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1. Introduction

The notion of similarity orbits of Hilbert space operators was first initiated by Herrero [7] where he described the
closure of similarity orbits of a normal with perfect spectrum. Since then, this concept has been investigated ex-
tensively by many researchers such as Fialkow [4], Rao[13] and Hadwin et al.[6]. In particular, [6] characterized the
norm-closure of the similarity orbits S(T ) of bounded linear operator T on a Banach space X and established that if
T ∈ B(X ) is not the sum of a scalar and a finite rank operator, then S(T ) is strongly dense in B(X ) which has useful
application in showing that a transitive operator on X is an operator whose only invariant subspace are {0} and X . The
study of the denseness of norm-attaining operators was started by Lindenstrauss [9] where he showed that Bishop and
Phelps theorem [2] is not true for operators. However, Lindenstrauss [9] gave isometric conditions known as property
A and B on X and Y for which the set of norm-attainable operators from X to Y are dense in the space of all opera-
tors between these Banach spaces. In addition, Müller [5] Characterized dense orbits where he established that given
T ∈ B(X ), the set {T n x : n = 0,1, ...} is dense in X if T is hypercyclic for all x ∈ X . The concept of dense sets has been ex-
tensively investigated on both metric and topological spaces. Sompong [5] investigated some fundamental properties
of dense sets on bigeneralized topological spaces. Moreover, Al-shami [5] investigated somewhere dense sets as a new
kind of generalized open sets and presented necessary and sufficient conditions under which the union/intersection
of somewhere dense sets is also somewhere dense. In addition, Bourdon and Feldman [3], established that for a con-
tinuous linear operator T on locally convex topological vector space, if x ∈ X has an orbit under T that is somewhere
dense in X , then the orbit of x under T must be everywhere dense.
Since similarity orbit is a sequence of elements which are operators, then it forms a set on which we assign a topology
to become a topological space. In this paper, we introduce the concept of dense sets of similarity orbits of norm-
attainable operators on invariant topological spaces and study their properties.

∗ Corresponding author.
E-mail address(es): omokepriscah@yahoo.com (Omolo Ongati).

14

http://www.ijaamm.com/
https://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:omokepriscah@yahoo.com


P. O. Mogotu et al. / Int. J. Adv. Appl. Math. and Mech. 6(4) (2019) 14 – 21 15

2. Preliminaries

In this section we start by defining some key terms and a result that are useful in the sequel.

Definition 2.1.
([5]) The similarity orbit of an operator T ∈ B(H) is the set S(T ) = {X T X −1 : X is invertible}. For a particular case,
similarity orbit denoted by, SN A(T ) is the similarity orbits of norm-attainable operators.

Definition 2.2.
([5]) An operator T ∈ B(H) is said to be norm-attainable if there exists a unit vector x ∈ H such that ‖T x‖ = ‖T ‖. The
set of all norm-attainable operators on H is denoted by N A.

Definition 2.3.
A subset So

N A(T ) of an invariant topological space (SN A(T ),τSN A (T )) is dense if and only if for any nonempty open
subset O ⊆ SN A(T ) we have O ∩So

N A(T ) 6= ;.

Definition 2.4.
([5]) Let X be a topological space and let A be a subset of X . Then closure A of A in X is defined to be the intersection
of all of the closed subsets of X that contain A.

Definition 2.5.
([5]) A topological space denoted by (X ,τ) is a non-empty set X together with a collection of τ subsets X (referred to as
open sets) that satisfies the following conditions:

i) the empty set and the whole space X are open sets.

ii) the union of any collection of open sets is itself an open set.

iii) the intersection of any finite collection of open sets is itself an open set.

Definition 2.6.
([5]) A subspace M of H is an invariant subspace of the operator T if for each x ∈ M , T x ∈ M i.e T (M0 ⊆ M . M is also
referred as T− invariant or M is invariant under T .

Definition 2.7.
([5]) Let (X ,dX ) be a metric space. A set D ⊆ X is dense in E ⊆ X if E ⊆ D and D is dense if D = X .

3. Main results

In this section, we characterize the denseness of similarity orbits. We derive various results concerning dense sets
such as union, intersection and transitivity.

Proposition 3.1.
Let So

N A(T ) be a subset of an invariant topological space (SN A(T ),τSN A (T )), then So
N A(T ) is dense in SN A(T ) if and only

if the set of all limit points of So
N A(T ) coincides with SN A(T ).

Proof. Suppose that for every open set {O ∈ τSN A (T ) : O 6= ;}, So
N A(T )∩O 6= ; holds. We consider two cases:

i) So
N A(T ) = SN A(T ).

The proof of this is trivial since its closure (i.e. So
N A(T ) contains all its limit points) is equal to SN A(T ) and this implies

that So
N A(T ) is dense in SN A(T ).

ii) So
N A(T ) 6= SN A(T ).
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Let T ∈ (So
N A(T ))c . Consider {O ∈ τSN A : T ∈ O } with O ∩So

N A(T ) 6= ;. This implies that T is a limit point of So
N A(T ).

Since O intersect So
N A(T ), then O contains T and contains points of So

N A(T ). Hence,

So
N A(T ) = So

N A(T )∪ (So
N A(T ))′ = SN A(T ). (1)

Equation 1 shows that all the points in SN A(T ) are the limit points of So
N A(T ) and therefore So

N A(T ) is dense in SN A(T ).
Conversely, let So

N A(T ) be dense in SN A(T ) and {O ∈ τSN A (T ) : O 6= ;}. Suppose

O ∩So
N A(T ) =;. (2)

Let T ∈ O and T ∉ So
N A(T ), this implies that T is not a limit point of So

N A(T ) because T ∈ O ∩So
N A(T ) = ; which is a

contradiction since So
N A(T ) is dense in SN A(T ) that is, So

N A(T ) = SN A(T ) and this implies that each point not in So
N A(T )

must be a limit point of So
N A(T ). The conditions that T ∉ So

N A(T ) and So
N A(T ) = SN A(T ) contradict each other and this

in turn implies that Equation 2 is false and therefore O ∩So
N A(T ) 6= ; and this implies that So

N A(T ) contains all its limit
points as required.

Lemma 3.1.
Let (SN A(T ),τSN A (T )) be an invariant topological space and So

N A(T ) ⊆ SN A(T ). If So
N A(T ) is dense, then So

N A(T ) =
SN A(T ).

Proof. Suppose that So
N A(T ) is dense, then we need to show that

So
N A(T ) = SN A(T ). (3)

In order to prove Equation 3, we need to show that

i) So
N A(T ) ⊆ SN A(T )

ii) SN A(T ) ⊆ So
N A(T )

i ) In general, if So
N A(T ) ⊆ SN A(T ), then So

N A(T ) ⊆ SN A(T ). Hence, So
N A(T ) ⊆ SN A(T ) is generally true.

i i ) Take every open set O ∈ τSN A (T )\;, since So
N A(T ) is dense, then from Definition 2.3 we have So

N A(T )∩O 6= ;. In
addition, since SN A(T ) is also an open set, then replacing O by SN A(T ) we have

So
N A(T )∩SN A(T ) 6= ;. (4)

From Expression 4 there are two possibilities, i.e. ∀T ∈ SN A(T ):

a) T ∈ So
N A(T )∩SN A(T ) or

b) T ∉ So
N A(T )∩SN A(T )

a) From Proposition 3.1 there are also two possibilities, i.e. either T ∈ So
N A(T ) or T ∈ So

N A(T ). By Definition 2.4 of the

closure, So
N A(T ) ⊆ So

N A(T ), implying that

if T ∈ So
N A(T ) then automaticallyT ∈ So

N A(T ). (5)

Similarly, in b)

if T ∉ So
N A(T ), thenT ∈ So

N A(T ). (6)

Both conditions in Expression 5 and Expression 6 show that eventually T ∈ So
N A(T ). Moreover, since T ∈ SN A(T ) and

T ∈ So
N A(T ) holds, this implies that So

N A(T ) ⊆ SN A(T ). Therefore, combining the two expressions So
N A(T ) ⊆ SN A(T )

and SN A(T ) ⊆ So
N A(T ) gives the desired result.

Theorem 3.1.
If So

N A(T ) and S′
N A(T ) are dense subsets of an invariant topological space (SN A(T ),τSN A (T )), then So

N A(T )∩S′
N A(T ) is

dense.
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Proof. Let O be any non-nonempty open set in SN A(T ). Since the set So
N A(T ) is dense, then invoking Lemma 3.1 we

have

O ∩So
N A(T ) 6= ;. (7)

Moreover, since O is an open set and for Equation 7 to hold, then it is sufficient for So
N A(T ) to be open but S′

N A(T ) can
be any dense set. Hence, O ∩So

N A(T ) 6= ; is an open set as intersection of open sets. Now for the set S′
N A(T ), given a

point T ∈ SN A(T ) and open subset O such that T ∈O , we need to show that S′
N A(T )∩ (So

N A(T )∩O ) 6= ;. Since So
N A(T )

is dense and from Equation 7, let

T1 ∈ (S′
N A(T )∩ (So

N A(T )∩O )). (8)

Expression 8, implies that S′
N A(T )∩(So

N A(T )∩O ) is not empty and since S′
N A(T ) is also dense, then by associativity we

have:
S′

N A(T )∩ (So
N A(T )∩O ) = (So

N A(T )∩S′
N A(T ))∩O 6= ;. Hence So

N A(T )∩S′
N A(T ) is indeed dense in SN A(T ).

Theorem 3.1 gives a sufficient condition that for the intersection of two sets to be dense then one of the dense sets is
open. Below we construct a counterexample showing that the intersection of two dense need not be dense.

Example 3.1.
Let So

N A(T ) and S′
N A(T ) be dense subsets of an invariant topological space (SN A(T ),τ), then So

N A(T )∩ S′
N A(T ) = ;.

Indeed, if we let SN A(T ) =R, S′
N A(T ) =Q and So

N A(T ) = SN A(T )\S′
N A(T ), thenQ is closed which will imply that So

N A(T )
is open. Let T1 ∈ So

N A(T ), then there exist a neighborhood NT1 of T1 such that given ε> 0, (T1 −ε,T1 +ε) ∈ So
N A(T ). But

this is not true since every interval of So
N A(T ) contains a rational number. Therefore this implies that So

N A(T ) is not
open. Hence So

N A(T )∩S′
N A(T ) =; is not dense in SN A(T ).

For a more general phenomenon, in any an invariant topological space, the intersection of a finite collection of open
dense sets is necessarily dense as proved in the following corollary.

Corollary 3.1.
If (SN A(T ),τSN A (T )) is an invariant topological space such that, for every finite subsets (So

N A(T ))n and (S′
N A(T ))n of

SN A(T ) are open and dense, then their intersection is also open and dense.

Proof. For n = 1, we have two open dense sets So
N A(T ) and S′

N A(T ) where the proof follows from Theorem 3.1 and
by the fact that the intersection of two open set is always open. For the general case of an arbitrary non-empty set
SN A(T ), let n > 1, and (So

N A(T ))n be open dense sets. Since the intersection ∩k
n=1(So

N A(T ))n is open dense, then by

induction we need to show that it is also true for (So
N A(T ))k+1. Hence ∩k

n=1(So
N A(T ))n ∩ (So

N A(T ))k+1 =∩k+1
n=1(So

N A(T ))n

which is open and dense.

Remark 3.1.
For infinite intersection of dense open sets, Corollary 3.1 is not necessarily true. Particulary, if we consider
(SN A(T ),τSN A (T )) to be a cofinite topology for SN A(T ) being countably infinite, then for every T ∈ SN A(T ), the set
SN A(T )\{T } is open and dense. The countable intersection ∩n∈N(SN A(T )\{T }) =; and hence not dense.

Corollary 3.2.
Let SN A(T ) be a Banach space, then the intersection of any collection of dense open subset of SN A(T ) is dense in SN A(T ).

Proof. Let (So
N A(T ))n for all n ∈ N be an arbitrary sequence of dense open subsets of a Banach space SN A(T ) and

let So
N A(T ) = ∩n∈N(So

N A(T ))n . We need to show that (So
N A(T ))n is dense in SN A(T ). Let O be any nonempty open

subset of SN A(T ). Since (So
N A(T ))1 is dense in SN A(T ), then by Theorem 3.1 the open subset O ∩ (So

N A(T ))1 6= ;. Let
T1 ∈O ∩ (So

N A(T ))1. Then there exist a positive number r1 < 1 such that

Br1 (T1) ∈ SN A(T ) ⊆O ∩ (So
N A(T ))1. (9)

Similarly, Since (So
N A(T ))2 is dense in SN A(T ) the open set Br1 (T1)∩(So

N A(T ))2 6= ;. Let T2 ∈ Br1 (T1)∩(So
N A(T ))2, taking

a positive partitioning of r1 then there exist a positive real number r2 < 1
2 such that

Br2 (T2) ∈ Br1 (T1)∩ (So
N A(T ))2. (10)

From Expression 9 and Equation 10 we deduce that Br2 (T2) ⊆ Br1 (T1). Inductively, we obtain for every n ∈N a point Tn

and a positive real number rn < 1
n such that Brn (Tn) ∈ SN A(T ) ⊆ Brn−1 (Tn−1)∩ (So

N A(T ))n . Since Brn (Tn) ⊆ Brn−1 (Tn−1),
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we obtain a decreasing sequence Brn (Tn) of nonempty closed sets such that diam(Brn (Tn)) → 0. This shows that the
sequence converges and since a Banach space is complete, then the sequence converges to a point. Let T ∈ SN A(T )
such that ∩n∈NBrn (Tn) = T , then

T ∈ Brn (Tn) ⊆ Brn−1 (Tn−1)∩n∈N (So
N A(T ))n−1 ⊆O ∩n∈N (So

N A(T ))n .

Hence T ∈ O ∩ (So
N A(T ))n . This implies that T ∈ O and T ∈ ∩n∈N(So

N A(T ))n , and therefore ∩n∈N(So
N A(T ))n is dense in

SN A(T ).

For a countably collection of dense open sets in SN A(T ), the Banach space in Corollary 3.2 becomes a Baire space.
Any set containing a dense set is also dense as shown in the following theorem.

Theorem 3.2.
Let (SN A(T ),τ) be an invariant topological space, So

N A(T ),S∗
N A(T ) and S′

N A(T ) be subsets of SN A(T ), then the following
properties hold:

i) A set S∗
N A(T ) containing a dense set So

N A(T ) is dense.

ii) If So
N A(T ) is a dense set and S′

N A(T ) is dense in So
N A(T ), then S′

N A(T ) is also a dense set.

Proof. i ) Let So
N A(T ) ⊆ S∗

N A(T ), then from [[8], Theorem 3.24] it follows that So
N A(T ) ⊆ S∗

N A(T ). Since So
N A(T ) is dense,

we have So
N A(T ) = SN A(T ), then we can have

SN A(T ) ⊆ S∗
N A(T ). (11)

Similarly since S∗
N A(T ) ⊆ SN A(T ) and by Lemma 3.1 we have

S∗
N A(T ) ⊆ SN A(T ). (12)

Hence, from Expression 11 and Expression 12 we get S∗
N A(T ) = SN A(T ). This therefore shows that S∗

N A(T ) is dense in
SN A(T ).
i i ) Suppose So

N A(T ) is dense, then So
N A(T ) = SN A(T ). Since S′

N A(T ) is also dense in So
N A(T ), invoking Definition 1, this

implies that So
N A(T ) ⊆ S′

N A(T ). By closure property from [[8], Theorem 3.24], we have

So
N A(T ) ⊆ S′

N A(T )

= S′
N A(T ).

which shows that So
N A(T ) ⊆ S′

N A(T ). Thus, SN A(T ) = So
N A(T ) ⊆ S′

N A(T ). Which implies that

SN A(T ) ⊆ S′
N A(T ). (13)

But since S′
N A(T ) ⊆ SN A(T ), then we have

S′
N A(T ) ⊆ SN A(T ). (14)

Hence from Expression 13 and 14 we get S′
N A(T ) = SN A(T ) which implies that S′

N A(T ) is dense in SN A(T ).

Corollary 3.3.
Let (SN A(T ),τSN A (T )) be an invariant topological space, So

N A(T ) ⊆ S′
N A(T ) ⊆ SN A(T ) and So

N A(T ) be dense in S′
N A(T ),

then So
N A(T ) is dense in S′

N A(T ).

Proof. Suppose that So
N A(T ) be dense in S′

N A(T ), then we need to show that S′
N A(T ) ⊆ So

N A(T ). Let T ∈ S′
N A(T ) and O

be an open set containing T , O ∩S′
N A(T ) 6= ;. This implies that S′

N A(T ) ⊆ S′
N A(T ). Let T1 ∈O ∩S′

N A(T ), by intersection

properties we have that T1 ∈ S′
N A(T ) and since So

N A(T ) is dense in S′
N A(T ), by Theorem 3.2 we have S′

N A(T ) ⊆ So
N A(T )

and So
N A(T ) ⊆ So

N A(T ), it then follows that also T1 ∈ So
N A(T ) and

O ∩So
N A(T ) 6= ;. (15)

Expression 15 implies that T1 ∈ So
N A(T ) and hence T1 belong to both S′

N A(T ) and So
N A(T ). This therefore shows that

So
N A(T ) is dense in S′

N A(T ).
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Denseness is transitive as demonstrated by the following theorem

Theorem 3.3.
Let So

N A(T ), S′
N A(T ) and S′′

N A(T ) be subsets of an invariant topological space (SN A(T ),τSN A (T )) such that So
N A(T ) ⊆

S′
N A(T ) ⊆ S′′

N A(T ). If So
N A(T ) is dense in S′

N A(T ) and S′
N A(T ) is dense in S′′

N A(T ), then this implies that So
N A(T ) is also

dense in S′′
N A(T ).

Proof. Let So
N A(T ) ⊆ S′

N A(T ) ⊆ S′′
N A(T ) such that So

N A(T ) is dense in S′
N A(T ) and S′

N A(T ) is dense in S′′
N A(T ). Then we

need to show that So
N A(T ) is also dense S′′

N A(T ). It suffices to prove that:

i) S′
N A(T ) ⊆ So

N A(T ).

ii) S′′
N A(T ) ⊆ S′

N A(T ).

iii) S′′
N A(T ) ⊆ So

N A(T ).

i ). Suppose So
N A(T ) is dense in S′

N A(T ), then S′
N A(T ) is contained in the closure of So

N A(T ) i.e. S′
N A(T ) ⊆ So

N A(T ). If

T ∈ S′
N A(T ), the proof is trivial. Let T ∉ S′

N A(T ), then T ∈ S′
N A(T ), so for every open set O ∈ τSN A (T ) containing T we

have O ∩S′
N A(T ) 6= ;. This implies that O contain a point T1 of S′

N A(T ) and thus of So
N A(T ) since S′

N A(T ) ⊆ So
N A(T ). If

T1 ∈ So
N A(T ) then its trivial. Suppose T1 ∉ So

N A(T ) and T1 ∈ (So
N A(T ))′, then every limit point of So

N A(T ) is also a point
of S′

N A(T ) since So
N A(T ) ⊆ S′

N A(T ). This implies that for every open set O containing T1 we have O ∩So
N A(T ) 6= ;. But

So
N A(T ) ⊇ S′

N A(T ) hence, O ∩So
N A(T ) ⊇O ∩S′

N A(T ) 6= ;. So T1 ∈ (So
N A(T ))′ implies that T1 ∈ (S′

N A(T ))′ thus

(S′
N A(T ))′ ⊆ (So

N A(T ))′. (16)

This therefore implies that the arbitrary intersection of O ∩S′
N A(T ) must contain a point of So

N A(T ). Moreover from

Expression 16 we can deduce that S′
N A(T ) ⊆ So

N A(T ) and thus T ∈ So
N A(T ). Hence S′

N A(T ) ⊆ So
N A(T ).

The proof of i i ) follows similarly as of i ).
i i i ). So

N A(T ) ⊆ S′′
N A(T ) due to the fact that So

N A(T ) ⊆ S′
N A(T ) and So

N A(T ) ⊆ S′
N A(T ). From i ) we have that since S′

N A(T )
is contained in the closure of So

N A(T ) and S′
N A(T ) ⊆ S′′

N A(T ), then this implies that S′′
N A(T ) is contained in the closure

of So
N A(T ). Therefore, So

N A(T ) to be dense in S′′
N A(T ).

Denseness is preserved by continuous functions as shown in the following theorems.

Theorem 3.4.
Let (SN A(T ),τSN A (T )), (S′

N A(T ),τS′
N A (T )) be an invariant topological spaces, So

N A(T ) be a dense subset of SN A(T ) and

T : SN A(T ) → S′
N A(T ) be continuous, then T (So

N A(T )) is dense in S′
N A(T ).

Proof. Let (SN A(T ),τSN A (T )) be an invariant topological space. From Definition 2.3, So
N A(T ) ⊆ SN A(T ) is said to be

dense in SN A(T ) if for any non-empty set O1 ∈ τSN A (T ), we have O1∩So
N A(T ) 6= ;. Suppose that O2 is a non-empty set in

τS′
N A (T ), then from Lemma 3.1 it suffices to show that O2∩T (So

N A(T )) 6= ;. By continuity of T , this implies that T −1(O2)

is a non-empty open subset of SN A(T ). Moreover, since So
N A(T ) is dense in SN A(T ), then we have So

N A(T )∩T −1(O2) 6=
;. Then it follows that O2 ∩T (So

N A(T )) 6= ; which completes the proof.

Theorem 3.5.
Let T1, T2 : S′

N A(T ) → S′′
N A(T ) be continuous functions on an invariant topological spaces

(SN A(T ),τSN A (T )), (S′
N A(T ),τSN A (T )) and S′′

N A(T ) be T2−spaces. In particular, if So
N A(T ) is a dense subset of S′

N A(T ) such
that T1 |So

N A (T )= T2 |So
N A (T ), then T1 = T2.

Proof. Let A ∈ S′
N A(T )\So

N A(T ) and T1(A(x)) 6= T2(A(x)), for all x. Since S′′
N A(T ) is a T2−spaces, there exist disjoint

open subsets O1 and O2 of S′′
N A(T ) such that T1(A(x)) ∈O1 and T2(A(x)) ∈O2. Hence T −1

1 (O1) and T −1
2 (O2) are open in

S′
N A(T ) since T1 and T2 are continuous. Since the intersection of open sets is an open set, then T −1

1 (O1)∩T −1
2 (O2) =O3

is an open set containing A and thus O3 is a non-empty subset of S′
N A(T ). But A ∈ S′

N A(T )\So
N A(T ) and So

N A(T ) is
dense, then from Proposition 3.1, this implies that A is the limit point of So

N A(T ), invoking Definition 2.3, it follows
that O3 contains at least one point B of So

N A(T ). Then we have B ∈ T −1
1 (O )1, B ∈ T −1

2 (O )2, then T1(B(x)) ∈ T1T −1
1 (O )1 ⊆

O1, T2T −1
2 (O )2 ⊆O2, for all x and O1∩O2 =; since they are disjoint which gives that T1(B(x)) 6= T2(B(x)) a contradiction

since B ∈ So
N A(T ). Therefore T1(B(x)) = T2(B(x)) and hence T1 = T2.
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It’s known that similarity orbits forms a sequence of operators which can be of the form T n = {T ◦ ... ◦T }. Then, the
theory of dynamical systems can be introduced on similarity orbits. In this case we let T ∈ SN A(T ) be a continuous
linear operator and ((H ,T ),τH ) a topological space. The ordered pair (H ,T ) constitute a dynamical system.

Proposition 3.2.
Let T : (H ,τH ) → (H ,τH ) be a dynamical system. Then the following conditions are equivalent.

i) if M , N ⊆ H , such that M is T -invariant, M and N have nonempty interior, then H 6= M ∪N .

ii) for any pair U ,V subsets of H , there exists some n ≥ 0 such that

T n(U )∩V 6= ;. (17)

iii) If U 6= ; is an open subset of H , then the set ∪∞
n=0T n(U ) is dense in H .

iv) for any nonempty open set subset U of H the set ∪∞
n=0T −n(V ) is dense in H .

Proof. i ) ⇒ i i i ) Let M = ∪∞
n=0T n(U ) and N = H\M . Hence, M and N are disjoint, that is; M ∩N =;. Since M ⊆ H ,

then T : M → M , this implies that M is T -invariant and has a nonempty interior since it contains U . Moreover, since
H 6= M ∪N , then N must have an empty interior. Invoking [[1], Theorem 3.8], this implies that M is dense in H .
i i ) ⇒ i ) Let H = M ∪N , M ∩N =; and T (M) ⊆ M . Then i nt (M) and i nt (N ) are open sets with

T n(i nt M)∩ i nt (N ) ⊆ M ∩N =;, (18)

∀n ≥ 0. By Equation 17, Equation 18 can only hold if either M or N has has an empty interior. Hence, the proof.
i i ) ⇔ i i i ) The proof is an immediate consequence of definition 2.3.
i i ) ⇔ i v) Since T is continuous, then applying T −n on both sides of Equation 17 we get

T −n[T n(U )∩V ] 6= T −n(;) ⇒ (T −nT n)(U )∩T −n(V ) 6= ;
= U ∩T −n(V ) 6= ;.

By continuity of T and Definition 2.7 it completes the proof.

Remark 3.2.
Let T ∈ SN A(T ) and T : H → H be a dynamical system, then Or b(x,T ) := {x,T x,T 2, ...} is the orbit of x under T for all
x ∈ H .

4. Conclusion

In this paper, we introduce the concept of dense sets of similarity orbits of norm-attainable operators on invariant
topological spaces and study their properties. The results obtained in our paper may be applied in numerical analysis
and approximation theory.
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bibitemLee J. L. Lee J, On the norm-attaining operators, Korean J. Math., 20 (2012) 485-491.
[9] J. Lindenstrauss, Operators which attain their norms.111, Istael J. Math, 1 (1963) 139-148.
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