See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/341450800

Choi Matrices of 2-positive Maps on Positive Semidefinite Matrices

Article • January 2020
DOI: 10.9734/ARJOM/2020/16i556092

CItATIONS

0

READS
29

3 authors, including:

D Benard Okelo

Robust Analytics
33 PUBLICATIONS 56 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:norms of commutators View project

Project Operator Theory in Pure Mathematics View project

Choi Matrices of 2-positive Maps on Positive Semidefinite Matrices

C. A. Winda ${ }^{1^{*}}$, N. B. Okelo ${ }^{2}$ and Omolo Ongati ${ }^{2}$
${ }^{1}$ Faculty of Art And Science, Great Lakes University of Kisumu, Kenya.
${ }^{2}$ School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology, Kenya.

Authors' contributions
This work was carried out in collaboration among all authors. Author CAW designed the study, constructed the results and their proofs, and wrote the first draft of the manuscript. Author NBO and Author OO checked and authenticated the proofs. Author CAW constructed all the matrices and the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/ARJOM/2020/16i556092
Editor(s):
(1). Dr. Sheng Zhang, Bohai University, China.

Reviewers:
(1). Tiziano Granucci, Istituto Leonardo da Vinci, Italy.
(2). Kamal Shah, University of Malakand, Pakistan.

Complete Peer review History: http://sdiarticle4.com/review-history/56092

Original Research Article

Received: 10 February 2020
Accepted: 21 April 2020
Published: 27 April 2020

Abstract

Several investigations have been done on positive maps on their algebraic structures with more emphasis on completely positive maps. In this study we have described the structure of the Choi matrices for 2 -positive maps on positive semidefinite matrices and the conditions for complete positivity of positive linear maps from \mathcal{M}_{n} to \mathcal{M}_{n+1}. The motivation behind these objectives is work done by Majewski and Marciniak on the structure of positive maps ϕ from \mathcal{M}_{n} to $\mathcal{M}_{n+1}(2 \geq 2)$ between matrix algebras.

Keywords: Positive map; completely positive; Choi matrix.
2010 Mathematics Subject Classification: 46N10, 47N10.

[^0]
1 Introduction

The theory of completely positive maps has been developed by operator algebraists and mathematical physicists over the last four decades. The two major theorems of Stinespring [1] and Arveson [2], hold in much the study of completely positive maps. Supported by the [3], Choi-Kraus theorem originally by Man-Duon Choi in [4] and [5] known as the Choi's Theorem which is used in the description of completely positive linear maps.

Theorem 1.1. [6, Choi-Kraus Theorem 3.1.1] Let $\phi: \mathcal{M}_{n} \longrightarrow \mathcal{M}_{m}$ be a completely positive linear map. Then there exist $V_{j} \in \mathbb{C}^{n \times m}, 1 \leq j \leq n m$, such that

$$
\phi(A)=\sum_{j=1}^{n m} V_{j}^{*} A V_{j}
$$

In the proof, it is shown that if a linear map $\phi: \mathcal{M}_{n} \longrightarrow \mathcal{M}_{m}$ is n-positive, then it is completely positive and that if the block matrix $\left[\phi\left(E_{i j}\right)\right]$ is positive, then ϕ is completely positive.

Theorem 1.2. [3, Theorem 1.1.23] Let $\phi: \mathcal{M}_{n}(\mathbb{C}) \longrightarrow \mathcal{M}_{m} \mathbb{C}$ be a linear. The following are equivalent;
(i). ϕ is n-positive.
(ii). the matrix operator entries

$$
C_{\phi}=(I \otimes \phi)\left(\sum_{i j} E_{i j} \otimes A_{i j}\right)=\sum_{i j} E_{i j} \otimes \phi\left(A_{i j}\right) \in \mathcal{M}_{n} \otimes \mathcal{M}_{m}(\mathbb{C})
$$

is positive where $E_{i j} \in \mathbb{C}^{n \times n}$ is the matrix with 1 in the $i j$-th entry and zeros elsewhere. The Matrix C_{ϕ} is called the Choi's matrix of ϕ.
(iii). ϕ is completely positive.

The map ϕ is positive if and only if the Choi matrix C_{ϕ} is block-positive (n-positive), and ϕ is completely positive if and only if C_{ϕ} is positive. Størmer [7, Theorem 3.6] result includes Arvesons extension theorem for completely positive maps [2], as completely positive maps are those which are n-positive and completely positive maps. Størmer (Theorem 1.2.4, Theorem 1.2.5 and Remark 1.2.6), if A and B are C^{*}-algebras and either A or B is abelian. Then every positive map ϕ from A to B is completely positive (or completely copositive).

In the case of block n-positive matrices the mapping $\left[\phi\left(A_{i j}\right)\right]_{i, j=1}^{n}$ is justified in $[8]$ with the property that such ϕ maps with finite dimensions are decomposable.

Theorem 1.3. [8, Theorem 1.1] Let $\phi: \mathcal{M}_{n}(\mathbb{C}) \longrightarrow \mathcal{M}_{m}(\mathbb{C})$ be a linear map. Then
(i). the map ϕ is positive if and only if the matrix $\left[\phi\left(A_{i j}\right)\right]_{i, j=1}^{n}$ is block n-positive;
(ii). the map ϕ is completely positive (respectively completely co-positive) if and only if $\left[\phi\left(A_{i j}\right)\right]_{i, j=1}^{n}$ (respectively $\left.\left[\phi\left(A_{j i}\right)\right]_{i, j=1}^{n}\right)$ is a positive element of $\mathcal{M}_{n}\left(\mathcal{M}_{m}(\mathbb{C})\right.$).

In [9] Theorem 1., Størmer gives a natural generalization to positive maps that if \mathcal{M}_{n} is a finite dimensional C^{*}-algebra and ϕ from \mathcal{M}_{n} to \mathcal{M}_{n} is a positive unital map, then the set $\mathcal{M}_{n}=$ $\left\{A \in \mathcal{M}_{n}: \phi(A)=A\right\}$ has a natural structure as a Jordan algebra for trace preserving maps ϕ.

1.1 Preliminaries

Definition 1.4. Let A be a $n \times n$ square matrix, A is positive semidefinite if, for any vector v with real components, $\langle v, A v\rangle \geq 0$ for all $v \in \mathbb{R}^{n}$ or equivalently A is Hermitian and all its eigenvalues are non negative and positive definite if, in addition, $\langle v, A v\rangle>0$ for all $v \neq 0$.

We denote the set of positive semidefinite matrices of order n by \mathcal{M}_{n}, that is $A \in \mathcal{M}_{n}$.

Definition 1.5. A linear map ϕ is from $\mathcal{M}_{n}(\mathbb{C})$ to $\mathcal{M}_{m}(\mathbb{C})$ is called positive if $\phi\left(\mathcal{M}_{n}(\mathbb{C})\right) \subseteq$ $\mathcal{M}_{m}(\mathbb{C})$.

The identity map on $\mathcal{M}_{n}(\mathbb{C})$ and the transpose map on $\mathcal{M}_{n}(\mathbb{C})$ are denoted by I_{n} and τ_{n} respectively.
Definition 1.6. A positive linear map ϕ is n-positive if and only if the map $I_{n} \otimes \phi: \mathcal{M}_{n}(\mathbb{C}) \longrightarrow$ $\mathcal{M}_{n}(\mathbb{C})$ is positive for all $n \geq 1$.

A mathematically convenient way to express n-positivity is by using a block matrix notation. Let $\left[A_{i j}\right]_{j}^{n}$ be positive semidefinite block matrix with $A_{i j} \in \mathcal{M}_{n}(\mathbb{C})$, then $(\phi \otimes I)\left(\left[A_{i j}\right]\right)$ is the induced map, represented by the block matrix $\phi\left(\left[A_{i j}\right]\right)$.

Definition 1.7. A positive linear map ϕ is n-copositive if and only if the $\operatorname{map} \tau_{n} \otimes \phi: \mathcal{M}_{n}(\mathbb{C}) \longrightarrow$ $\mathcal{M}_{n}(\mathbb{C})$ is positive.

Definition 1.8. A map is completely positive if for every n it is n-positive and completely copositive if for every n it is n-copositive.

Since linear map $\phi: \mathcal{M}_{n}(\mathbb{C}) \longrightarrow \mathcal{M}_{m}(\mathbb{C})$ is positive if for every positive semidefinite matrix $A \in \mathcal{M}_{n}(\mathbb{C})$ we have $\phi(A) \geq 0$. We note that there are positive maps that are not completely positive. Stinespring [1] and Arveson [2] give examples of positive linear maps that fail to be completely positive.

Definition 1.9. Let $\phi: \mathcal{M}_{n}(\mathbb{C}) \longrightarrow \mathcal{M}_{m}(\mathbb{C})$ be a linear map. Let $\left(E_{i j}\right)$ with $i, j=1, \ldots, n$ be a complete set of matrix units for $\mathcal{M}_{n}(\mathbb{C})$. Then the Choi matrix for ϕ is the operator

$$
C_{\phi}=(I \otimes \phi)\left(\sum_{i j} E_{i j} \otimes E_{i j}\right)=\sum_{i j} E_{i j} \otimes \phi\left(E_{i j}\right) \in \mathbb{C}^{n m \times n m}
$$

Remark 1.10. The map $\phi \longrightarrow C \phi$ is linear, injective and is surjective, and given an operator $\sum E_{i j} \otimes A_{i j} \in \mathcal{M}_{n} \otimes \mathcal{M}_{m}$, then we can define a linear map ϕ by $\phi\left(E_{i j}\right)=A_{i j}$. This map is often called the Jamiolkowski isomorphism [10]. We therefore observe that the Choi matrix depends on the choice of matrix units $\left(E_{i j}\right)$.

Theorem 1.11. Let A be an invertible matrix. The self-adjoint block matrix $M=\left[\begin{array}{cc}A & C \\ C^{*} & B\end{array}\right]$ is positive if and only if A is positive and

$$
C^{*} A^{-1} C \leq B
$$

See [11] for the proof.

Theorem 1.12. Let A be an invertible matrix. The determinant of the block matrix $M=$ $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ is computed as follows.

$$
\operatorname{det} M=(\operatorname{det} A) \operatorname{det}\left(D-C A^{-1} B\right) .
$$

See [11] for the proof.
Remark 1.13. In Theorem. 1.12 and Theorem. 1.14, $B-C^{*} A^{-1} C$ and $D-C A^{-1} B$ are Schur complements of A in matrices M respectively.

Theorem 1.14. . Let $A \in \mathbb{F}^{n \times n}, b \in \mathbb{F}^{n}$, and $a \in \mathbb{R}$, and define

$$
\mathcal{A}=\left[\begin{array}{cc}
A & b \\
b^{*} & a
\end{array}\right]
$$

Then, the following statements are equivalent:
(i). \mathcal{A} is positive semidefinite.
(ii). $\operatorname{det} \mathcal{A}=(\operatorname{det} A)\left(a-b^{*} A^{-1} b\right)$.

See [12] for the proof.
If the off-diagonal entries of A are all nonnegative. Then, A is copositive if and only if A is positive semidefinite.

Theorem 1.15. (The Binet-Cauchy formula). Let A and B be matrices of size $n \times m$ and $m \times n$, respectively, and $n=\leq m$. Then

$$
\operatorname{det} A B=\sum_{1 \leq k_{1}<k_{2}<\ldots<k_{n} \leq m} A_{k_{1} \ldots k_{n}} B^{k_{1} \ldots k_{n}}
$$

where $A_{k_{1} \ldots k_{n}}$ is the minor obtained from the columns of A whose numbers are k_{1}, \ldots, k_{n} and $B^{k_{1}, \ldots, k_{n}}$ is the minor obtained from the rows of B whose numbers are k_{1}, \ldots, k_{n}.

See [13] for the proof.

2 Choi Matrix of 2 - positive $\operatorname{Map} \phi$ from \mathcal{M}_{n} to \mathcal{M}_{n+1}

The matrix C_{ϕ} denotes the Choi's matrix of ϕ. By the Jamiolkowski-Choi isomorphism correspondence $\phi \longrightarrow C_{\phi}, \phi$ is positive if and only if $C \phi$ is block-positive, and ϕ is completely positive if and only if $C \phi$ is positive. Complete positivity is determined by applying the Choi matrix operator entries $C_{\phi}=\left[\phi\left(A_{i j}\right)\right]=(I \otimes \phi)\left(\sum_{i j} E_{i j} \otimes A_{i j}\right)=\sum_{i j} E_{i j} \otimes \phi\left(A_{i j}\right) \in \mathbb{C}^{n m \times n m}$, where $E_{i j} \in \mathbb{C}^{n \times n}$ is the matrix with 1 in the $i j$-th entry and zeros elsewhere.

This study is motivated by Majewski and Marciniak [14] in their quest to decompose positive maps between \mathcal{M}_{2} to \mathcal{M}_{n} a sum of a positive and copositve maps. We have given the version of the Choi matrix in [14], [15] and [16] a new look. The Choi matrix of the maps $\phi_{\left(\mu, c_{1}, \ldots, c_{n-1}\right)}$ which is 2 -positive is partitioned in the following manner.

Let the $\phi: \mathcal{M}_{n} \longrightarrow \mathcal{M}_{n+1}$ be a linear positive map where $n \geq 1,2,3 \ldots$. We define the choi matrix for these linear maps as a block matrix of the form,

a_{11}	0		0	c_{11}	c_{12}			$c_{1 k}$	0			0	y_{11}	y_{12}		. .	$y_{1 n}$
0	a_{22}			\vdots	\vdots				\vdots	\ddots			\vdots	\vdots			\vdots
.	.			.	-		
:			0	.	:			-	:				:	:			-
0	. .	0	$a_{n n}$	$c_{n 1}$	$c_{n 2}$	\ldots	. .	$c_{n k}$	0	\ldots	\ldots	0	$y_{n 1}$	$y_{n 2}$	\ldots	...	$y_{n k}$
\bar{c}_{11}		. .	$\bar{c}_{1 n}$	b_{11}	0		.	0	\bar{z}_{11}	. \cdot		$\bar{z}_{1 n}$	t_{11}	t_{12}	\ldots	\cdots	$t_{1 k}$
\bar{c}_{21}		.	$\bar{c}_{2 n}$	0	b_{22}			.	\bar{z}_{12}	. .	\ldots	$\bar{z}_{2 n}$	t_{21}	t_{22}	. .	\ldots	$t_{2 k}$
:			.	:	-.	.	-.	:	:				:	:	\cdots		.
.					
:			.	:				0	:				:	.			.
$\bar{c}_{k 1}$. .	\ldots	$\bar{c}_{k n}$	0	. .	\ldots	0	$b_{k k}$	$\bar{z}_{k 1}$. .	\ldots	$\bar{z}_{k n}$	$t_{k 1}$	$t_{k 2}$. .	\ldots	$t_{k k}$
0		. .	0	z_{11}	z_{12}		\cdots	$z_{1 k}$	d_{11}	0		0	0	0	\cdots	\ldots	0
:	.		\vdots	\vdots	:			:	0	d_{22}			:	:			:
:		-	:	:	:			:	:	.			:	:			:
0			0	$z_{n 1}$	$z_{n 2}$			$z_{n k}$	0	.	0	0 $d_{n n}$ 0	0	0			0
				$z_{n 1}$	$z_{n 2}$	\ldots	\ldots	$z_{n k}$									
\bar{y}_{11}		.	$\bar{y}_{1 n}$	t_{11}	t_{12}	\cdots	. \cdot	$t_{1 k}$	0	\cdots	. \cdot	0	u_{11}	u_{12}	\cdots	\ldots	$u_{1 k}$
\bar{y}_{21}			$\bar{y}_{2 n}$	\bar{t}_{21}	\bar{t}_{22}		. \cdot	$\bar{t}_{2 k}$	0			0	u_{21}	u_{22}	. \cdot	. .	$u_{2 k}$
\vdots			:	:	:			:	:			\vdots	:	:			\vdots
									.				.	.			
			.	${ }_{\text {I }} \cdot$:				:	.		\ddots	:
$\bar{y}_{k 1}$			$\bar{y}_{k n}$	$\bar{t}_{k 1}$	$\bar{t}_{k 2}$			$\bar{t}_{k k}$	0			0	$u_{k 1}$	$u_{k 2}$			$u_{k k}$

which we represent as:

$$
C \phi=\left[\begin{array}{cc|cc}
A_{n} & C_{n \times k} & 0_{n} & Y_{n \times k} \tag{2.0.1}\\
C_{k \times n}^{*} & B_{k} & Z_{k \times n}^{*} & T_{k} \\
\hline 0_{n} & Z_{n \times k} & D_{n} & 0_{n \times k} \\
Y_{k \times n}^{*} & T_{k}^{*} & 0_{k \times n} & U_{k}
\end{array}\right]
$$

where $A, B, D \in \mathcal{M}_{n}$ are positive diagonal matrices. $U \geq 0 \in \mathcal{M}_{k}, T \in \mathcal{M}_{k}$ not necessarily positive and $C, Y, Z \in \mathcal{M}_{n \times k}$ where $k \geq 2$.

Lemma 2.1. Let A and B be positive diagonal matrix of order n and k respectively. Then $M=$ $\left[\begin{array}{cc}A & C \\ C^{*} & B\end{array}\right]$ is a positive matrix of order $n+k$ satisfying the matrix inequality $C^{*} A C \leq(\operatorname{det} A) B$. Proof. Let $M=\left[\begin{array}{ll}A & c \\ c^{*} & b\end{array}\right]$ where $A \in M_{n-1}, c \in \mathbb{C}^{n-1}$ and $b \in \mathbb{R}$. Since A is a positive diagonal matrix and by Theorem 1.14 and Theorem 1.12,

$$
\operatorname{det} M=(\operatorname{det} A)\left(b-c^{*} A^{-1} c\right)=(\operatorname{det} A)\left(b-c^{*} \frac{A}{(\operatorname{det} A)} c\right)
$$

but $\operatorname{det} M$ is positive therefore $b-c^{*} \frac{A}{(\operatorname{det} A)} c \geq 0$. Thus $c^{*} A c \leq(\operatorname{det} A) b$.
Let $M=\left[\begin{array}{cc}A & C \\ C^{*} & B\end{array}\right]$ where $A \in M_{n-2}, C \in M_{2, n-2}$ and $B \in M_{2}$. By Theorem 1.14, Theorem 1.12 and Theorem 1.15.

$$
\operatorname{det} M=(\operatorname{det} A) \operatorname{det}\left(B-C^{*} A^{-1} C\right)=(\operatorname{det} A)\left(B-C^{*} \frac{A}{(\operatorname{det} A)} C\right) \geq 0
$$

therefore $C^{*} A C \leq(\operatorname{det} A) B$.
Next let $n=k$. Because A_{n-2} is invertible. By Theorem 1.14 and Theorem 1.12, $M \geq 0$ if and only if $B-C^{*} A^{-1} C \geq 0$. That is.

$$
B-C^{*} A^{-1} C=B-C^{*} \frac{A}{(\operatorname{det} A)} C \geq 0
$$

Now let $n<k$, writing M in form

$$
\left[\begin{array}{cc}
A_{n} & C_{n \times k} \\
C_{k \times n}^{*} & B_{k}
\end{array}\right] .
$$

A is a diagonal matrix, By Theorem 1.14, Theorem 1.12 and Theorem 1.15.

$$
\begin{aligned}
\operatorname{det} M & \geq\left(\operatorname{det} A_{n}\right) \cdot \operatorname{det}\left(B_{k}-C_{k \times n}^{*} A_{n}^{-1} C_{n \times k}\right) \\
& =\left(\operatorname{det} A_{n}\right) \cdot \operatorname{det}\left(B_{k}-C_{k \times n}^{*} \frac{A_{n}}{\left(\operatorname{det} A_{n}\right)} C_{n \times k}\right) \geq 0
\end{aligned}
$$

which holds if and only if $C_{k \times n}^{*} A_{n} C_{n \times k} \leq(\operatorname{det} A) B_{k}$.
Lemma 2.2. Let M be a C^{*}-algebra, if $M=\left[\begin{array}{ll}0 & y \\ z & x\end{array}\right] \in \mathcal{M}_{2}(\mathbb{C})$ is positive, then either $x=0$ or $z=0$, and $y \geq 0$.

Proof. We may assume A is a C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$, then there is a vector in $\left(v_{1}, v_{2}\right) \in \mathcal{H}$ such that $\left\langle M v_{1}, v_{2}\right\rangle \geq 0$. That is,

$$
\begin{aligned}
\left\langle M v_{1}, v_{2}\right\rangle & =\left(v_{1}, v_{2}\right)\left[\begin{array}{ll}
0 & y \\
z & x
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \\
& =v_{2} z v_{1}+v_{1} y v_{2}+v_{2} x v_{2} \\
& =\operatorname{Re}\left\langle z v_{2}, v_{1}\right\rangle+\operatorname{Re}\left\langle y v_{1}, v_{2}\right\rangle+\left\langle x v_{2}, v_{2}\right\rangle \geq 0
\end{aligned}
$$

holds only if either $x=0$ or $z=0$, and $y \geq 0$
Proposition 2.3. Let $\phi: \mathcal{M}_{n} \longrightarrow \mathcal{M}_{n+1}$ be a 2-positive positive map with the Choi matrix defined by 2.0.1. Then the following conditions hold.
(i). A, B and D are positive diagonal matrices while U are positive matrices.
(ii). If $\operatorname{det} A=0$, then $C=0$ and if $\operatorname{det} A>0$ then $C^{*} A C \leq(\operatorname{det} A) B$.
(iii). If $\operatorname{det} A=0$, then $Y=0$ and if $\operatorname{det} A>0$ then $Y^{*} A Y \leq(\operatorname{det} A) U$.
(iv). The matrix $\left[\begin{array}{cc}B & T \\ T^{*} & U\end{array}\right] \in \mathcal{M}_{2}\left(\mathcal{M}_{k}\right)$ is block positive.

Remark 2.4. The case of where $A=a \geq 0, D=0$ as real numbers and C, Y and vectors has been proved in [14, Proposition 2.1]. In this study we have given a general case where A and D are square matrices.
Proof. Assume that ϕ is a 2-positive leaner map. Then the Choi matrix,

$$
C \phi=\left[\begin{array}{c|c}
\phi\left(E_{11}\right) & \phi\left(E_{12}\right) \\
\hline \phi\left(E_{21}\right) & \phi\left(E_{22}\right)
\end{array}\right] \geq 0
$$

Applying Lemma 2.1 and block positivity of the Choi matrix the block diagonal entries,

$$
\phi\left(E_{11}\right)=\left[\begin{array}{cc}
A & C \\
C^{*} & B
\end{array}\right] \text { and } \phi\left(E_{22}\right)=\left[\begin{array}{cc}
D & 0 \\
0 & U
\end{array}\right] \text { are positive matrices. }
$$

Let $\operatorname{det} A=0$, then by Lemma $2.2 \phi\left(E_{11}\right) \geq 0$ if and only if $C=0$. However, if $\operatorname{det} A \neq 0$. Then by Lemma $2.1 C^{*} A C \leq(\operatorname{det} A) B$. It is clear that $\phi\left(E_{22}\right) \geq 0$ since $0 \leq(\operatorname{det} D) U$.

For the positivity of the Choi matrix $C \phi$. We need to show also that the submatrix $\left[\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right]$ is positive. By the argument in Theorem 1.12 and Theorem 1.14 we have that $(\operatorname{det} A) D \geq 0$. Alternatively $(\operatorname{det} A) D=\operatorname{det}(A D)=(\operatorname{det} A)(\operatorname{det} D) \geq 0$, because A and D are diagonal matrices
of the same order.
For the block matrix $\left[\begin{array}{cc}B & T \\ T^{*} & U\end{array}\right] \in \mathcal{M}_{2} \otimes \mathcal{M}_{k}$. By Lemma 2.1, $T^{*} B T \leq(\operatorname{det} B) U$.

Here we give examples with the maps $\phi_{(\mu, \alpha)}$ and $\phi_{\left(\mu, \alpha, c_{2}\right)}$ from their Choi matrices.
Example 2.5. The linear positive map $\phi_{(\mu, \alpha)}$ is 2-positive when $\mu>0$ and $\alpha \geq 0$ for all $r \in \mathbb{R}^{+}$.
The Choi matrix is clearly 2-positive by block positivity of $C_{\phi_{(\mu, \alpha)}}$ as the block diagonals are positive matrices. To show the conditions for positivity, the Choi matrix is represented as;

$$
C_{\phi_{(\alpha, \mu)}}=\left[\begin{array}{c|cc||c|cc}
\mu^{-r} & 0 & 0 & 0 & 0 & -\mu \\
\hline 0 & \mu^{-r} & 0 & 0 & 0 & 0 \\
0 & 0 & \alpha & 0 & 0 & 0 \\
\hline \hline 0 & 0 & 0 & \alpha & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \mu^{-r} & 0 \\
-\mu & 0 & 0 & 0 & 0 & \mu^{-r}
\end{array}\right] .
$$

We have that $\operatorname{det} A=\mu^{-r}$ is undefined when $\mu=0$ implying $\mu>0 . \alpha \geq 0$ since C is a zero vector as $(\operatorname{det} A) B \geq 0$.

$$
\begin{aligned}
(\operatorname{det} A) U-Y^{*} A Y & =\mu^{-r}\left[\begin{array}{cc}
\mu^{-r} & 0 \\
0 & \mu^{-r}
\end{array}\right]-\left[\begin{array}{c}
0 \\
-\mu
\end{array}\right] \mu^{-r}\left[\begin{array}{ll}
0 & -\mu
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mu^{-2 r} & 0 \\
0 & \mu^{-2 r}-\mu^{-r+2}
\end{array}\right]
\end{aligned}
$$

which holds when $\mu^{-2 r}-\mu^{-r+2} \geq 0$. As $r \longrightarrow 0$ we have that

$$
1-\mu^{2}=(1-\mu)(1+\mu) \geq 0
$$

which holds when $0<\mu \leq 1$.
Since Z is zero vector,

$$
(\operatorname{det} D) B-Z^{*} D Z=\alpha\left[\begin{array}{cc}
\mu^{-r} & 0 \\
0 & \alpha
\end{array}\right] \geq 0 .
$$

Finally, the matrix $T=0$ implying $U-T B^{-1} T^{*}=U \geq 0$. Therefore the matrix $\left[\begin{array}{cc}B & T \\ T^{*} & U\end{array}\right]$ is a positive block matrix.

Remark 2.6. This criterion works not only for 2-positive maps from \mathcal{M}_{2} to \mathcal{M}_{n+1} [8], [15] and [16] but also 2-positive maps from $\mathcal{M}_{2 k}$ to $\mathcal{M}_{2 k+1}$ since $\mathcal{M}_{2 k} \longrightarrow \mathcal{M}_{2 k+1} \subset \mathcal{M}_{n} \longrightarrow \mathcal{M}_{n+1}$ for all $n \in\{1,2, \ldots\}$ and $k=2 n+1$. We note that if the order of the Choi matrix is an even integer, then the map is 2 -positive. Though the example show that a map ϕ is 2 -positive, it does not explicitly give the conditions for positivity of the maps as shown in the next example.

Example 2.7. The map $\phi_{(\mu, \alpha, \kappa)}$ is 2-positive map and has the Choi matrix when $\alpha, \kappa \geq 0$ and $0<\mu \leq 1$,

$$
C_{\phi_{\left(\mu, \alpha, c_{2}\right)}}=\left[\begin{array}{ccc|ccc||ccc|ccc}
\mu^{-r} & 0 & 0 & 0 & 0 & -\alpha & 0 & 0 & 0 & 0 & 0 & -\mu \\
0 & \kappa & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \mu^{-r} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & \alpha & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \alpha & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\alpha & 0 & 0 & 0 & 0 & \mu^{-r} & 0 & 0 & 0 & 0 & -\kappa & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & \mu^{-r} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \kappa & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \kappa & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \alpha & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\kappa & 0 & 0 & 0 & 0 & \mu^{-r} & 0 \\
-\mu & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mu^{-r}
\end{array}\right] .
$$

We observe that A, B and U are positive matrices for $\mu>0$ and $\alpha, \kappa \geq 0$, to be exact they are diagonal matrices. Since $A>0$,

$$
\begin{aligned}
(\operatorname{det} A) B-C^{*} A C & =\mu^{-2 r} \kappa\left[\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & \mu^{-r}
\end{array}\right]-\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
-\alpha & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
\mu^{-r} & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & \mu^{-r}
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & -\alpha \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\alpha \kappa \mu^{-2 r} & 0 & 0 \\
0 & \alpha \kappa \mu^{-2 r} & 0 \\
0 & 0 & \kappa \mu^{-3 r}-\alpha^{2} \mu^{-r}
\end{array}\right] .
\end{aligned}
$$

This holds when

$$
\begin{equation*}
\kappa \mu^{-2 r} \geq \alpha^{2} \tag{2.0.2}
\end{equation*}
$$

$$
\begin{aligned}
(\operatorname{det} A) U-Y^{*} A Y & =\mu^{-2 r} \kappa\left[\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \mu^{-r} & 0 \\
0 & 0 & \mu^{-r}
\end{array}\right]-\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
-\mu & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
\mu^{-r} & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & \mu^{-r}
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & -\mu \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\alpha \kappa \mu^{-2 r} & 0 & 0 \\
0 & \kappa \mu^{-3 r} & 0 \\
0 & 0 & \kappa \mu^{-3 r}-\mu^{2-r}
\end{array}\right] .
\end{aligned}
$$

This is positive when

$$
\begin{equation*}
\kappa \mu^{-2 r} \geq \mu^{2} \tag{2.0.3}
\end{equation*}
$$

From the inequalities 2.0 .2 and 2.0 .3 as $r \longrightarrow 0$ we get that $\kappa \geq \mu^{2}$ and $\kappa \geq c_{1}^{2}$.
Finally,

$$
\begin{aligned}
U-T^{*} B^{-1} T & =\left[\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \mu^{-r} & 0 \\
0 & 0 & \mu^{-r}
\end{array}\right]-\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -\kappa \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & \mu^{-r}
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & -\kappa & 0
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\alpha & 0 & 0 \\
0 & \mu^{-r}-\frac{\kappa^{2}}{\alpha^{2}} & 0 \\
0 & 0 & \mu^{-r}
\end{array}\right]
\end{aligned}
$$

is positive if

$$
\begin{equation*}
\mu^{-r}-\frac{\kappa^{2}}{\alpha^{2}} \geq 0 \tag{2.0.4}
\end{equation*}
$$

From the inequalities 2.0.2, 2.0.3 and 2.0.4, $\alpha \neq 0, \kappa \neq 0$ and $\mu>\alpha$. Thus, $\alpha, \kappa \in[0,1]$ and $\mu \geq 0$.

3 Complete Positivity of Linear Positive Maps ϕ from \mathcal{M}_{n} to \mathcal{M}_{n+1}

A positive map ϕ is completely positive if and only if it is k-positive. Since our map ϕ from \mathcal{M}_{n} to \mathcal{M}_{n+1} is 2-positive, we look at the conditions for complete positivity and complete copositivity of this map.

Proposition 3.1. Let $\phi: \mathcal{M}_{n} \longrightarrow \mathcal{M}_{n+1}$ be a 2-positive map with the Choi matrix of the form, 2.0.1. ϕ is completely positive if the following conditions hold.
(i). $Z=0$.
(ii). $C^{*} A C \leq(\operatorname{det} A) B$.
(iii). $(\operatorname{det} D) U \geq 0$.
(iv) $Y^{*} A Y \leq(\operatorname{det} A) U$.
(v) the block matrix $\left[\begin{array}{cc}B & T \\ T^{*} & U\end{array}\right]$ is positive.

Proof. Let L_{1} be a linear subspace generated by the vector e_{1} and let L_{2} be the subspace spanned by $e_{2}, e_{3}, \ldots, e_{n+1}$ so that $\mathbb{C}^{n+1}=L_{1} \oplus L_{2}$. A vector $v \in \mathbb{C}^{n+1}$ can therefore be uniquely decomposed to $v=v^{1}+v^{2}$ where $v^{i} \in L_{i}, i=1,2$. The Choi matrices 2.0 .1 are interpreted as operators. $B, T, U: L_{2} \longrightarrow L_{2}, C, Y, Z: L_{2} \longrightarrow L_{1}$, and $A, D: L_{1} \longrightarrow L_{1}$. From [17], for any $v_{1}, v_{2} \in \mathbb{C}^{n+1}$ the positivity of the Choi matrices 2.0.1 is given by the inequality,

$$
\left\langle v_{1},\left[\begin{array}{cc}
A & C \\
C^{*} & B
\end{array}\right] v_{1}\right\rangle+\left\langle v_{2},\left[\begin{array}{cc}
D & 0 \\
0 & U
\end{array}\right] v_{2}\right\rangle+\left\langle v_{1},\left[\begin{array}{cc}
0 & Y \\
Z^{*} & T
\end{array}\right] v_{2}\right\rangle+\left\langle v_{2},\left[\begin{array}{cc}
0 & Z \\
Y^{*} & T^{*}
\end{array}\right] v_{1}\right\rangle \geq 0
$$

which is equivalent to

$$
\begin{gathered}
\left\langle v_{1}^{(1)}, A v_{1}^{(1)}\right\rangle+\left\langle v_{1}^{(2)}, B v_{1}^{(2)}\right\rangle+\left\langle v_{2}^{(1)}, D v_{2}^{(1)}\right\rangle+\left\langle v_{2}^{(2)}, U v_{2}^{(2)}\right\rangle \\
+2 \operatorname{Re}\left\langle v_{1}^{(1)}, C v_{1}^{(2)}\right\rangle+2 \operatorname{Re}\left\langle v_{1}^{(1)}, Y v_{2}^{(1)}\right\rangle+2 \operatorname{Re}\left\langle v_{2}^{(1)}, Z v_{1}^{(2)}\right\rangle+2 \operatorname{Re}\left\langle v_{1}^{(2)}, T v_{2}^{(2)}\right\rangle \geq 0
\end{gathered}
$$

where $v_{j}=v_{j}^{(1)}+v_{j}^{(2)}$ for $j=1,2$, and $v_{1}^{(1)}, v_{2}^{(1)} \in L_{1}$ and $v_{1}^{(2)}, v_{2}^{(2)} \in L_{2}$.
Assume that $v_{1}^{(1)}=v_{2}^{(2)}=0$ with $v_{1}^{(2)}$ an arbitrary element in L_{2}. This gives

$$
\left\langle v_{1}^{(2)}, B v_{1}^{(2)}\right\rangle+2 \operatorname{Re}\left\langle v_{2}^{(1)}, Z v_{1}^{(2)}\right\rangle+\left\langle v_{2}^{(1)}, D v_{2}^{(1)}\right\rangle \geq 0 .
$$

Letting $v_{2}^{(1)}=-\alpha Z v_{1}^{(2)}$ for some $\alpha \geq 0$,

$$
\left\langle v_{1}^{(2)}, B v_{1}^{(2)}\right\rangle+2 \operatorname{Re}\left\langle-\alpha Z v_{1}^{(2)}, Z v_{1}^{(2)}\right\rangle+\left\langle-\alpha Z v_{1}^{(2)},-D \alpha Z v_{1}^{(2)}\right\rangle \geq .0
$$

This simplify to

$$
\left\langle v_{1}^{(2)}, B v_{1}^{(2)}\right\rangle-\alpha\left\|Z v_{1}^{(2)}\right\|^{2}+\alpha^{2}\|Z\|^{2}\left\langle v_{1}^{(2)}, D v_{1}^{(2)}\right\rangle \geq 0
$$

which holds for any $v_{2}^{(1)} \in L_{2}$ and $\alpha>0$ only for $Z=0$.
Assume that ϕ is a 2-positive leaner map. Then the Choi matrix,

$$
C \phi=\left[\begin{array}{l|l}
\phi\left(E_{11}\right) & \phi\left(E_{12}\right) \\
\hline \phi\left(E_{21}\right) & \phi\left(E_{22}\right)
\end{array}\right] \geq 0 .
$$

Applying Lemma 2.1 and block positivity of the Choi matrix the block diagonal entries,

$$
\phi\left(E_{11}\right)=\left[\begin{array}{cc}
A & C \\
C^{*} & B
\end{array}\right] \text { and } \phi\left(E_{22}\right)=\left[\begin{array}{cc}
D & 0 \\
0 & U
\end{array}\right] \text { are positive matrices. }
$$

Let $\operatorname{det} A=0$, then by Lemma $2.2 \phi\left(E_{11}\right) \geq 0$ if and only if $C=0$. However, if $\operatorname{det} A \neq 0$. Then by Lemma. 2.1 $C^{*} A C \leq(\operatorname{det} A) B$. It is clear that $\phi\left(E_{22}\right) \geq 0$ since $0 \leq(\operatorname{det} D) U$.

For the positivity of the Choi matrix $C \phi$. We need to show also that the submatrices $\left[\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right]$ is positive. By the argument in Lemma 2.1 and Lemma 2.1. $0 \leq(\operatorname{det} A) D$. Alternatively $(\operatorname{det} A) D=$ $\operatorname{det}(A D)=(\operatorname{det} A)(\operatorname{det} D) \geq 0$, because A and D are diagonal matrices.

By Lemma 2.1, $T^{*} B T \leq(\operatorname{det} B) U$, so $\left[\begin{array}{cc}B & T \\ T^{*} & U\end{array}\right] \in \mathcal{M}_{2} \otimes \mathcal{M}_{k}$ is positive.
Proposition 3.2. Let $\phi: \mathcal{M}_{n} \longrightarrow \mathcal{M}_{n+1}$ be a 2-positive map with the Choi matrix of the form, 2.0.1. ϕ is completely copositive if the following conditions hold.
(i). $Y=0$.
(ii). $C^{*} A C \leq(\operatorname{det} A) B$.
(iii). $(\operatorname{det} D) U \geq 0$.
(iv) $Z^{*} A Z \leq(\operatorname{det} A) U$.
(v) if B is invertible, then $T B^{-1} T^{*}=U$.

Remark 3.3. The transposition in this case imply the Partial transpose with the transpose of the Choi matrix as

$$
\left[\begin{array}{cc|cc}
A & C & 0 & Z \\
C^{*} & B & Y^{*} & T^{*} \\
\hline 0 & Y & D & 0 \\
Z^{*} & T & 0 & U
\end{array}\right] .
$$

We show the proof of (i)since the other parts of the proof follows from the proof of Theorem 3.1
Proof. Let L_{1} be a linear subspace generated by the vector e_{1} and let L_{2} be the subspace spanned by $e_{2}, e_{3}, \ldots, e_{n+1}$ so that $\mathbb{C}^{n+1}=L_{1} \oplus L_{2}$. A vector $v \in \mathbb{C}^{n+1}$ can therefore be uniquely decomposed to $v=v^{1}+v^{2}$ where $v^{i} \in L_{i}, i=1,2$. The Choi matrices 2.0 .1 are interpreted as operators. $B, T, U: L_{2} \longrightarrow L_{2}, C, Y, Z: L_{2} \longrightarrow L_{1}$, and $A, D: L_{1} \longrightarrow L_{1}$. From [17], for any $v_{1}, v_{2} \in \mathbb{C}^{n+1}$ the positivity of the Choi matrices 2.0.1 is given by the inequality,

$$
\left\langle v_{1},\left[\begin{array}{cc}
A & C \\
C^{*} & B
\end{array}\right] v_{1}\right\rangle+\left\langle v_{2},\left[\begin{array}{cc}
D & 0 \\
0 & U
\end{array}\right] v_{2}\right\rangle+\left\langle v_{1},\left[\begin{array}{cc}
0 & Z \\
Y^{*} & T
\end{array}\right] v_{2}\right\rangle+\left\langle v_{2},\left[\begin{array}{cc}
0 & Y \\
Z^{*} & T^{*}
\end{array}\right] v_{1}\right\rangle \geq 0
$$

which is equivalent to

$$
\begin{gathered}
\left\langle v_{1}^{(1)}, A v_{1}^{(1)}\right\rangle+\left\langle v_{1}^{(2)}, B v_{1}^{(2)}\right\rangle+\left\langle v_{2}^{(1)}, D v_{2}^{(1)}\right\rangle+\left\langle v_{2}^{(2)}, U v_{2}^{(2)}\right\rangle \\
+2 \operatorname{Re}\left\langle v_{1}^{(1)}, C v_{1}^{(2)}\right\rangle+2 \operatorname{Re}\left\langle v_{1}^{(1)}, Z v_{2}^{(1)}\right\rangle+2 \operatorname{Re}\left\langle v_{2}^{(1)}, Y v_{1}^{(2)}\right\rangle+2 \operatorname{Re}\left\langle v_{1}^{(2)}, T v_{2}^{(2)}\right\rangle \geq 0
\end{gathered}
$$

where $v_{j}=v_{j}^{(1)}+v_{j}^{(2)}$ for $j=1,2$, and $v_{1}^{(1)}, v_{2}^{(1)} \in L_{1}$ and $v_{1}^{(2)}, v_{2}^{(2)} \in L_{2}$.
Assume that $v_{1}^{(1)}=v_{2}^{(2)}=0$ and $v_{1}^{(2)}$ an arbitrary element in L_{2}. This gives

$$
\left\langle v_{1}^{(2)}, B v_{1}^{(2)}\right\rangle+2 \operatorname{Re}\left\langle v_{2}^{(1)}, Y v_{1}^{(2)}\right\rangle+\left\langle v_{2}^{(1)}, D v_{2}^{(1)}\right\rangle \geq 0 .
$$

Letting $v_{2}^{(1)}=-\alpha Z v_{1}^{(2)}$ for some $\alpha \geq 0$

$$
\left\langle v_{1}^{(2)}, B v_{1}^{(2)}\right\rangle+2 \operatorname{Re}\left\langle-\alpha Y v_{1}^{(2)}, Y v_{1}^{(2)}\right\rangle+\left\langle-\alpha Y v_{1}^{(2)},-D \alpha Z v_{1}^{(2)}\right\rangle \geq .0
$$

This simplify to

$$
\left\langle v_{1}^{(2)}, B v_{1}^{(2)}\right\rangle-\alpha\left\|Y v_{1}^{(2)}\right\|^{2}+\alpha^{2}\|Y\|^{2}\left\langle v_{1}^{(2)}, D v_{1}^{(2)}\right\rangle \geq 0
$$

which holds for any $v_{2}^{(1)} \in L_{2}$ and $\alpha>0$ only for $Y=0$.

4 Conclusions

In [14], [15] and [16] the authors looked at Choi matrices where $A>0$ and $D=0$ are scalars with matrices $C, Y, Z \in \mathcal{M}_{1 \times k}$ for positive maps between \mathcal{M}_{2} and \mathcal{M}_{n} with $n \geq 2$. Note the operation under goes a partial transposition of the Choi matrix. The first part of the proof in Proposition 3.1 and Proposition 3.2 follow from [14, Lemma 2.3]. In our case A and D are positive diagonal square matrices. The conditions show the positivity of the Choi matrix 2.0 .1 which implies is complete positivity of ϕ. The conditions (i) through to (v) are necessary for the positivity of the Choi matrix as shown in Proposition 2.3

Acknowledgement

The results of this paper were obtained during my Ph.D. studies at Jaramogi Oginga Odinga University of Science and Technology . I would like to express deep gratitude to my supervisor whose guidance and support were crucial for the successful completion of this project. The author thanks the reviewers for their careful reading of the manuscript.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Stinespring W. F., Positive functions on C^{*}-algebras, Amer. Math. Sot. vol.6(1955), 211-216.
[2] Arveson W. B., Sub-algebra of C^{*}-algebra, Acta Math Vol.128(1969), 141-224. 2009.
[3] Sapra G., Study of Equivariant maps and applications to Quantum(PhD Thesis), https://doi.org/10.14989/doctor.k21531, March 2019. Information Theory, Vol. 28(2008), 113.
[4] Choi M-D., Completely positive maps on complex matries, Linear Algebra and its applications Vol.10(1975), 285-290.
[5] Choi M-D., Positive semidefinite biquadratic Forms, Linear Algebra and its applications, Vol.12(1975), 95-100.
[6] Bhatia R., Positive definite matrices, Princeton University Press, Princeton, 2007.
[7] Størmer E., Extension of positive maps into B(H), J. Functional Analysis. Vol.66(1986), 235254.
[8] Majewski W. A. and Marciniak M., Decomposability of extremal positive unit all maps On $\mathcal{M}_{2}(\mathbb{C})$, Quantum Probability Banach Center Publications, Vol. 73(2006), 347-356.
[9] Størmer E., Decomposable and atomic projection maps, arXiv:0904.0103v1 [math.OA], Vol.1(2009), 1-7.
[10] Stømer E., Positive Linear maps of operator algebra, Hardcover ISBN 978-3-642-34368-1, http://www.springer.com/978-3-642-34368-1, Vol.136(2013), 49-62.
[11] Hiai F., and Petz D., Introduction to Matrix Analysis and Applications, Hindustan Book Agency,New Delhi, Springer,ISBN 978-3-319-04150-6 (eBook).
[12] Bernstein D. S., Matrix Mathematics Theory, Facts, and Formulas, Published by Princeton University Press,2nd ed. 2009.
[13] Prasolov V., Problems and Theorems in Linear Algebra, Notes, 1994.
[14] Majewski W. A. and Marciniak M., On decomposability of positive maps between \mathcal{M}_{2} and \mathcal{M}_{n}, arXiv:0510138vl[math.FA](2005), 1-7.
[15] Majewski W. A., On the structure of the set of positive maps. arXiv:1812.0167v2 [math.AO](2019), 1-12.
[16] Majewski W. A. and Marciniak M., On the structure of positive maps between matrix algebras, arXiv:0705.0798v1 [math.AO](2007), 1-15.
[17] Takesaki M., Theory of Operator Algebras I, Springer-Verlag. New York/Berlin,(1979).
(C) 2020 Akatch et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

[^1]
[^0]: *Corresponding author: E-mail: windac75@yahoo.com;

[^1]: Peer-review history:
 The peer review history for this paper can be accessed here (Please copy paste the total link in your browseraddress bar)
 http://sdiarticle4.com/review-history/56092

