JARAMOGI ODINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY (JOOUST)

UNIVERSITY EXAMINATIONS 2012/13

THIRD YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF BUSINESS ADMINISTRATION BUSIA STUDY CENTRE

ABA: 306 MANGERIAL ECONOMICS TIME: 2HOURS

INSTRUCTIONS TO CANDIDATES

- Answer question ONE and any other TWO questions
- Question one carries 30 marks
- The rest of the questions carry 20 marks

QUESTION ONE (COMPULSORY)

- (a) State the tools for business decision making. (5marks)
- (b) Discuss the practical applications of elasticities of demand in business decision making. (8marks)
- (c) Consider the following demand function for good x.

$$Q_x = 300 - 3P_x + 2P_r + 0.2Y$$

Where $P_x = 20$; $P_r = 30$; $Y = 800$

- (i) Find the own price elasticity of demand and interpret your results. (3marks)
- (ii) Find the cross elasticity of demand and interpret your results (3marks)
- (iii) Find the income elasticity of demand and interpret your results (3marks)
- (iv) If income increases by 5%, by what percentage will Q_r change? (3marks)
- (d) A sports shop selling sports shoes has the following average revenue and total cost functions

$$P = 120 - 5Q$$

 $TC = 80 + 40$

Find the level of Q that will maximize profits. Confirm that the second order condition is satisfied. (5marks)

QUESTION TWO

- (a) Define 'comparative static analysis'. (4marks)
- (b) Consider the following single commodity market model

$$Q_d = a - bP; \ a, b > 0$$

$$Q_s = -c + dP ; c, d > 0$$

- (i) Find the equilibrium P and Q. (4marks)
- (ii) Compute the effect of a shift in supply function on equilibrium p and Q. Present your results in graphical form also. (6marks)

(iii) Determine the effect of a change in the slope of the demand function on \bar{Q} and \bar{P} . Present your results in graphical form also. (6marks)

QUESTION THREE

(a) A multiproduct firm has the following cost function and production quota that must be observed.

$$C = Q_1^2 + Q_1 Q_2 + 2Q_2^2 + 20$$

$$Q_1 + Q_2 = 8$$

- (i) Set up a constrained cost minimization problem. (4marks)
- (ii) Construct the corresponding Lagrangian (L) function. (4marks)
- (iii) Find $\overline{Q_1}$, $\overline{Q_2}$ and $\overline{\lambda}$ by applying the first order condition. (6marks)
- (iv) By applying the second order condition, confirm that the critical values present minimum costs. (6marks)

QUESTION FOUR

(a) A monopolist can produce any level of output it wishes at a constant marginal (and average) cost of \$ 5 per unit. The monopolist sells its goods in two different markets separated by some distance. The demand curve in the first market is given by;

$$Q_1 = 55 - P_1$$

and the demand curve in second market is given by

$$Q_2 = 70 - 2P_2$$

If the monopolist can maintain separation between the two markets:

- (i) What level of output should be produced in each market? (8marks)
- (ii) What price will prevail in each market? (4marks)
- (iii) What are the profits in this situation? (8marks)

QUESTION FIVE

A company has an investment opportunity costing £40000 with the following expected net cash flow (i.e. after taxes and before depreciation);

Year	Net cash flow (£)
1	7000
2	7000
3	7000
4	7000
5	7000
6	8000
7	10000
8	15000
9	10000
10	4000

Using 10% as the cost of capital (rate of discount) determine the following:

- (i) Payback period. (4marks)
- (ii) Net Present Value at 10% discount factor (6marks)
- (iii) Profitability index at 10% discount (4marks)
- (iv) Internal Rate of Return with the help of 10% discount factor and 15% discount factor. (6marks)