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QUESTION 1 [20 Marks]

(a) Construct a field of order 4. [3 mks]

(b) Let F be a field of prime characteristic p. Show that the Frobenius map
of F is a 1-1 endomorphism.

[6 mks]

(c) Show that a finite subgroup of the multiplicative group of a field is cyclic
[6 mks]

(d) Show that for any field F , there is a unique F linear map D : F [x] → F [x]
satisfying the following two conditions
i) D(fg) = f.(Dg) + (Df).g;
ii) Dx = 1. [5 mks]

QUESTION 2 [20 Marks]

(a) Distinguish between algebraic and transcendental numbers [3 mks]

(b) Suppose that E,F,G are fields with E ⊆ F ⊆ G. Show that [G : E] is
finite if and only if both [G : F ] and [F : E] are finite, and that if this
holds, then [G : E] = [G : F ].[F : E]. [9 mks]

(c) Let E and F be fields with E ⊆ F . Show that the set of all elements of
F which are algebraic over E is a field containing E. [8 mks]

QUESTION 3 [20 Marks]

(a) Let R be a commutative ring with identity. Show that R is a field if and
only if the only ideals in R are {0} and R itself. [8 mks]

(b) Let F be a field , and f a polynomial which is irreducible in F [x]. Show
that there is a fieldK containing F and an element α satisfying f(α) = 0.

[12 mks]
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QUESTION 4 [20 Marks]

(a) State and prove Eisenstein’s criterion of testing irreducibility of a poly-
nomial over a principal ideal domain. Hence or otherwise, determine
whether the polynomial x2 + y2 − 1 in Q[x, y] is irreducible. [7 mks]

(b) Let F be a field of characteristic p ̸= 0 , and let a be algebraic over F .
Show that a is separable over F if and only if F (a) = F (ap). [7 mks]

(c) Let K/F be a Galois extension with Galois group G. Show that
| G |= [K : F ]. [6 mks]

QUESTION 5 [20 Marks]

(a) State the fundamental theorem of Galois theory. [4 mks]

(b) State and prove the theorem of the primitive element. [5 mks]

(c) Sketch the proofs of the following results
i) Any polynomial of odd degree over R has a root in R. [4 mks]
ii) Any positive real number has a real square root. [3 mks]
iii) Any complex number has a complex square root. [4 mks]
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