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Abstract
We present new norm inequalities of matrices of norm-attainable
operators and characterize the maps that act on matrices of these oper-
ators. Moreover, we characterize completely bounded norms, give their
orthogonal extensions and extensions via norm-convergence in N A(H)-
classes.
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1 Introduction

The algebra of norm-attainable operators, NA(H), is one of the subclasses
under consideration in this note. Consider an infinite dimensional complex
Hilbert space H and B(H) the algebra of all bounded linear operators on H.
A lot of results have been obtained in the study of the properties of several
classes and matrices of operators acting on Hilbert spaces. Considering norm-
attainable operators, there are nice results on them especially on the necessary
and sufficient conditions for norm-attainability [2]. Recently, characterization-
s on this subclass of operators has been done in [4]. For more details on
norm-attainable operators see [4-18]. In this paper, we study some important
properties of norm-attainable operators and characterize the maps that act on
matrices of these operators. See details on completely bounded maps in [1 and
19] and the references therein. Lastly, we give the orthogonal extensions of
these norms.

2 Preliminaries and Notations

In this section we give some basic definitions and notations that we shall use
in the sequel.



Definition 2.1. Let A, S € B(H), A is said to be positive if (Ax,x) >
0, Vo € H and normal if AA* = A*A. S is an isometry(co-isometry) if
S*S = SS* = I where I is an identity operator in B(H).

From this stage and in the sequel, we denote a bounded linear operator, a
positive operator and a norm-attainable operator in B(H) by A, Ap and Ay
respectively. We also denote by dimN(Ay), the dimension of the null space of
An. We also denote the algebra of all norm-attainable operators by NA(H).

Definition 2.2. Let 0 : B(H) — B(H) be a bounded linear operator. 0 is said
to be completely bounded if sup |6, : V n € N|| < oo and this supremum is
called the completely bounded norm denoted by || - ||cB-

We denote by CB[NA(H), NA(H)] the algebra of all completely bounded op-
erators from NA(H) to NA(H). Clearly, this algebra is complete with respect
to the completely bounded norm. HS-norm denotes the Hilbert-Schmidt norm.

Definition 2.3. Let H be a Hilbert space, B(H) the algebra of all bounded
linear operators on H and let N(H) C B(H) be a subalgebra. Let M, ,,,[B(H)]
be a n x m matriz algebra with entries from B(H). Then the inclusion,
M, m[NA(H)| € M,,m[B(H)| endows this subalgebra with a collection of ma-
triz norms and we call N(AH) together with this collection of matriz norms
on M, ,[NA(H)] an operator algebra. When m = n, we have

M, m|[NA(H)| = M, ,[NA(H)] = M,[NA(H)].

3 Norm-attainable Operators

In this section, we study norm-attainable operators and some of their proper-
ties.

Definition 3.1. An operator Ay € NA(H) is said to be norm-attainable if
there ezists a unit vector x € H, ||[Ayz| = ||An]|.

Lemma 3.2. If Ay, By € NA(H) are norm-attainable then Ay + By, Ay —
By and My, X € C are norm-attainable.

Proof. By direct summing of the operators Ay and By with a large enough
rank-one projection, the sum and the difference of the two operators are norm-
attainable. The case of coefficient X is easy to see. O

Lemma 3.3. For a norm-attainable operator Ay € NA(H), Ayx is norm-

*

attainable if its adjoint, A%, is norm-attainable.



Proof. We show that a nonzero Ay € NA(H) is norm-attainable implies that
A%, is norm-attainable. Let Ay € NA(H) be norm-attainable, then there

exists a unit vector x € H such that ||[Ayz| = ||Anx]||. That is AyAnz =
|Anl[2z. Let &€ = ‘ﬁjfu, then £ is a unit vector and hence |A%€| = [[An|| =
AN 0

Theorem 3.4. Let S’ and S” be isometries or co-isometries in a unit ball
NA(H),. For a norm-attainable operator Ay € NA(H ), we have Ay = %

Proof. Let Ax = S|T| be the polar decomposition of Ay. Now, since Ay €
NA(H),, T is a contraction (in fact, a positive contraction) in NA(H);, there-
fore, I — T? is also a positive contraction in NA(H);. Let K and K’ respec-
tively be defined by K = T +iv/I —T? and K' =T — iv/I — T?. It is clear
that K* = K’ and hence, KK* = K*K =] and K'K™* = K*K' =1, so K
and K’ are unitaries and 7 = £ If dimN(Ay) < dimN(A%), then S can
be taken to be an isometry and therefore, putting S = S|K| and 5" = S|K'|,
then S" and S” are isometries and

K—I—K' SI+S//
Ay = 8T = S|—5—1=—3

(1)

If dimN(Ay) > dimN(Ay), then S can be taken to be co-isometry and
therefore, S" and S” in Equation (1) can be taken as co-isometries. O

Remark 3.5. IfdimN(Ap) = dimN(A}), then S can be taken to be a unitary
and therefore, S" and S” in Equation (1) can be taken as unitaries.

Theorem 3.6. An operator A € NA(H) is normal if it is norm-attainable.

Proof. Assuming A € NA(H) is normal, we show that it is norm-attainable.
Since A is normal, then AA* = A*A. By Lemma 3.3 its adjoint is norm-
attainable. Consider a unit vector x € H. Now A(A*x) = A*(Ax). This
implies that ||Az|]? = (Az, Az) = (A*Az,z) < ||A(A*z)|| = ||A*(Az)|| <
[A Az ]| < [|A*[HIA[llz]l = |AI* =[] = [IA]l*. Taking a positive square root
on both sides yields the required results. The reverse inequality is trivial and
hence this completes the proof. O



4 Norm inequalities in NA(H)-Classes

Theorem 4.1. Consider a C*-algebra B(H), NA(H) a subalgebra of B(H)
and a map 6, such that § : NA(H) — B(H). Let Tn.jx € M,[NA(H)| be
a norm-attainable operator. For n-tuples of 6, whereby 0, : M,[NA(H)| —
M,[B(H)|, we define 6,[Tn.jx| = [0(Tn:jx)], ¥V Tnijk € M,[NA(H)]. More-
over, ||0|| < ||0||cs holds.

Proof. For simplicity, we take T.;, = T} throughout the proof. Now, when
n = 1, then by definition of 6,,, 6; and 6 are coincidental [1] hence, ||0]] = ||64]|.
We therefore give proofs when n = 2 and when n = 3. We use an analogous
technique to the one used in [1]. For n = 2, let [T}x] € Ma[NA(H)], j, k=

J

1,2, then for 0y : My[NA(H)] — My|[B(H)], we have, 6 [( Tig Tip )} _
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Therefore,
102 | = sup{||62([Tjx]) = [Thx] € Ma[NACH)]||} = sup{][|61(T1)[|} = [16:4]]-

and hence ||6s]| > ||64]]-
Tv: Tio Tis Q(TM) 9(T1,2) 0(T13)
When n = 3, 93 T2,1 T272 T273 = Q(TQJ) 9(T272) 9(T273) which

T3,1 T3,2 T3,3 9(T3,1) 9(T3,2) H(TS,S)



implies that

Tv, Tvo Tis O(T11) 0(Ti2) O(Thp)
93 T2,1 T2,2 T2,3 = 9(T2,1> 9(T2,2) 9(T2,3)
T3,1 T3,2 T3,3 9<T3 1) 9(T3 2) 9(T3,3)

= [||( 1)||2+|]9(T12)||2+||0(T13)||2+||0(T21)||2
OB + 10T + 10T + 10T +
10(Ts.5)]12)%

> (0TI + 10(T32) |2+ [10(Te )| + 10(T52)]2)

2

= [iZIIH i)lI”

j=1 k=1
= 0TI
This implies that
10s]] = sup{||6a[(T5.x)] - [Tjx] € Ms[NACH)][|}
> sup{[|6o[(Tix)] : [Tix] € Ma[NA(H)]|[}

162

and therefore, ||03|| > ||02||. Lastly, consider 0,1 : M, 1[NA(H)] — M, +1|B(H)]
defined by 0,,41[(Tjx)] = [0(T;x)] for all j,k =1,...,n+ 1. We obtain,

O (T = [IE(T50)]

[n+1 n+1

= DD e Jk||2
k=1

Lj=1

=

=

n n

> ZZHQ Jk’”2
k=1

Jj=

= (T3]

So, ||0ns1]l > ||0n]] by taking supremum on both sides of the inequality
above. By complete boundedness of the norm of 4, ||0||c5 = sup{||0.|| : n € N}
which implies that [|0]|cg > ||0.]] ¥V n € N. Therefore, ||0|| < ||0||cs which
completes the proof. O



5 Orthogonal Extensions

In this section, we give norm-attainable operator-valued orthogonal extensions
of matrix inequalities. Orthogonal extensions are known in different settings,
but we include simple proofs, since more elaborate ones have appeared in
literature.

Definition 5.1. Two operators T and P in NA(H) are said to be orthogonal
if (I',P) = 0. Operators T3, Ty, (j,k = 0,1,...) are said to have orthogonal
extensions if (T;,Ty) = 0.

Proposition 5.2. Let (M) be a positive definite n x n matriz and Tj, (1 <
J < n) are elements of NA(H), then X5_ 33 _ (T}, Ty,) > 0.

Proof. Consider an orthonormal basis {e1, s, ..., €, of the subspace of NA(H)
generated by the elements T;, and we write 7; = X7 ,T};(r)e,. From Theo-
rem 4.1 for each r we have positivity attained and taking summation over r
completes the proof. O

Theorem 5.3. The matrix [T]gj of an orthogonal operator T € NA(H) in an
arbitrary orthonormal basis B is orthogonal. Conversely, if in an orthonormal
basis B the matriz of a linear operator T € NA(H) is orthogonal, then T is
orthogonal.

Proof. Consider an orthonormal basis B = ey, ...,e, in NA(H) . Let T be a
linear operator. Then [T = ([T(e1)]¥, ..., [T(en)]%). Recall that for an or-
thonormal basis, the inner product in NA(H) is equal to the standard scalar
product in R" of their respective coordinate column (or row) operators. Sup-
pose that T is orthogonal, the set of Operators T'(ey), ..., [T'(e,,) is orthonormal
(since ey, ..., e, is orthonormal). Hence the columns [T'(e;)]%, ..., [T(e,)]% are
orthonormal, hence [T]i’gj is an orthogonal matrix. Conversely, assume that the
matrix [T]% is orthogonal. => T'(ey), ..., [T'(e,) is an orthonormal set, i.e., T
preserves all pairwise scalar products of the elements of the basis B. It follows
then that 7" preserves all inner products of vectors of NA(H) , i.e., T is an

orthogonal operator. O

Now it is easy to see that without loss of generality, fixing an orthonormal
basis in NA(H) , gives a 1 — 1 correspondence between orthogonal matri-
ces and orthogonal operators. At this point we consider extensions via norm
convergence.

6 Extensions via Norm-convergence

Norm inequalities can be extended via norm-convergence. We note that a se-
quence {7}} of operators converges strongly to 7 if lim; ,., Tjz = T, for all



x € H. Norm-convergence implies strong convergence while boundedness of
Y2 T7T; is actually equivalent to strong convergence of X7_, T7T) since any
norm-bounded, increasing sequence of self-adjoint operators converges strong-
ly. It is interesting to show that either norm-convergence or strong convergence
is inherited by the transformed sequence.

Considering weaker conditions, the norm of the limit of a weakly convergent
sequence of operators in NA(H) may be strictly less than the norms of the
terms in the sequence, corresponding to a loss of energy in oscillations, at a
singularity, or by escape to infinity in the weak limit. Therefore, the expansion
of any positive functional ¢ in any orthonormal basis contains coefficients that
wander off to infinity. Hence, we note that if the norms of a weakly convergent
sequence converge to the norm of the weak limit, then the sequence is strongly
convergent.

It is known that the boundedness of the pointwise values of a family of
linear functional ¢ implies the boundedness of their norms. We prove that a
weakly convergent sequence is bounded, hence gives a necessary and sufficient
condition for weak convergence of operators in NA(H).

Theorem 6.1. Let T; be a sequence of operators in NA(H) and G a dense
subset of NA(H). Then T; converges weakly to T if and only if | T;|| < X for
some constant X. Moreover, (T;, P) — (T, P) as j — oo for all P € G.

Proof. Suppose that T} is a weakly convergent sequence. By the definition of
bounded linear functionals ¢,, given by ¢, (7)) = (I3, T) Then |¢,| = |1}
But ¢,,(T) is convergent for each ' € NA(H), it is a bounded sequence, and
by uniform boundedness theorem {||¢,||} is bounded. Hence both conditions
are necessary and satisfied. Next, we prove the reverse inclusion. Suppose that
T satisfies the two conditions. If A € NA(H), then for any § > 0 there is a
P € G such that |A — P|| < 3, and there is an M such that |(T; — T, P)| < 5,
for j > M. From the first condition in the theorem,and by Cauchy-Schwarz
inequality it follows that for j > M

(T; =T, A) < [T; =T, P)|+[T; =T, A= P)
< BHIT =T +[A =Pl

= (+A+(TI)B
Thus, it follows that T; — T'which completes the proof O

Example 6.2. Suppose that e;, (i = 1,2,...) is an orthonormal basis of NA(H).
Then a sequence T} is weakly convergent to T if and only if it is bounded and
its coordinates converge, i.e. (T;,e;) — (T,e;) for each i = 1,2,.... Thus,
the boundedness of the sequence is sufficient to ensure weak convergence in

NA(H).
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