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QUESTION ONE [20 MARKS] 

(a) Describe CBS inequality and show its applications in integration theory.                   (7 marks) 

(b). Show that a measure is finitely additive.                                                                     (6 marks) 

(c). Describe the relevance of integral calculus to other fields of mathematics.                (7 marks) 

 

QUESTION TWO [20 MARKS] 

State and prove the following theorems and hence give their applications in other fields: 

(a). Monotone Convergence Theorem.                                                                             (10 marks) 

(b). Cantor’s intersection Theorem.                                                                                  (10 marks)                                                                                       

 

QUESTION THREE [20 MARKS] 

(a). Define the following terms giving relevant examples. 

         (i). Sigma-finite measure space.                                                                                (5 marks) 

         (ii). Probability measure.                                                                                           (5 marks) 

(b). Show that the length of an interval is equal to its outer measure.                             (10 marks) 



QUESTION FOUR [20 MARKS] 

(a). Show that any non-degenerate interval of R is uncountable.                                     (6 marks) 

(b). State and prove Vitali’s Covering Theorem.                                                              (6 marks) 

(b). Describe the terms: Subcover, Outer measure, Lower Riemann integral and Measure 

       space.                                                                                                                          (8 marks) 

 

 

QUESTION FIVE [20 MARKS] 

 (a). Prove that a measure is countably additive.                                                              (6 marks) 

 (b). State and prove Fatou’s Lemma. Moreover, describe its consequences.                  (6 marks)                                                                                                      

 (c). State and prove the Lebesgue’s Dominated Convergence Theorem.                        (8 marks) 

                                                                                                                                            

 


