

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICAL & ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR THE MASTERS DEGREE IN APPLIED MATHEMATICS

1ST YEAR 1ST SEMESTER 2013/2014 ACADEMIC YEAR

KISUMU LEARNING CENTRE

COURSE CODE: SMA 842

COURSE TITLE: NUMERICAL ANALYSIS II

EXAM VENUE: STREAM: (MSc.)

DATE: 02/05/2014 EXAM SESSION: 9.00 – 12.00 NOON

TIME: 3 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Question 1 [20 marks]

a) Determine the **Padé** rational approximation $r_{2,3}$ to $f(x) = e^{-x}$ of degree 5 with n=2,and m=3. Take the Maclaurin expansion for $f(x) = e^{-x}$ as

$$; P_5(x) = \left(1 - x + \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{24} - \frac{x^5}{120}..\right)$$
 [12 marks]

b) Compute the error $E_{m,n}(x) = |e^{-x} - r(x)|$ in the Padé's rational approximations $r_{m,n}(x)$ to $f(x) = e^{-x}$ at points $x = 0, \pm 0.2, \pm 0.4, \pm 0.6, \pm 0.8, \pm 1.0$. On same table display the values of x, e^{-x} , r(x), $|e^{-x} - r(x)|$. Comment appropriately on the error propagation [6 marks]

Question 2 [20 Marks]

(a) Derive the Trapezoidal method $y_{n+1} = y_n + \frac{h}{2} \left[f(x_n, y_n) + f(x_{n+1}, y_{n+1}) \right]; h = x_{n+1} - x_n$ step size to approximate the first order initial value problem

$$y' = f(x, y), a \le x \le b, y(a) = \Gamma$$
 [8 marks]

(b) Use the Euler's method , with step size h = 0.02, to estimate y(0.2) where y satisfies ordinary first order differential equation,

[5 marks]

$$y' = \frac{y - y^2}{1 + x^2}$$
; $y(0) = 10$

On the same table display the results; n, x_n, y_n

Question3 [20 marks]

(a) For the second order boundary- value problem

$$y'' + \frac{4}{x}y' - \frac{16}{x^2}y = \frac{\sin(\ln x)}{x^2}, \ 1 \le x \le 2$$
 ; $y(1) = 1, \ y(2) = 2$,

show that it has a unique solution y(x) over the sub domain D where

$$D = \{(x, y, y') | , 1 \le x \le 2, -\infty < y < \infty, -\infty < y' < \infty \}$$
 [8 marks]

(b) (i) Construct a finite difference scheme to the second order boundary- value problem

$$y'' + \frac{4}{x}y' - \frac{16}{x^2}y = \frac{\sin(\ln x)}{x^2}, \ 1 \le x \le 2$$
 ; $y(1) = 1, \ y(2) = 2$,

(ii) Use the above numerical scheme with step-size h = 0.2 and an appropriate iterative method to approximate the solution of the above given boundary- value problem. [12 marks]

1

Question4 [20 marks]

Approximate the solution of the nonlinear initial boundary value problem

$$y'' = y^2 - 2yy'; y'(0) = -1, y(1) = 0.5.$$

Use step size $h = \Delta x = x_{i+1} - x_i = 0.25$.

Question5 [20 marks]

Given the system of linear equations $M\underline{X} = \underline{b}$ where

$$M = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \quad ,$$

Prove that Gauss Seidel iterative scheme for the linear system will converge much faster than Gauss Jacobi's iterative scheme. [20 marks]