JA

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE

ACTUARIAL
$4^{\text {TH }}$ YEAR $1^{\text {ST }}$ SEMESTER 2015/2016 ACADEMIC YEAR MAIN CAMPUS - RESIT

COURSE CODE: SMA 405

COURSE TITLE PARTIAL DIFFERENTIAL EQUATION 1

EXAM VENUE: LAB 1
DATE: 04/5/16

TIME: 2.00 HOURS

Instructions:

1. Answer question $\mathbf{1}$ (Compulsory) and ANY other $\mathbf{2}$ questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Show all the necessary working

Question 1 [30 marks] Compulsory

(a) Given the partial differential equation
(i) $x \frac{\partial F}{\partial x}-y \frac{\partial F}{\partial y}=3 x y^{2}$ (ii) $x^{2} \frac{\partial^{2} F}{\partial x^{2}}-y^{2} \frac{\partial^{2} F}{\partial y^{2}}+x \frac{\partial F}{\partial x}-y \frac{\partial F}{\partial x} \frac{\partial F}{\partial y}=0$
(iii) $x^{2} \frac{\partial^{3} F}{\partial x^{3}}-y^{2}\left(\frac{\partial^{2} F}{\partial y^{2}}\right)^{4}+x \frac{\partial F}{\partial x}-y \frac{\partial F}{\partial y}=0$

State in each case, the order, degree and whether linear or nonlinear.
[9marks]
(b) Consider the second order linear partial differential equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial x \partial y}+x \frac{\partial^{2} u}{\partial y^{2}}=0
$$

(i) Classify the partial differential equation
(ii) Obtain the characteristic equation of the partial differential equation
(i) Solve the partial differential equation.
[10 marks]
(c) Consider the second order linear partial differential equation
$a \frac{\partial^{2} u}{\partial x^{2}}+b \frac{\partial^{2} u}{\partial x \partial y}+c \frac{\partial^{2} u}{\partial y^{2}}+d \frac{\partial u}{\partial x}+e \frac{\partial u}{\partial y}+f u+g=0, \quad: u(x, y)$
where a, b, c, d, e, f, g are in general variable coefficients which may depend on real x or y with $u(x, y)$ as the dependent variable. Use discriminant $\Delta(a, b, c)$ theory to categorize; elliptic, parabolic and hyperbolic partial differential equations ;
(i) $\frac{\partial^{2} u}{\partial x^{2}}+4 \frac{\partial^{2} u}{\partial y^{2}}=1$ (ii) $\frac{\partial u}{\partial t}=t^{6} \frac{\partial^{2} u}{\partial x^{2}}$ (iii) $\frac{\partial^{2} u}{\partial x^{2}}+3 \frac{\partial^{2} u}{\partial y^{2}}=0$ (iv) $\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=0 . \quad$ [10 marks]
(d) Solve the first order partial differential equation $\frac{\partial z}{\partial x} z-\frac{\partial z}{\partial y} z=z^{2}+(x+y)^{2}$
(e) Determine the function $z(x, y)$ which satisfies the linear second order partial differential

$$
\text { equation } \quad\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=0 \quad \text { [6marks] }
$$

Question 2 [20marks]

Given the function $F(x, y, z)=8 x^{2}+24 y^{2}+16 z^{2}+24 x+16 z+1111$,
(i) Find $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}$, [4 marks]
(ii) Find $\frac{\partial^{2} F}{\partial x^{2}}, \frac{\partial^{2} F}{\partial y^{2}}$ and $\frac{\partial^{2} F}{\partial x \partial y}$
(iii) Determine and distinguish all the stationary points of F

Question 3[20marks]

(a) Eliminate the arbitrary functions f, g from the equation

$$
u=f(x+y)+g(x-y)+\frac{1}{4} x(x-y)^{2}
$$

[6marks]
(b) Solve the linear second order partial differential equations
(ii) $\left(4 D^{2}-12 D D^{\prime}+9 D^{\prime 2}\right) z=0$
(iii) $\left(D^{3}-3 D^{2} D^{\prime}-4 D^{\prime 3}\right) u=e^{8 x+2 y}$

Question 4 [20marks]

(a) Use characteristic method to solve the linear partial differential equation $u_{x}+u_{y}+u=1$, subject to the initial condition $u=\sin x$, on $y=x+x^{2}, x>0$. [14 marks]
(b) Eliminate the arbitrary functions f, g from the equation
$u=f(x-a t+b y)+g(x-a t-b y)$

Question 5[20marks]

Solve the initial boundary value heat equation

$$
u_{t}=u_{x x}, \quad 0<x<1, t>0
$$

satisfying the conditions
$u(0, t)=100, u(1, t)=100 \quad 0<x<1, t>0$
$u(x, 0)=1+\sin \pi x, \quad 0<x<1$
[20 marks]

