

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTURIAL SCIENCE

UNIVERSITY EXAMINATION FOR DEGREE OF MASTER OF SCIENCE IN PURE

MATHEMATICS

1st YEAR 1st SEMESTER 2018/2019 ACADEMIC YEAR

MAIN REGULAR

COURSE CODE: SMA 801

COURSE TITLE: ABSTRACT INTEGRATION I

EXAM VENUE:

STREAM: (Msc. Pure Mathematics)

DATE:

EXAM SESSION:

TIME: 3.00HRS Instructions:

1. Answer any THREE questions only

- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room
- 4.

QUESTION ONE [20 MARKS]

(a) Describe CBS inequality and show its applications in integration theory.	(7 marks)
(b). Show that a measure is finitely additive.	(6 marks)
(c). Describe the relevance of integral calculus to other fields of mathematics.	(7 marks)

QUESTION TWO [20 MARKS]

State and prove the following theorems and hence give their applications in other fields:

(a). Monotone Convergence Theorem.(10 marks)(b). Cantor's intersection Theorem.(10 marks)

QUESTION THREE [20 MARKS]

(a). Define the following terms giving relevant examples.
(i). Sigma-finite measure space.
(ii). Probability measure.
(5 marks)
(5 marks)
(10 marks)

QUESTION FOUR [20 MARKS]

(a). Show that any non-degenerate interval of \mathbf{R} is uncountable. (6 marks) (b). State and prove Vitali's Covering Theorem. (6 marks) (b). Describe the terms: Subcover, Outer measure, Lower Riemann integral and Measure space.

(8 marks)

QUESTION FIVE [20 MARKS]

(a). Prove that a measure is countably additive.	(6 marks)
(b). State and prove Fatou's Lemma. Moreover, describe its consequences.	(6 marks)

(c). State and prove the Lebesgue's Dominated Convergence Theorem. (8 marks)