COURSE TITLE: VECTOR ANALYSIS

COURSE CODE: SMA 202; TIME: 2 HOURS
Answer question ONE and any other TWO questions.

QUESTION 1

(a) Find the directional derivative of $\phi=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction $2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$.
(b) Find the projection of vector $\mathbf{A}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$ on the vector
$\mathbf{B}=4 \mathbf{i}-4 \mathbf{j}+7 \mathbf{k}$
(c) A particle moves along a curve whose parametric equations are $x=e^{-t} ; y=2 \cos 3 t$ and $z=2 \sin 3 t$ where t is the time. Determine the magnitude of the acceleration at $t=0$.
(d) Find the angle θ between the vectors $\mathbf{v}=(2,1,-1)$ and $\mathbf{w}=(3,-4,1)$
(e) Given that $\mathbf{F}(x, y)=y \mathbf{i}+x^{2} \mathbf{j}$, evaluate the line integral

$$
\int_{C} \mathbf{F} d \mathbf{r}
$$

for the following parabolic curve;
$C_{1}: r_{1}(t)=(4-t) i+\left(4 t-t^{2}\right) j, 0 \leq t \leq 3$
[6mks]
(f) Find the volume of the parallelepiped with adjacent sides $\mathbf{u}=(2,1,3)$, $\mathbf{v}=(-1,3,2)$, and $\mathbf{w}=(1,1,-2)$
(g) If $\mathbf{A}=\left(3 x^{2}+6 y\right) \mathbf{i}-14 y z \mathbf{j}+20 x z^{2} \mathbf{k}$, evaluate; $\int \mathbf{A} d \mathbf{r}$ from $(0,0,0)$ to $(1,1,1)$ along the following path; $x=t, y=t^{2}, z=t^{3}$

QUESTION 2

(a) A particle moves so that its position vector is given by
$\mathbf{r}=\cos \omega t \mathbf{i}+\sin \omega t \mathbf{j}$ where ω is a constant. Show that
(i) the velocity \mathbf{v} of the particle is perpendicular to \mathbf{r}
(ii) the acceleration a is directed towards the origin and has magnitude proportional to the distance from the origin
(iii) $\mathbf{r} \times \mathbf{v}$ is a constant vector
(b) (i) Find the unit tangent on the curve
$x=t^{2}+1, y=4 t-3, z=2 t^{2}-6 t$
(ii) Determine the unit tangent vector at a point where $t=2$

QUESTION 3

(a) Prove that $\nabla \cdot(\nabla \phi)=0$
[4mks]
(b) If $\mathbf{r}_{1}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}, \mathbf{r}_{2}=\mathbf{i}+3 \mathbf{j}-2 \mathbf{k}, \mathbf{r}_{3}=-2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}$ and $\mathbf{r}_{4}=3 \mathbf{i}+2 \mathbf{j}+5 \mathbf{k}$,
find scalars a, b, c such that: $\mathbf{r}_{4}=a \mathbf{r}_{1}+b \mathbf{r}_{2}+c \mathbf{k}_{3}$.
(c) Find the constants a, b, and c such that;
$\mathbf{v}=(x+2 y+a z) \mathbf{i}+(b x-3 y-z) \mathbf{j}-(4 x+c y+2 z) \mathbf{k}$ is irrotational. [6mks]
(d) If $\mathbf{v}=\mathbf{w} \times \mathbf{r}$, prove that $\mathbf{w}=\frac{1}{2} C u r l \mathbf{v}$ where \mathbf{w} is a constant vector.
[6mks]
QUESTION 4
(a) Given that in the $x y$-plane, a force $F=x^{2} y i+x y^{2} j$ acts on a body as it moves between $(0,0)$ and $(1,1)$
Determine the work done when the path is
(i) along the line $y=x$
(ii) along the curve $y=x^{n}$
(iii) along the x-axis to the point $(1,0)$ and then along the line $x=1$ [$4 \mathbf{m k s}$]
(b) Verify Stokes theorem for $\mathbf{A}=(2 x-y) \mathbf{i}-y z^{2} \mathbf{j}-y^{2} z \mathbf{k}$
where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary
[10mks]
QUESTION 5
(a) Show that $\vec{F}=\left(2 x y+z^{3}\right) \mathbf{i}+x^{2} \mathbf{j}+3 x z^{2} \mathbf{k}$ is a conservative force field. Find the work done in moving an object in this field from $(1,-2,1)$ to
[10mks]
(b) Given that $\vec{F}=2 x z \mathbf{i}-x \mathbf{j}+y^{2} \mathbf{k}$, evaluate
$\int \vec{F} d v$, where v is the region bounded by the surfaces $x=0, x=2$,
$y=0, y=6, z=x^{2}, z=4$
[10mks]

