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Show all the necessary working 

 

Question 1[30 marks] Compulsory 

 

(a)  Given the partial differential equation 
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State in each  case, the order, degree and whether linear or nonlinear.    [9marks] 

(b) Consider the second order linear partial differential equation    
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(i) Classify the partial differential equation    

(ii) Obtain the characteristic   equation of  the partial differential equation    

(i) Solve the partial differential equation.                                                             [10 marks] 

(c) Consider  the second order linear  partial differential equation 
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,     : ,u x y  

 where , , , , , ,a b c d e f g  are in general variable coefficients which may depend on real x or y  

with  ,u x y  as  the dependent variable. Use discriminant  , ,a b c theory to categorize; elliptic, 

parabolic and hyperbolic partial differential equations ; 
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(d) Solve the first order partial differential equation   
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(e) Determine the function  ,z x y which satisfies the linear second order partial differential   

      equation        2 26 0D DD D z                                                          [6marks] 

 

 

Question 2 [20marks] 

Given the function   2 2 2, , 8 24 16 24 16 1111F x y z x y z x z      ,  
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(iii) Determine and distinguish all the stationary points of F                  [11 marks] 

 

 Question 3[20marks] 

(a) Eliminate the arbitrary functions ,f g  from the equation 

          
21

4
u f x y g x y x x y           [6marks] 

 (b) Solve the linear second order partial differential equations 

      (ii)  2 24 12 9 0D DD D z                                              [6marks] 

       (iii)  3 2 3 8 23 4 x yD D D D u e                                                         [8marks] 

 

Question 4 [20marks] 

(a) Use characteristic method to solve the linear  partial differential equation 

 ux + uy + u = 1, subject to the initial condition  u = sin x, on y = x + x2,  x > 0.[14 marks] 

(b ) Eliminate the arbitrary functions ,f g  from the equation 
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   u f x at by g x at by           [6 marks] 

 

 

Question 5[20marks] 

 

Solve the initial boundary value heat equation  

, 0 1 , 0t xxu u x t     

 satisfying the conditions 

   0, 100, 1, 100 0 1 , 0u t u t x t      

 ,0 1 sin , 0 1u x x x           [20 marks] 

       

       

 

 

 

 

 

 

 

 

 

 

 

 


