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Instructions:

1. Answer question 1 (Compulsory)and ANY other 2 questions
2. Candidates are advised not to write on the question paper.

3. Candidates must hand in their answer booklets to the invigilator while in
the examination room.



Question 1[30 marks] COMPUL SORY

(a) Consider the second order linear partial differential equation
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where a, b, ¢, d, e, f, g arein general variable coefficients which may depend onreal xor y
with u(x,y) as the dependent variable. Use discriminant A(a,b,c)theory to categorize; elliptic,
parabolic and hyperbolic partial differential equations;
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(b) Given the partia differential equation
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Statein each case, the order, degree and whether linear or nonlinear. [6marks]

(c) Use characteristic method to solvethe linear partial differential equation
U+ Uy =2
subject to theinitial condition u(x, 0) = X°. [8 marks]

(d) Determine the function z(x, y) which satisfies the linear second order partia
differentil  equation  (D*-DD'-6D"*)z=0 [6marks]

Question 2 [20marks]

Given the function F(x, y)=13y? +104x* + 26x* +14000-52x’y

() Find a—F il , [4 marks]
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(iii) Determine and distinguish al the stationary points of F

Question 3[20marks]|

(a) Eliminate the arbitrary functions f ,g from the equation
1 2
u= f(x+y)+g(x—y)+zx(x—y)

(b) Solve the linear second order partial differential equation

(4D2—12DD’+9D'2)u =0

(c) Solve the linear second order partia differential equation
( D3 _ SDZD’ _ 4D!3)u — e5X+7y

Question 4 [20marks]

(a) Solve the equation

—YUy + XUy = U

subject to theinitial condition

u(x, 0) = P(x).

(b) Eliminate the arbitrary functions f ,g , h from the equation

(i) u= f(x—at+iby)+g(x—at—iby) :i =J-1

X+y

(i) u= f(x+y)+g(x—y)+h(2x+ y)—%x(x— y)ze

Question5 [20marks]
(a)Solve the initial boundary value heat equation

U, = u O<x<1,t>0
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100
satisfying the conditions
u(0,t)=10, u(4,t)=10 0<x<1,t>0 u(x0)=1+sin2px, O0<x<1

(b)Determine the critical points of the curve ®(X,y)= X+ y*—3(x+ y)+1100
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Jo (t) is the Bessel function of order zero.

LHf (s)}=eL {f (s-a)} ,L{e*f(O)}=L{f ()}

S—>S+a
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