



### JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

# SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL 4<sup>TH</sup> YEAR 1<sup>ST</sup> SEMESTER 2015/2016 ACADEMIC YEAR

# MAIN CAMPUS - RESIT

## **COURSE CODE: SMA 405**

### **COURSE TITLE PARTIAL DIFFERENTIAL EQUATION 1**

EXAM VENUE: LAB 1

**STREAM: (BSc. Actuarial/BED)** 

DATE: 04/5/16

**EXAM SESSION: 2.00 – 4.00 PM** 

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

#### Show all the necessary working

#### **Question 1[30 marks] Compulsory**

(a) Given the partial differential equation

(i) 
$$x\frac{\partial F}{\partial x} - y\frac{\partial F}{\partial y} = 3xy^2$$
 (ii)  $x^2\frac{\partial^2 F}{\partial x^2} - y^2\frac{\partial^2 F}{\partial y^2} + x\frac{\partial F}{\partial x} - y\frac{\partial F}{\partial x}\frac{\partial F}{\partial y} = 0$ 

(iii) 
$$x^2 \frac{\partial^3 F}{\partial x^3} - y^2 \left(\frac{\partial^2 F}{\partial y^2}\right)^4 + x \frac{\partial F}{\partial x} - y \frac{\partial F}{\partial y} = 0$$

State in each case, the order, degree and whether linear or nonlinear. [9marks]

(b) Consider the second order linear partial differential equation

$$\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + x \frac{\partial^2 u}{\partial y^2} = 0,$$

(i) Classify the partial differential equation

(ii) Obtain the characteristic equation of the partial differential equation

(i) Solve the partial differential equation.

[10 marks]

(c) Consider the second order linear partial differential equation

$$a\frac{\partial^2 u}{\partial x^2} + b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial y^2} + d\frac{\partial u}{\partial x} + e\frac{\partial u}{\partial y} + fu + g = 0, \quad : u(x, y)$$

where *a*, *b*, *c*, *d*, *e*, *f*, *g* are in general variable coefficients which may depend on real *x* or *y* with u(x, y) as the dependent variable. Use discriminant  $\Delta(a, b, c)$  theory to categorize; elliptic, parabolic and hyperbolic partial differential equations ;

(i) 
$$\frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial y^2} = 1$$
 (ii)  $\frac{\partial u}{\partial t} = t^6 \frac{\partial^2 u}{\partial x^2}$  (iii)  $\frac{\partial^2 u}{\partial x^2} + 3 \frac{\partial^2 u}{\partial y^2} = 0$  (iv)  $\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0$ . [10 marks]

(d) Solve the first order partial differential equation  $\frac{\partial z}{\partial x}z - \frac{\partial z}{\partial y}z = z^2 + (x+y)^2$  [5marks]

(e) Determine the function z(x, y) which satisfies the linear second order partial differential

equation 
$$(D^2 + DD' - 6D'^2)z = 0$$
 [6marks]

## **Question 2 [20marks]**

Given the function  $F(x, y, z) = 8x^2 + 24y^2 + 16z^2 + 24x + 16z + 1111$ ,

(i) Find 
$$\frac{\partial F}{\partial x}$$
,  $\frac{\partial F}{\partial y}$ , [4 marks]

(ii) Find 
$$\frac{\partial^2 F}{\partial x^2}$$
,  $\frac{\partial^2 F}{\partial y^2}$  and  $\frac{\partial^2 F}{\partial x \partial y}$  [5marks]

(iii) Determine and distinguish all the stationary points of *F* [11 marks]

#### **Question 3[20marks]**

(a) Eliminate the arbitrary functions f, g from the equation

$$u = f(x+y) + g(x-y) + \frac{1}{4}x(x-y)^{2}$$
 [6marks]

(b) Solve the linear second order partial differential equations

(ii) 
$$(4D^2 - 12DD' + 9D'^2)z = 0$$
 [6marks]

(iii) 
$$(D^3 - 3D^2D' - 4D'^3)u = e^{8x+2y}$$
 [8marks]

#### **Question 4 [20marks]**

(a) Use characteristic method to solve the linear partial differential equation  $u_x + u_y + u = 1$ , subject to the initial condition  $u = \sin x$ , on  $y = x + x^2$ , x > 0.[14 marks](b) Eliminate the arbitrary functions f, g from the equation

$$u = f(x-at+by) + g(x-at-by)$$
 [6 marks]

# Question 5[20marks]

Solve the initial boundary value heat equation

 $u_t = u_{xx}$ , 0 < x < 1, t > 0satisfying the conditions  $u(0,t) = 100, u(1,t) = 100 \quad 0 < x < 1, t > 0$  $u(x,0) = 1 + \sin \pi x, \quad 0 < x < 1$ 

[20 marks]