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1. Answer any THREE questions. 
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OASIS OF KNOWLEDGE



QUESTION ONE (20 MARKS) 

a) Solve the differential equations 
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b) Show that for a second order differential equation of the form 
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a , then by replacing arbtrary constants c1 

and c2 by v1(x) and v2(x) then we could solve the pair of simultaneous 

equations  
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 To obtain the solution to the particular integral 2211 vuvuy   

 

QUESTION TWO (20 MARKS) 

a) Show that xu 1
 is a solution to the differential equation 
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x , hence use the reduction of order method to find 

the second linearly independent solution )(2 xu    (8 marks) 

b) Find all the solutions of the initial value problem XX
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QUESTION THREE (20 MARKS) 

Given the system of first order ordinary differential equation 
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a) Express the system in the matrix form X AX    (2 marks) 

b) Show that  
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21 vv are eigenvectors of A hence find the third 

eigenvector        (7 marks) 

c) Determine  t , the fundamental matrix of the system (6 marks) 

d) Obtain X  the general solution of the system   (5 marks) 

 

QUESTION FOUR (20 MARKS) 

    Given the system of nonlinear differential equations 
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(a)Find all its critical points        (8 marks) 

(b) Determine the stability nature  of each of the critical points in part (a)  

           (12  marks) 

QUESTION FIVE (20 MARKS) 

a) Prove that if )(1 tx  and )(2 tx  are linearly independent on 0)( xL  on an 

interval I then the wronskian   0)(),( 21 txtxW    (6 marks) 

b) Find e
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