

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF ENGINEERING AND TECHNOLOGY

UNIVERSITY EXAMINATIONS FOR THE DIPLOMA IN BUILDING AND CIVIL ENGINEERING

2ND YEAR 2ND SEMESTER 2017/2018 ACADEMIC YEAR

CENTRE: MAIN CAMPUS

COURSE CODE: TBC 2223

COURSE TITLE: HYDRAULICS II

EXAM VENUE: LAB 23 STREAM: DIP IN BLD & CIV ENG

DATE: 20/12/2017 EXAM SESSION: 9.00 – 10.30AM

DURATION: 2 HOURS

.....

Instructions

- 1. Answer question 1 (Compulsory) and ANY other two questions
- 2. Candidates are advised not to write on question paper
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room

QUESTION ONE (30 MARKS)

a. State and outline the significance of the following;

(6 Marks)

- i. Continuity equation
- ii. Bernoulli's Equation
- b. Explain what you understand by an open channel flow and distinguish between uniform and non-uniform open channel flow. (8 Marks)
- c. Outline the difference between turbulent flow and laminar flow; hence explain how Reynolds's number is used to determine the different types of flows. (6 Marks)
- d. Explain the principle involved in measuring velocity of flow using a pitot static tube.

Hence determine the velocity of air, if a pitot static tube is used to measure the velocity of air flowing through a duct, and the manometer shows a difference in head of 5 cm of water. The density of air and water are 1.13 kg/m3 and 1000 kg/m3. Assume the coefficient of the pitot tube as 0.98.

(10 Marks)

QUESTION TWO (15 MARKS)

- a. A venturimeter of 150 mm × 75 mm size is used to measure the flow rate of oil having specific gravity of 0.9. The reading shown by the U tube manometer connected to the venturimeter is 150 mm of mercury column. Calculate the coefficient of discharge for the venturimeter if the flow rate is 1.7 m3/min. (Note: The size of venturimeter generally specified in terms of inlet and throat diameters). (10 Marks)
- b. Briefly explain what you understand by the term, "Economical cross-section" with reference to an open channel. (5 Marks)

QUESTION THREE (15 MARKS)

- a. Explain what is meant by energy losses in a pipe, distinguishing both the major and minor losses. (7 Marks)
- b. Show that the loss of head due to friction, h_f , is given by;

 $h_f = \frac{4fL}{d} \frac{v^2}{2g}$; where f is the resistance coefficient, L length of the pipe, v is the

mean velocity of flow, d is the pipe diameter and g the gravitational acceleration.

(8 Marks)

QUESTION FOUR (15 MARKS)

- a. Define venacontracta, and derive the expression for flow measurement through an orifice in an open tank. (9 Marks)
- b. State Chezy and Manning formula for uniform flow through an open channel. (6 Marks)

QUESTION FIVE (15 MARKS)

- a. Derive an expression for the flow measurement using a triangular notch in an open channel. (9 Marks)
- b. Discuss the method of velocity measurement using (i) Vane anemometer and (ii) Turbine meter. (6 Marks)