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Question1 [ 20  marks]

Given the  real matrices
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(i) Determine if M is real symmetric matrix.
(ii) Use Doolittle’s method to factorize M into lower and upper triangular form M LU .
(iii) Use the factorized form of M to solve the system of linear equations M X b . [20 marks]

Question2 [ 20  marks]
Consider the system of nonlinear equations
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(a)Derive the improved Newton’s iterative  scheme
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for the system. [8 marks ]

(b)Apply six times the improved Newton’s iterative  scheme to obtain the approximate solution of the
system. On the same table display the results ;    , , , , , ,n n n n n nn x y f x y g x y .

Take the initial root as    0 0, 1,3x y  [12 marks ]

Question.3 [ 20  marks]
For the nonlinear equation; 3 6 0x x   , develop the five possible fixed-point iterative formulas.
Determine explicitly which  of the formulas are likely to converge to a solution of the above nonlinear
equation, taking the initial solution  as 0 2.5x 

Question.4 [20 marks ]
(a) Use the data below  to construct a complete divided difference table. Determine an interpolating

polynomial  p x for the function  f x and hence  approximate  1.3f .

 
: 1 1.5 1.75 2 1.1

: 0.000 .40547 .55962 .69315 0.09531

x

f x
[15 marks]

(b) If  f x In x , calculate error bound for  1.3f and show that  the approximation  to  1.3f
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satisfies this error bound. [5 marks]

Question.5 [ 20 marks ]

Let the n n matrix
11 1

1

n

n nn

a a

A

a a

 
 
  
 
 



  



have eigenvalues i and linearly independent eigenvectors ix .

(a) Derive an algorithm for   approximation of the dominant eigenvalue 1 of A .

Describe precisely the computation procedure. [8 marks]
(b) Consider a  three by three matrix A , of linear transformation  from 3R into itself   given  by
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(i) Apply six times the power method  to approximate the dominant eigenvalue 1 of matrix A and 1v

the corresponding eigenvector., working with at least  six decimal places.
(ii) Given that 2m  is also an eigenvalue  of A , show that 1 , * , m do lie

in the interval ,
E E

A A   . [1 2marks]


