

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF SPATIAL PLANNING

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN WATER RESOURCE AND ENVIRONMENTAL MANAGEMENT $2^{ND}~\rm YEAR~1^{ST}~SEMESTER~2017/2018~ACADEMIC~\rm YEAR$

CENTRE: MAIN CAMPUS

COURSE CODE: PWE 3211

COURSE TITLE: FLUID MECHANICS I

EXAM VENUE: LR 16 STREAM: SPATIAL PLANNING

DATE: 20/12/2017 EXAM SESSION: 9.00 – 11.00 AM

TIME: 2 HOURS

Instructions:

1. Answer question 1 (compulsory) and ANY other 2 questions.

- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

SECTION A [30 MARKS]

Answer ALL questions from this Section.

QUESTION 1

- a) Using dimension analysis approach, find out if the equation $V^2 = u^2 + 2aS^2$ is dimensionally correct (where V=final velocity; u=initial velocity; a=acceleration; S = distance) (6 Marks)
- b) Distinguish between: (i) Fluid statics (ii) Kinetics of flow (iii) Dynamics of Flow (6 Marks)
- c) Find the pressure head (H) of water corresponding to an intensity (P) of 280,000 N/m², if mass density of water is 10^3 kg/m³ (6 Marks)
- d) Using sketch diagrams, distinguish between turbulent and laminar flow of fluids (6 Marks)
- e) Using well labeled diagrams, distinguish between a manometer measuring fluid condition under (i) positive pressure and (ii) negative pressure (6 Marks)

SECTION B [40 MARKS]

Answer ANY TWO questions from this Section.

QUESTION 2

- a) Derive a mathematical expression distinguishing between the pressure exerted over solid surfaces and the pressure exerted on liquids (6 Marks)
- (b) A U-Tube Manometer below has two liquids as shown:

Calculate the difference in pressure if a=1.7m, b=0.95m and h=0.8m. Take the liquid at A and B to be water ($w_i=9.81 \times 103$ N/m³) and specific weight of Mercury is 13.6 times that of water. (14 Marks)

QUESTION 3

Pressure intensity of a plane surface immersed in water at depth x is given as ρgx . Prove that total pressure is given as $wA\ddot{x}$ (where $w=\rho g$) and that this pressure is similar for (i) a horizontally immersed plane surface, (ii) a vertically immersed plane surface and (iii) an inclined plane surface (20 Marks)

QUESTION 4

a) A rectangular plate $2m \times 3m$ is immersed in water in such a way that its greatest and least depths are 6m and 4m respectively from the water surface. Calculate the total pressure on the plate

(8 Marks)

b) Using a sketch diagram of a curved surface immersed in water, generate mathematical expressions for (i) total pressure on curved surfaces and (ii) angle of inclination of the resultant pressure

(12 Marks)

QUESTION 5

- a) With the aid of a sketch diagram of a fluid element in a control volume, prove that mass flow rate is given by $\dot{m} = \rho AV$ (6 Marks)
- **b)** In reference to a control volume of pipe flow, derive Bernoulli's equation from the principle of conservation of energy (14 Marks)