)], we define θn[TN :j,k] = [θ(TN :j,k)], ∀ TN :j,k ∈ Mn[NA(H)]. More-
over, ||θ|| ≤ ||θ||CB holds.

Proof. For simplicity, we take TN :j,k = Tj,k throughout the proof. Now, when
n = 1, then by definition of θn, θ1 and θ are coincidental [1] hence, ||θ|| = ||θ1||.
We therefore give proofs when n = 2 and when n = 3. We use an analogous
technique to the one used in [1]. For n = 2, let [Tj,k] ∈ M2[NA(H)], j, k =

1, 2, then for θ2 : M2[NA(H)] → M2[B(H)], we have, θ2

[(
T1,1 T1,2

T2,1 T2,2

)]
=[

θ(T1,1) θ(T1,2)
θ(T2,1) θ(T2,2)

]
and

∥∥∥∥θ2 [( T1,1 T1,2

T2,1 T2,2

)]∥∥∥∥ =

∥∥∥∥[ θ(T1,1) θ(T1,2)
θ(T2,1) θ(T2,2)

]∥∥∥∥
=

[
2∑

j=1

2∑
k=1

∥θ(Tj,k)∥2
] 1

2

by HS-norm

=
(
∥θ(T1,1)∥2 + ∥θ(T1,2)∥2 + ∥θ(T2,1)∥2 + ∥θ(T2,2)∥2

) 1
2

≥
[
∥θ(T1,1)∥2

] 1
2

= ∥θ(T1,1)∥
= ∥θ1(T1,1)∥.

Therefore,

||θ2|| = sup{||θ2([Tj,k]) : [Tj,k] ∈ M2[NA(H)]||} ≥ sup{||θ1(T1,1)||} = ||θ1||.

and hence ||θ2|| ≥ ||θ1||.

When n = 3, θ3

 T1,1 T1,2 T1,3

T2,1 T2,2 T2,3

T3,1 T3,2 T3,3

 =

 θ(T1,1) θ(T1,2) θ(T1,3)
θ(T2,1) θ(T2,2) θ(T2,3)
θ(T3,1) θ(T3,2) θ(T3,3)

 which
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implies that∥∥∥∥∥∥θ3
 T1,1 T1,2 T1,3

T2,1 T2,2 T2,3

T3,1 T3,2 T3,3

∥∥∥∥∥∥ =

∥∥∥∥∥∥
 θ(T1,1) θ(T1,2) θ(T1,3)

θ(T2,1) θ(T2,2) θ(T2,3)
θ(T3,1) θ(T3,2) θ(T3,3)

∥∥∥∥∥∥
=

[
3∑

j=1

3∑
k=1

||θ(Tj,k)||2
] 1

2

= [∥θ(T1,1)∥2 + ∥θ(T1,2)∥2 + ∥θ(T1,3)∥2 + ∥θ(T2,1)∥2 +
∥θ(T2,2)∥2 + ∥θ(T2,3)∥2 + ∥θ(T3,1)∥2 + ∥θ(T3,2)∥2 +
∥θ(T3,3)∥2]

1
2

≥
[
∥θ(T1,1)∥2 + ∥θ(T1,2)∥2 + ∥θ(T2,1)∥2 + ∥θ(T2,2)∥2

] 1
2

=

[
2∑

j=1

2∑
k=1

||θ(Tj,k)||2
] 1

2

= ||θ([Tj,k])||.

This implies that

||θ3|| = sup{||θ3[(Tj,k)] : [Tj,k] ∈ M3[NA(H)]||}
≥ sup{||θ2[(Tj,k)] : [Tj,k] ∈ M2[NA(H)]||}
= ||θ2||

and therefore, ||θ3|| ≥ ||θ2||. Lastly, consider θn+1 : Mn+1[NA(H)] → Mn+1[B(H)]
defined by θn+1[(Tj,k)] = [θ(Tj,k)] for all j, k = 1, . . . , n+ 1. We obtain,

∥θn+1[(Tj,k)]∥ = ∥[θ(Tj,k)]∥

=

[
n+1∑
j=1

n+1∑
k=1

∥θ(Tj,k)∥2
] 1

2

≥

[
n∑

j=1

n∑
k=1

∥θ(Tj,k)∥2
] 1

2

= ||θn([Tj,k])||

So, ∥θn+1∥ ≥ ∥θn∥ by taking supremum on both sides of the inequality
above. By complete boundedness of the norm of θ, ||θ||CB = sup{||θn|| : n ∈ N}
which implies that ∥θ∥CB ≥ ∥θn∥ ∀ n ∈ N. Therefore, ||θ|| ≤ ||θ||CB which
completes the proof.
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5 Orthogonal Extensions

In this section, we give norm-attainable operator-valued orthogonal extensions
of matrix inequalities. Orthogonal extensions are known in different settings,
but we include simple proofs, since more elaborate ones have appeared in
literature.

Definition 5.1. Two operators T and P in NA(H) are said to be orthogonal
if ⟨T, P ⟩ = 0. Operators Tj, Tk, (j, k = 0, 1, ...) are said to have orthogonal
extensions if ⟨Tj, Tk⟩ = 0.

Proposition 5.2. Let (Mj,k) be a positive definite n× n matrix and Tj, (1 ≤
j ≤ n) are elements of NA(H), then Σn

j=1Σ
n
k=1⟨Tj, Tk⟩ ≥ 0.

Proof. Consider an orthonormal basis {e1, e2, ..., em of the subspace of NA(H)
generated by the elements Tj, and we write Tj = Σm

r=1Tj(r)er. From Theo-
rem 4.1 for each r we have positivity attained and taking summation over r
completes the proof.

Theorem 5.3. The matrix [T ]i,jB of an orthogonal operator T ∈ NA(H) in an
arbitrary orthonormal basis B is orthogonal. Conversely, if in an orthonormal
basis B the matrix of a linear operator T ∈ NA(H) is orthogonal, then T is
orthogonal.

Proof. Consider an orthonormal basis B = e1, ..., en in NA(H) . Let T be a
linear operator. Then [T ]i,jB = ([T (e1)]

i,j
B , ..., [T (en)]

i,j
B ). Recall that for an or-

thonormal basis, the inner product in NA(H) is equal to the standard scalar
product in Rn of their respective coordinate column (or row) operators. Sup-
pose that T is orthogonal, the set of Operators T (e1), ..., [T (en) is orthonormal
(since e1, ..., en is orthonormal). Hence the columns [T (e1)]

i,j
B , ..., [T (en)]

i,j
B are

orthonormal, hence [T ]i,jB is an orthogonal matrix. Conversely, assume that the
matrix [T ]i,jB is orthogonal. =⇒ T (e1), ..., [T (en) is an orthonormal set, i.e., T
preserves all pairwise scalar products of the elements of the basis B. It follows
then that T preserves all inner products of vectors of NA(H) , i.e., T is an
orthogonal operator.

Now it is easy to see that without loss of generality, fixing an orthonormal
basis in NA(H) , gives a 1 − 1 correspondence between orthogonal matri-
ces and orthogonal operators. At this point we consider extensions via norm
convergence.

6 Extensions via Norm-convergence

Norm inequalities can be extended via norm-convergence. We note that a se-
quence {Tj} of operators converges strongly to T if limj→∞ Tjx = T , for all
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x ∈ H. Norm-convergence implies strong convergence while boundedness of
Σn

j=1T
∗
j Tj is actually equivalent to strong convergence of Σn

j=1T
∗
j Tj since any

norm-bounded, increasing sequence of self-adjoint operators converges strong-
ly. It is interesting to show that either norm-convergence or strong convergence
is inherited by the transformed sequence.
Considering weaker conditions, the norm of the limit of a weakly convergent
sequence of operators in NA(H) may be strictly less than the norms of the
terms in the sequence, corresponding to a loss of energy in oscillations, at a
singularity, or by escape to infinity in the weak limit. Therefore, the expansion
of any positive functional ϕ in any orthonormal basis contains coefficients that
wander off to infinity. Hence, we note that if the norms of a weakly convergent
sequence converge to the norm of the weak limit, then the sequence is strongly
convergent.

It is known that the boundedness of the pointwise values of a family of
linear functional ϕ implies the boundedness of their norms. We prove that a
weakly convergent sequence is bounded, hence gives a necessary and sufficient
condition for weak convergence of operators in NA(H).

Theorem 6.1. Let Tj be a sequence of operators in NA(H) and G a dense
subset of NA(H). Then Tj converges weakly to T if and only if ∥Tj∥ ≤ λ for
some constant λ. Moreover, ⟨Tj, P ⟩ → ⟨T, P ⟩ as j → ∞ for all P ∈ G.

Proof. Suppose that Tj is a weakly convergent sequence. By the definition of
bounded linear functionals ϕn given by ϕn(T ) = ⟨Tj, T ⟩ Then ∥ϕn∥ = ∥Tj∥.
But ϕn(T ) is convergent for each T ∈ NA(H), it is a bounded sequence, and
by uniform boundedness theorem {∥ϕn∥} is bounded. Hence both conditions
are necessary and satisfied. Next, we prove the reverse inclusion. Suppose that
Tj satisfies the two conditions. If A ∈ NA(H), then for any β > 0 there is a
P ∈ G such that ∥A−P∥ < β, and there is an M such that |⟨Tj − T, P ⟩| < β,
for j ≥ M. From the first condition in the theorem,and by Cauchy-Schwarz
inequality it follows that for j ≥ M

|⟨Tj − T,A⟩| ≤ |⟨Tj − T, P ⟩|+ |⟨Tj − T,A− P ⟩|
≤ β + ∥Tj − T∥+ ∥A− P∥
= (1 + λ+ ∥T∥)β.

Thus, it follows that Tj ⇀ Twhich completes the proof

Example 6.2. Suppose that ei, (i = 1, 2, ...) is an orthonormal basis of NA(H).
Then a sequence Tj is weakly convergent to T if and only if it is bounded and
its coordinates converge, i.e. ⟨Tj, ei⟩ → ⟨T, ei⟩ for each i = 1, 2, .... Thus,
the boundedness of the sequence is sufficient to ensure weak convergence in
NA(H).
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