

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITY DRAFT EXAMINATION FOR MSC IN MATHEMATICS

1st YEAR 1st SEMESTER 2017/2018 ACADEMIC YEAR KISUMU CAMPUS

COURSE CODE: SMA 840

COURSE TITLE: METHODS OF APPLIED MATHEMATICS I

EXAM VENUE: STREAM: MSc Y1S1

TIME: 3 HOURS EXAM SESSION:

Instructions:

Answer any three questions

- 1. Show all the necessary working
- 2. Candidates are advised not to write on the question paper
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room

Question 1 [20 marks]

- (a) Find Laplace transform of (i) $\cosh t \delta \left(t-a\right)$ (ii) $e^{-40t} \sin 30t$ (ii) $\frac{\cos 6t \cos 4t}{t}$ [11 marks]
- (b) For the fourth order initial value ordinary differential equation $x^{iv}(t) + 13x''(t) + 36x(t) = 0; \quad x(0) = x''(0) = 0, \quad x'(0) = 2, \quad x'''(0) = -13$ obtain x(t). [9 marks]

Question 2 [20 marks]

(a) If
$$F(s) = \frac{s}{(s-6)(s^2+16)}$$
 use the Laplace transforms to find $f(t)$. [4 marks]

(b) Give matrix
$$A = \begin{bmatrix} -2 & 4 \\ -1 & 3 \end{bmatrix}$$

- (i) compute the exponential matrix e^{At} . [9 marks]
- (ii) Prove that $\left[e^{At}\right]^{-1} = \left[e^{A(-t)}\right]$ [5 marks]
- (iii) Deduce that $\begin{bmatrix} e^{A(t=0)} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ [2marks]

Question3 [20 marks]

(a) For the L-R-C electrical network in figure 1 below, show that the current $i_1(t)$ and charge q(t) satisfies the system of differential equations

$$\frac{d}{dt} \binom{i_1}{q} = \begin{pmatrix} \frac{R_1 R_2}{L(R_1 + R_2)} & \frac{R_1}{CL(R_1 + R_2)} \\ \frac{R_1}{(R_1 + R_2)} & \frac{1}{C(R_1 + R_2)} \end{pmatrix} \binom{i_1}{q} + \binom{\frac{E}{L}}{0}.$$

Fig 1

Use variation of parameters method or otherwise solve for system if

$$R_1 = 50\Omega$$
, $R_2 = 00\Omega$, $L = 5h$, $C = 0.004f$ and $E(t) = 10V$ [13marks]

(b) Apply Fourier transform method to solve the Laplace boundary value problem

$$u_{xx} + u_{yy} = 0, -\infty < x < \infty, y > 0; u(x,0) = g(x)$$
 [7marks]

Question4 [20 marks].

(a) Solve the initial boundary value problem

$$u_t = u_{xx}$$
, $0 < x < 1$, $t > 0$ satisfying the conditions

$$u(0,t)=1, u(1,t)=1 0 < x < 1, t > 0$$

$$u(x,0) = 1 + \cos 2\pi x$$
, $0 < x < 1$ [17 marks]

(b) Determine the transient value of u(x,t) [3 marks]

Question5 [20 marks]

Given the system of first order ordinary differential equations

$$\frac{dx}{dt} = 5x + y + 3z + 5$$
, $\frac{dy}{dt} = x + 7y + z$, $\frac{dz}{dt} = 3x + y + 5z$

- (i) Express the system in the matrix form $\underline{\dot{X}} = A\underline{X} + f(t)$
- (ii) Show that $\underline{u} = \begin{bmatrix} 1,1,1 \end{bmatrix}^t$, $\underline{v} = \begin{bmatrix} -1,0,1 \end{bmatrix}^t$ are eigenvectors of A
- (iii) Determine λ_1 , λ_2 , λ_3 , the eigenvalues of A and verify that $trace(A) = \lambda_1$, λ_2 , λ_3
- (iv) Determine $\Phi(t)$, the fundamental matrix of the system
- (v) Obtain \underline{X} the general solution of the system [20 marks]

LAPLACE TRANSFORMS TABLE

f(t)	Laplace transform of $f\left(t ight)$
1	$\frac{1}{s}$
t	$\frac{s^2}{s-a}$
e^{at} $\cos bt$	$\frac{1}{s^2}$ $\frac{1}{s-a}$ $\frac{s}{s^2+b^2}$ $\frac{b}{s^2+b^2}$ $\frac{b}{(s+a)^2+b^2}$ $\frac{(s+a)}{(s+a)^2+b^2}$ $\frac{\Gamma(n+1)}{(s+a)^{n+1}} \qquad n > -1$ $\frac{n!}{s^{n+1}}$
$\sin bt$ $e^{-at}\sin bt$	$\frac{b}{\left(s+a\right)^2+b^2}$
$e^{-at}cosbt$ $e^{-at}t^n$	$\frac{\left(s+a\right)}{\left(s+a\right)^2+b^2}$
t^n	$\frac{\Gamma(n+1)}{(s+a)^{n+1}} \qquad n > -1$ $\frac{n!}{(s+a)^{n+1}}$
$e^{-at}t^n$	$\frac{n!}{\left(s+a\right)^{n+1}}$
$\frac{dy}{dt}$	

d^2v	$sY - y_0$; $Y = L(y)$
$\frac{d^2y}{dt^2}$	
$\frac{d^n y}{dt^n}$	$s^2Y - sy_0 - y_0'$; $Y = L(y)$
u_{t}	$s^{n}Y - s^{n-1}y_{0} - s^{n-2}y_{0} - s^{n-3}y_{0} - \dots - sy^{(n-2)}(0) - y^{(n-1)}(0)$
u_{tt}	sU(x,s)-u(x,0); U(x,s)=L[u(x,t)]
	$s^2U(x,s)-su(x,0)-u_t(x,0);$
u_{x^m}	$\frac{d^m}{dx^m}\big(U\big(x,s\big)\big)$
u_{xt}	$d \leftarrow d \leftarrow d$
	$s\frac{d}{dx}U(x,s) - \frac{d}{dx}u(x,0)$
$J_{0}(t)$	
	$\frac{1}{\sqrt{s^2+1}}$
	$\sqrt{s^2+1}$
$t^n f(t)$	$\int_{C_n} d^n \{F(s)\}$
	$(-1)^n \frac{d^n \left\{ F(s) \right\}}{ds^n}$
$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(s) ds$
$f^{(n)}(t)$	$s^{n}F(s)-s^{n-1}f(0)-s^{n-2}f(0)sf^{(n-2)}(0)-f^{(n-1)}(0)$
$\delta(t-a)$	e^{-as}
$J_0(t)$	$\frac{1}{\sqrt{1+s^2}}$
$\frac{\partial u(x,t)}{\partial t}$	sU(x,s)-u(x,0)

$\partial u(x,t)$	sU(x,s)-u(x,0)
∂t	
$\frac{\partial^2 u(x,t)}{\partial t^2}$	$s^{2}U(x,s)-su(x,0)-u_{t}(x,0)$
∂t^2	
$\partial u(x,t)$	$\underline{dU(x,s)}$
∂x	dx
$\frac{\partial^2 u(x,t)}{\partial x^2}$	$\frac{d^2U(x,s)}{dx^2}$
∂x^2	dx^2
$\partial^2 u(x,t)$	$s\frac{dU(x,s)}{dx} - \frac{du(x,0)}{dx}$
$\partial t \partial x$	$\int dx dx dx$
$L^{-1}[F(s)G(s)] = \int_{0}^{t} f(t-u)g(u)du$	
H(t-a)	$\frac{e^{-as}}{s}$
	S
cosh at	$\frac{s}{s^2 - a^2}$
	$s^2 - a^2$
sinh at	$\frac{a}{s^2-a^2}$
	$s^{-}-a^{-}$

LAPLACE TRANSFORMS