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Optimal allocation in double sampling for stratification 

in the presence of nonresponse and measurement 

errors 

 
Onyango O Ronald, Oduor Brian and Odundo Francis 

 
Abstract 

The present study addresses the problem of minimum cost and precision in the estimation of the 

population mean in the presence of nonresponse and measurement errors. It is assumed that both the 

survey variable and the auxiliary variable suffer from nonresponse and measurement errors in the second 

phase sample. A ratio, exponential ratio-ratio type, and exponential product-ratio type estimators of the 

population mean are proposed using the information on a single auxiliary variable. The expression of 

biases and mean square errors of the proposed estimators are obtained up to the first order of 

approximation. The cost of the survey is studied theoretically. The optimum stratum sample size and the 

inverse sampling rate are derived. It is noted that the size of the sample to be selected increases with the 

increase in the cost of the survey. A minimum mean square error is attained when the cost of the survey 

is high. 

 

Keywords: Double sampling for stratification, population mean, nonresponse, and measurement error. 

 

1. Introduction 

1.1 Nonresponse and Measurement Errors 

The presence of nonresponse and measurement errors in a survey contaminates data making 

analysis to result in under-estimated or over-estimated parameters. This leads to invalid 

statistical inferences that may have undesirable consequences in policymaking. In a survey, a 

researcher faces the problem of estimating the population mean and choosing the optimal 

stratum sample size that minimizes the variance for a specified cost in the presence of errors. 

In the literature authors who have studied nonresponse under the different sampling schemes 

include [1-5] and measurement errors include [6-8]. 

 The precision of the statistic being estimated in a survey increases with the decrease in the 

variance. The variance of the statistic depends on the size of the strata which can be 

determined prior using the allocation method. The optimization technique is used in a survey 

to obtain a robust estimator of the population parameter for a fixed cost. Double sampling for 

stratification encounters a major drawback of determining the first phase and the second phase 

stratum sample sizes that give the desired precision for a specified cost.  

The problem of optimal allocation in the estimation of the population mean using the auxiliary 

variable in the presence of errors is not addressed in the literature. The aim of the present study 

is to use the information on a single auxiliary variable to propose estimators of the population 

mean in the presence of nonresponse and measurement errors. The expression of biases and 

mean square errors of the proposed estimators are obtained. The cost of the survey is studied 

theoretically. The optimum sample sizes and the value of the inverse sampling rate are derived. 

 

1.2 Sampling Procedure 

In double sampling for stratification, a heterogeneous population of size N is considered. A 

first phase sample of size 𝑛′ is drawn from the population using a simple random sampling 

without replacement design and the units classified into L homogeneous strata of size 𝑛ℎ
′  each. 

The auxiliary variable is studied in the first phase sample. A second phase random sample of 
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size  𝑛ℎ is drawn from the first phase sample and both the survey variable and the auxiliary variable are studied.

The ℎ𝑡ℎ  stratum first phase sample mean of the auxiliary variable is given as  𝑥̅ℎ
′ =

1

𝑛ℎ
′ ∑ 𝑥ℎ𝑖

′𝑛ℎ
′

𝑖=1 . The second phase sample is 

divided into responding and nonresponding groups of sizes 𝑛1ℎ and 𝑛2ℎ respectively. A random sample of size 𝑟2ℎ =
𝑛2ℎ

𝑘2ℎ
, where 

𝑘2ℎ > 1 is the inverse sampling rate, is drawn from the nonresponding group and used in the estimation of the population 

mean. Let (𝑦ℎ𝑖 ,  𝑥ℎ𝑖) denote the survey variable and the auxiliary variable respectively. The population mean of the survey 

variable and the auxiliary variable in the ℎ𝑡ℎ stratum is given as 𝑌̅ℎ =
1

𝑁ℎ
∑ 𝑌ℎ𝑖

𝑁ℎ
𝑖=1  and 𝑋̅ℎ =

1

𝑁ℎ
∑ 𝑋ℎ𝑖

𝑁ℎ
𝑖=1  respectively. The 

population mean of the survey variable and the auxiliary variable for the nonresponding units in the ℎ𝑡ℎ stratum is given as 𝑌̅2ℎ =
1

𝑁2ℎ
∑ 𝑌ℎ𝑖

𝑁2ℎ
𝑖=1  and 𝑋̅2ℎ =

1

𝑁2ℎ
∑ 𝑋ℎ𝑖

𝑁2ℎ
𝑖=1  respectively. The ℎ𝑡ℎ stratum   population variance of the survey variable is given as 𝑆𝑌ℎ

2 =

1

𝑁ℎ−1
∑ (𝑦ℎ𝑖 −

𝑁ℎ
𝑖=1 𝑌̅ℎ)2 while that of the nonresponding units is given as 𝑆𝑌ℎ(2)

2 =
1

𝑁2ℎ−1
∑ (𝑦ℎ𝑖 −

𝑁2ℎ
𝑖=1 𝑌̅2ℎ)2. The ℎ𝑡ℎ stratum 

population variance of the auxiliary variable is given as 𝑆𝑋ℎ
2 =

1

𝑁ℎ−1
∑ (𝑥ℎ𝑖 −

𝑁ℎ
𝑖=1 𝑋̅ℎ)2 while that of the nonresponding units is 

given as 𝑆𝑋ℎ(2)
2 =

1

𝑁2ℎ−1
∑ (𝑥ℎ𝑖 −

𝑁2ℎ
𝑖=1 𝑋̅2ℎ)2. The estimator of the population mean proposed by [9] in the presence of nonresponse is 

extended to double sampling for stratification and is defined as  𝑦̅ℎ
∗ =

𝑛1ℎ

𝑛ℎ
𝑦̅𝑛1ℎ +

𝑛2ℎ

𝑛ℎ
𝑦̅𝑟2ℎ, where 𝑦̅𝑛1ℎ and 𝑦̅𝑟2ℎ are the sample 

mean of the responding units and the subsample mean of the nonresponding units respectively. The population mean of the 

auxiliary variable is given as  𝑥̅ℎ
∗ =

𝑛1ℎ

𝑛ℎ
𝑥̅𝑛1ℎ +

𝑛2ℎ

𝑛ℎ
𝑥̅𝑟2ℎ, where 𝑥̅𝑛1ℎ and 𝑥̅𝑟2ℎ are the sample mean of the responding units and the 

subsample mean of the nonresponding units respectively. 

Let the observed values of the auxiliary variable and the survey variable be (𝑥ℎ𝑖
∗ , 𝑦ℎ𝑖

∗ ) and their corresponding true values be 

(𝑋ℎ𝑖
∗ , 𝑌ℎ𝑖

∗ ) respectively in the presence of measurement errors. Define the measurement errors associated with the survey variable 

as 𝑈ℎ𝑖
∗ = 𝑦ℎ𝑖

∗ − 𝑌ℎ𝑖
∗  and those associated with the auxiliary variable as   𝑉ℎ𝑖

∗ = 𝑥ℎ𝑖
∗ − 𝑋ℎ𝑖

∗ . The measurement errors are independent 

and uncorrelated. They are assumed to occur randomly in nature with mean zero. The variance of the measurement errors of the 

survey variable and the auxiliary variable for the responding units are 𝑆𝑈ℎ
2  and 𝑆𝑉ℎ

2  while for the nonresponding units are 𝑆𝑈ℎ(2)
2  

and 𝑆𝑉ℎ(2)
2  respectively. 

 

2. The Proposed Estimators of Population Mean 

The study proposes the following estimators of the population mean in the presence of nonresponse and measurement errors on 

both the auxiliary variable and the survey variable in the second phase sample. The ratio estimator is defined as  

 

𝑇𝑅 = ∑ 𝑤ℎ𝑦̅ℎ
∗ (

𝑥̅ℎ
′

𝑥̅ℎ
∗ )𝐿

ℎ=1   

 

The exponential ratio-ratio type estimator is defined as  

 

𝑇𝐸𝑅𝑅 = ∑ 𝑤ℎ𝑦̅ℎ
∗ (

𝑥̅ℎ
′

𝑥̅ℎ
∗ )𝐿

ℎ=1 𝑒𝑥𝑝 (
𝑥̅ℎ

′ −𝑥̅ℎ
∗

𝑥̅ℎ
′ +𝑥̅ℎ

∗ )   

 

The exponential product-ratio type estimator is defined as  

 

𝑇𝐸𝑃𝑅 = ∑ 𝑤ℎ𝑦̅ℎ
∗ (

𝑥̅ℎ
′

𝑥̅ℎ
∗ )𝐿

ℎ=1 𝑒𝑥𝑝 (
𝑥̅ℎ

∗ −𝑥̅ℎ
′

𝑥̅ℎ
∗ +𝑥̅ℎ

′ )  

 

To obtain the expression of biases and mean square errors of the proposed estimators, let 

 

𝜎𝑌ℎ
∗2

=
1

𝑛ℎ
∑ (𝑦ℎ𝑖

∗ − 𝑌̅ℎ)2𝑛ℎ
𝑖=1   

 

Multiply both sides by 
1

𝑛ℎ
 and introduce the square root to obtain 

 
1

√𝑛ℎ
𝜎𝑌ℎ

∗ =
1

𝑛ℎ
(𝑦ℎ𝑖

∗ − 𝑌̅ℎ)                        (1) 

 

Also, define  

 

𝜎𝑈ℎ
∗2

=
1

𝑛ℎ
∑ (𝑦ℎ𝑖

∗ − 𝑌ℎ𝑖
∗ )2𝑛ℎ

𝑖=1   

 

Multiply both sides by 
1

𝑛ℎ
 and introduce the square root to obtain 

 
1

√𝑛ℎ
𝜎𝑈ℎ

∗ =
1

𝑛ℎ
∑ (𝑦ℎ𝑖

∗ − 𝑌ℎ𝑖
∗ )

𝑛ℎ
𝑖=1                        (2) 
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Combine equation (1) and (2) to obtain 

 
1

√𝑛ℎ
(𝜎𝑌ℎ

∗ + 𝜎𝑈ℎ
∗ ) =

1

𝑛ℎ
∑ {(𝑦ℎ𝑖

∗ − 𝑌̅ℎ) + (𝑦ℎ𝑖
∗ − 𝑌ℎ𝑖

∗ )}𝑛ℎ
𝑖=1                   (3) 

 

Let 
1

√𝑛ℎ
(𝜎𝑌ℎ

∗ + 𝜎𝑈ℎ
∗ ) = 𝜎𝑌ℎ and simplify equation (3) to obtain 

 

𝜎𝑌ℎ = 𝑦ℎ
∗ − 𝑌̅ℎ                          (4) 

 

Similarly, the following can be obtained for the auxiliary variable 

  

𝜎𝑋ℎ = 𝑥ℎ
∗ − 𝑋̅ℎ                          (5) 

 

Since the first phase sample does not suffer from nonresponse and measurement errors, 

  

𝜎𝑋1ℎ = 𝑥ℎ
′ − 𝑋̅ℎ                         (6) 

 

Square both sides of equations (4), (5) and (6) then introduce expectations to obtain  

 

𝐸(𝜎𝑋ℎ)2 = 𝜃ℎ(𝑆𝑋ℎ
2 + 𝑆𝑉ℎ

2 ) + 𝜃ℎ
∗(𝑆𝑋ℎ(2)

2 + 𝑆𝑉ℎ(2)
2 ) = 𝐴ℎ  

 

𝐸(𝜎𝑌ℎ)2 = 𝜃ℎ(𝑆𝑌ℎ
2 + 𝑆𝑈ℎ

2 ) + 𝜃ℎ
∗(𝑆𝑌ℎ(2)

2 + 𝑆𝑈ℎ(2)
2 ) = 𝐵ℎ  

 

𝐸(𝜎𝑋1ℎ)2 = 𝐸(𝜎𝑋1ℎ𝜎𝑋ℎ) = 𝜃ℎ
′ 𝑆𝑋ℎ

2 = 𝐶ℎ  

 

𝐸(𝜎𝑋1ℎ𝜎𝑌ℎ) = 𝜃ℎ
′ 𝜌𝑋𝑌ℎ𝑆𝑋ℎ𝑆𝑌ℎ = 𝐷ℎ  

 

𝐸(𝜎𝑋ℎ𝜎𝑌ℎ) = 𝜃ℎ𝜌𝑋𝑌ℎ𝑆𝑋ℎ𝑆𝑋ℎ + 𝜃ℎ
∗𝜌𝑋𝑌ℎ(2)𝑆𝑋ℎ𝑆𝑌ℎ(2) = 𝐸ℎ  

 

, where 𝜃ℎ
′ = (

1

𝑛ℎ
′ −

1

𝑁ℎ
), 𝜃ℎ = (

1

𝑛ℎ
−

1

𝑁ℎ
) and 𝜃ℎ

∗ =
𝑊2ℎ(𝑘2ℎ−1)

𝑛ℎ
 

 

𝐸(𝜎𝑌ℎ) = 𝐸(𝜎𝑋ℎ) = 𝐸(𝜎𝑋1ℎ) = 0  

 

2.1 Bias and Mean Square Error of the Ratio Estimator 

To obtain the expression of bias and mean square error of the ratio estimator substitute equations (4), (5) and (6) in 𝑇𝑅 to obtain 

 

𝑇𝑅 = ∑ 𝑤ℎ(𝑌̅ℎ + 𝜎𝑌ℎ) (1 +
𝜎𝑋1ℎ

𝑋̅ℎ
) (1 +

𝜎𝑋ℎ

𝑋̅ℎ
)

−1
𝐿
ℎ=1   

 

Simplify the right-hand side in terms of power series ignoring terms of order greater than 2 and subtract the population mean to 

obtain 

 

(𝑇𝑅 − 𝑌̅) ≈ ∑ 𝑤ℎ [𝜎𝑌ℎ − 𝑅ℎ𝜎𝑋ℎ −
𝜎𝑋ℎ𝜎𝑌ℎ

𝑋̅ℎ
+

𝑅ℎ

𝑋̅ℎ
𝜎𝑋ℎ

2 + 𝑅ℎ𝜎𝑋1ℎ +
𝜎𝑋1ℎ𝜎𝑌ℎ

𝑋̅ℎ
−

𝑅ℎ

𝑋̅ℎ
𝜎𝑋ℎ𝜎𝑋1ℎ]𝐿

ℎ=1          (7) 

 

 Take expectations on both sides of equation (7) to obtain 

 

𝐸(𝑇𝑅 − 𝑌̅) ≈ ∑ 𝑊ℎ [𝐸(𝜎𝑌ℎ) − 𝑅ℎ𝐸(𝜎𝑋ℎ) −
𝐸(𝜎𝑋ℎ𝜎𝑌ℎ)

𝑋̅ℎ
+

𝑅ℎ

𝑋̅ℎ
𝐸(𝜎𝑋ℎ

2 ) + 𝑅ℎ𝐸(𝜎𝑋1ℎ) +
𝐸(𝜎𝑋1ℎ𝜎𝑌ℎ)

𝑋̅ℎ
−

𝑅ℎ

𝑋̅ℎ
𝐸(𝜎𝑋ℎ𝜎𝑋1ℎ)]𝐿

ℎ=1   

 

The approximation of bias is given as  

 

𝐸(𝑇𝑅 − 𝑌̅) ≈ ∑
𝑊ℎ

𝑋̅ℎ
[𝑅ℎ(𝐴ℎ − 𝐶ℎ) + 𝐷ℎ − 𝐸ℎ]𝐿

ℎ=1   

 

To obtain the expression of mean square error, square equation (7) and ignore terms of order greater than 2 

 

(𝑇𝑅 − 𝑌̅)2 ≈ ∑ 𝑤ℎ
2𝐿

ℎ=1 (𝜎𝑌ℎ − 𝑅ℎ𝜎𝑋ℎ + 𝑅ℎ𝜎𝑋1ℎ)2  

 

Simplify and take expectations on both sides to obtain the approximation of mean square error as 

 

𝐸(𝑇𝑅 − 𝑌̅)2 ≈ ∑ 𝑊ℎ
2[𝐸(𝜎𝑌ℎ

2 ) + 𝑅ℎ
2𝐸(𝜎𝑋ℎ

2 ) − 𝑅ℎ
2𝐸(𝜎𝑋1ℎ

2 ) + 2𝑅ℎ𝐸(𝜎𝑌ℎ𝜎𝑋1ℎ) − 2𝑅ℎ𝐸(𝜎𝑌ℎ𝜎𝑋ℎ)]𝐿
ℎ=1   

 

𝐸(𝑇𝑅 − 𝑌̅)2 ≈ ∑ 𝑊ℎ
2[𝐵ℎ + 𝑅ℎ

2(𝐴ℎ − 𝐶ℎ) + 2𝑅ℎ(𝐷ℎ − 𝐸ℎ)]𝐿
ℎ=1   

http://www.mathsjournal.com/
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This can be further simplified into  

𝑀𝑆𝐸(𝑇𝑅) ≈ ∑ 𝑊ℎ
2[𝜃ℎ

′ 𝑉21 + 𝜃ℎ𝑉22 + 𝜃ℎ
∗𝑉23]𝐿

ℎ=1   

 

, where 𝑉21 = 2𝑅ℎ𝜌𝑋𝑌ℎ𝑆𝑋ℎ𝑆𝑌ℎ − 𝑅ℎ
2𝑆𝑋ℎ

2  

 

 𝑉22 = 𝑆𝑌ℎ
2 + 𝑆𝑈ℎ

2 + 𝑅ℎ
2𝑆𝑋ℎ

2 + 𝑅ℎ
2𝑆𝑈ℎ

2 − 2𝑅ℎ𝜌𝑋𝑌ℎ𝑆𝑋ℎ𝑆𝑌ℎ   

 

 𝑉23 = 𝑆𝑌ℎ(2)
2 + 𝑆𝑈ℎ(2)

2 + 𝑅ℎ
2𝑆𝑋ℎ(2)

2 + 𝑅ℎ
2𝑆𝑉ℎ(2)

2 − 2𝑅ℎ𝜌𝑋𝑌ℎ(2)𝑆𝑋ℎ(2)𝑆𝑌ℎ(2) 

 

2.2 Bias and Mean Square Error of the Exponential Ratio-ratio Type Estimator 

To obtain the expression of bias and mean square error of the exponential ratio-ratio type estimator substitute equation (4), (5) and 

(6) in 𝑇𝐸𝑅𝑅  to obtain 

 

𝑇𝐸𝑅𝑅 = ∑ 𝑤ℎ(𝑌̅ℎ + 𝜎𝑌ℎ) (1 +
𝜎𝑋1ℎ

𝑋̅ℎ
) (1 +

𝜎𝑋ℎ

𝑋̅ℎ
)

−1

exp [
𝜎𝑋1ℎ−𝜎𝑋ℎ

2𝑋̅ℎ+𝜎𝑋1ℎ+𝜎𝑋ℎ
]𝐿

ℎ=1   

 

Simplify while ignoring terms of order greater than 2 and subtract the population mean from both sides to obtain 

 

(𝑇𝐸𝑅𝑅 − 𝑌̅) ≈ ∑ 𝑤ℎ [𝜎𝑌ℎ −
3

2
𝑅ℎ𝜎𝑋ℎ −

3

2

𝜎𝑋ℎ𝜎𝑌ℎ

𝑋̅ℎ
+

15𝑅ℎ

8𝑋̅̅ ̅̅ ℎ
𝜎𝑋ℎ

2 +
3

2
𝑅ℎ𝜎𝑋1ℎ +

3

2

𝜎𝑋1ℎ𝜎𝑌ℎ

𝑋̅ℎ
−

9

4

𝑅ℎ

𝑋̅ℎ
𝜎𝑋ℎ𝜎𝑋1ℎ +

3

8

𝑅ℎ

𝑋̅ℎ
𝜎𝑋1ℎ

2 ]𝐿
ℎ=1      

(8) 

 Take expectations on both sides of equation (8) to obtain the approximation of bias as 

  

𝐸(𝑇𝐸𝑅𝑅 − 𝑌̅) ≈ ∑
𝑊ℎ

2𝑋̅ℎ
[

15

4
𝑅ℎ(𝐴ℎ − 𝐶ℎ) + 3(𝐷ℎ − 𝐸ℎ)]𝐿

ℎ=1   

 

To obtain the expression of mean square error, square both sides of equation (8) and ignore terms of order greater than 2 

 

(𝑇𝐸𝑅𝑅 − 𝑌̅)2 ≈ ∑ 𝑤ℎ
2 [𝜎𝑌ℎ −

3

2
𝑅ℎ𝜎𝑋ℎ +

3

2
𝑅ℎ𝜎𝑋1ℎ]

2
𝐿
ℎ=1   

 

Simplify and take expectations on both sides to obtain  

 

𝐸(𝑇𝐸𝑅𝑅 − 𝑌̅)2 ≈ ∑ 𝑊ℎ
2 [𝐸(𝜎𝑌ℎ

2 ) +
9

4
𝑅ℎ

2𝐸(𝜎𝑋ℎ
2 ) −

9

4
𝑅ℎ

2𝐸(𝜎𝑋1ℎ
2 ) + 3𝑅ℎ𝐸(𝜎𝑌ℎ𝜎𝑋1ℎ) − 3𝑅ℎ𝐸(𝜎𝑌ℎ𝜎𝑋ℎ)]𝐿

ℎ=1   

 

𝐸(𝑇𝐸𝑅𝑅 − 𝑌̅)2 ≈ ∑ 𝑊ℎ
2 [𝐵ℎ +

9

4
𝑅ℎ

2(𝐴ℎ − 𝐶ℎ) + 3𝑅ℎ(𝐷ℎ − 𝐸ℎ)]𝐿
ℎ=1   

 

This can be further simplified into  

 

𝑀𝑆𝐸(𝑇𝐸𝑅𝑅) ≈ ∑ 𝑊ℎ
2[𝜃ℎ

′ 𝑉31 + 𝜃ℎ𝑉32 + 𝜃ℎ
∗𝑉33]𝐿

ℎ=1   

 

, where 𝑉31 = 𝑅ℎ (3𝜌𝑋𝑌ℎ𝑆𝑋ℎ𝑆𝑌ℎ −
9

4
𝑅ℎ𝑆𝑋ℎ

2 ) 

 

 𝑉32 = 𝑆𝑌ℎ
2 + 𝑆𝑈ℎ

2 +
9

4
𝑅ℎ

2𝑆𝑋ℎ
2 +

9

4
𝑅ℎ

2𝑆𝑉ℎ
2 − 3𝑅ℎ𝜌𝑋𝑌ℎ𝑆𝑋ℎ𝑆𝑌ℎ   

 

 𝑉33 = 𝑆𝑌ℎ(2)
2 + 𝑆𝑈ℎ(2)

2 +
9

4
𝑅ℎ

2𝑆𝑋ℎ(2)
2 +

9

4
𝑅ℎ

2𝑆𝑉ℎ(2)
2 − 3𝑅ℎ𝜌𝑋𝑌ℎ(2)𝑆𝑋ℎ(2)𝑆𝑌ℎ(2) 

 

2.3 Bias and Mean Square Error of the Exponential Product-ratio Type Estimator 

To obtain the expression of bias and mean square error of the exponential product- ratio type estimator substitute equation (4), (5) 

and (6) in 𝑇𝐸𝑃𝑅  to obtain 

 

𝑇𝐸𝑃𝑃 = ∑ 𝑤ℎ(𝑌̅ℎ + 𝜎𝑌ℎ) (1 +
𝜎𝑋1ℎ

𝑋̅ℎ
) (1 +

𝜎𝑋ℎ

𝑋̅ℎ
)

−1
𝐿
ℎ=1 exp [

𝜎𝑋ℎ−σX1h

2𝑋̅ℎ+𝜎𝑋1ℎ+𝜎𝑋ℎ
]  

Simplify the right-hand side in terms of power series ignoring terms of order greater than two and subtract the population mean 

from both sides to obtain  

 

(𝑇𝐸𝑃𝑃 − 𝑌̅) ≈ ∑ 𝑤ℎ [𝜎𝑌ℎ+
1

2
𝑅ℎ𝜎𝑋1ℎ +

𝜎𝑋1ℎ𝜎𝑌ℎ

2𝑋̅ℎ
−

1

2
𝑅ℎ𝜎𝑋ℎ −

𝜎𝑋ℎ𝜎𝑌ℎ

2𝑋̅ℎ
−

𝑅ℎ

8𝑋̅ℎ
𝜎𝑋1ℎ

2 +
3𝑅ℎ

8𝑋̅ℎ
𝜎𝑋ℎ

2 −
𝑅ℎ

4𝑋̅ℎ
𝜎𝑋ℎ𝜎𝑋1ℎ]𝐿

ℎ=1       

(9) 

 Take expectations on both sides of equation (9) to obtain the approximation of bias as  

 

𝐸(𝑇𝐸𝑃𝑅 − 𝑌̅) ≈ ∑
𝑊ℎ

2𝑋̅ℎ
[

3

4
𝑅ℎ(𝐴ℎ − 𝐶ℎ) + (𝐷ℎ − 𝐸ℎ)]𝐿

ℎ=1   
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To obtain the expression of mean square error, square equation (9) and ignore terms of order greater than 2 

 

(𝑇𝐸𝑃𝑅 − 𝑌̅) ≈ ∑ 𝑤ℎ
2 [𝜎𝑌ℎ −

1

2
𝑅ℎ𝜎𝑋ℎ +

1

2
𝑅ℎ𝜎𝑋1ℎ]

2
𝐿
ℎ=1   

 

Simplify and take expectations on both sides to obtain the approximation of mean square error as  

 

𝐸(𝑇𝐸𝑃𝑅 − 𝑌̅)2 ≈ ∑ 𝑊ℎ
2 [𝐸(𝜎𝑌ℎ

2 ) +
1

4
𝑅ℎ

2𝐸(𝜎𝑋ℎ
2 ) −

1

4
𝑅ℎ

2𝐸(𝜎𝑋1ℎ
2 ) + 𝑅ℎ𝐸(𝜎𝑌ℎ𝜎𝑋1ℎ) − 𝑅ℎ𝐸(𝜎𝑌ℎ𝜎𝑋ℎ)]𝐿

ℎ=1   

 

𝐸(𝑇𝐸𝑃𝑅 − 𝑌̅)2 ≈ ∑ 𝑊ℎ
2 [𝐵ℎ +

1

4
𝑅ℎ

2(𝐴ℎ − 𝐶ℎ) + 𝑅ℎ(𝐷ℎ − 𝐸ℎ)]𝐿
ℎ=1   

 

This can be further simplified into  

 

𝑀𝑆𝐸(𝑇𝐸𝑃𝑅) ≈ ∑ 𝑊ℎ
2[𝜃ℎ

′ 𝑉41 + 𝜃ℎ𝑉42 + 𝜃ℎ
∗𝑉43]𝐿

ℎ=1   

 

, where 𝑉41 = 𝑅ℎ (𝜌𝑋𝑌ℎ𝑆𝑋ℎ𝑆𝑌ℎ −
1

4
𝑅ℎ𝑆𝑋ℎ

2 ) 

 

 𝑉42 = 𝑆𝑌ℎ
2 + 𝑆𝑈ℎ

2 +
1

4
𝑅ℎ

2𝑆𝑋ℎ
2 +

1

4
𝑅ℎ

2𝑆𝑉ℎ
2 − 𝑅ℎ𝜌𝑋𝑦ℎ𝑆𝑋ℎ𝑆𝑌ℎ   

 

𝑉43 = 𝑆𝑌ℎ(2)
2 + 𝑆𝑈ℎ(2)

2 +
1

4
𝑅ℎ

2𝑆𝑋ℎ(2)
2 +

1

4
𝑅ℎ

2𝑆𝑉ℎ(2)
2 − 𝑅ℎ𝜌𝑋𝑌ℎ(2)𝑆𝑋ℎ(2)𝑆𝑌ℎ(2) 

 

3. Optimal Allocation in the Presence of Nonresponse and Measurement Error 

Define the total cost of the survey in the ℎ𝑡ℎ stratum as  

 

𝐶ℎ = 𝑐ℎ
′ 𝑛ℎ

′ + 𝑐ℎ𝑛ℎ + 𝑐1ℎ𝑛1ℎ + 𝑐2ℎ𝑟2ℎ,  

, where  

𝑐ℎ
′ = Cost of measuring a unit in the first phase stratum sample of size 𝑛ℎ

′  

 𝑐ℎ= Cost of measuring a unit in the second phase stratum sample of size 𝑛ℎ 

𝑐1ℎ = unit cost of processing respondent data in the first attempt of size 𝑛1ℎ 

𝑐2ℎ= unit cost of processing data in the subsample of size 𝑟2ℎ obtained from the nonresponding units. 

The values of 𝑛1ℎ and 𝑟2ℎ are unknown until the first attempt is done. Let   𝑤1ℎ =
𝑛1ℎ

𝑛ℎ
, 𝑤2ℎ =

𝑛2ℎ

𝑛ℎ
 and 𝑟2ℎ =

𝑛2ℎ

𝑘2ℎ
. Therefore the 

expected cost function is defined as  

 

𝐶ℎ
∗ = 𝑐ℎ

′ 𝑛ℎ
′ + 𝑛ℎ  (𝑐ℎ + 𝑐1ℎ𝑊1ℎ + 𝑐2ℎ

𝑊2ℎ

𝑘2ℎ
)  

The expected total cost function is given as  

𝐶∗ = 𝐶ℎ
∗  

To obtain the optimal allocation for the ratio estimator of the population mean define the Lagrangian function for optimization as  

  

𝜙 = {(
1

𝑛ℎ
′ −

1

𝑁ℎ
) 𝑉21 + (

1

𝑛ℎ
−

1

𝑁ℎ
) 𝑉22 + (

𝑊2ℎ(𝑘2ℎ−1)

𝑛ℎ
) 𝑉23} +  𝜆 [𝑐ℎ

′ 𝑛ℎ
′ + 𝑛ℎ  (𝑐ℎ + 𝑐1ℎ𝑛ℎ𝑊1ℎ + 𝑐2ℎ

𝑊2ℎ

𝑘2ℎ
) − 𝐶ℎ

∗],  

 

, where 𝜆 is a Lagrange’s multiplier. The optimum values of 𝑛ℎ
′ , 𝑛ℎ and 𝑘2ℎ are obtained by differentiating the Lagrangian 

function partially with respect to 𝑛ℎ
′ , 𝑛ℎ and 𝑘2ℎ and equating the derivatives to zero as follows 

 
𝜕𝜙

𝜕𝑛ℎ
′ = −

1

𝑛ℎ
′2 𝑉21 + 𝜆𝑐ℎ

′ = 0  

 

𝑛ℎ
′ = √

𝑉21

𝜆𝑐ℎ
′   

Next differentiate the Lagrangian function with respect to 𝑘2ℎ 
𝜕𝜙

𝜕𝑘2ℎ
=

𝑊2ℎ

𝑛ℎ
𝑉23 − 𝜆

𝑐2ℎ𝑊2ℎ
𝑛ℎ

𝑘2ℎ
2 = 0  

 

𝑘2ℎ = 𝑛ℎ√𝜆
𝑐2ℎ

𝑉23
  

𝑘2ℎ

𝑛ℎ
= √𝜆

𝑐2ℎ

𝑉23
                          (10) 

 

 
𝑛ℎ

𝑘2ℎ
= √

𝑉23

𝜆𝑐2ℎ
                         (11) 
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The optimum value of 𝑛ℎ is obtained by substituting equations (10) and (11) in the Lagrangian function and differentiating it 

partially with respect to   𝑛ℎ.  

 
𝜕𝜙

𝜕𝑛ℎ
= −

1

𝑛ℎ
2 𝑉22 +

𝑊2ℎ

𝑛ℎ
2 𝑉23 + 𝜆(𝑐ℎ + 𝑐1ℎ𝑊1ℎ) = 0  

 

𝑛ℎ = √
𝑉22−𝑉23𝑊2ℎ

𝜆(𝑐ℎ+𝑐1ℎ𝑊1ℎ)
  

Substitute the above equation in the value of 𝑘2ℎ to obtain its optimum value as 

 

𝑘2ℎ
∗ = √

𝑐2ℎ(𝑉22−𝑉23𝑊2ℎ)

𝑉23(𝑐ℎ+𝑐1ℎ𝑊1ℎ)
  

The Lagrange’s multiplier is obtained by substituting the values of    𝑛ℎ
′ , 𝑛ℎ and 𝑘2ℎ

∗  in the expected cost function and is defined 

as 

 

√𝜆 =
1

𝐶∗
∑ [𝑐ℎ

′
√

𝑉21

𝑐ℎ
′ + (𝑐ℎ + 𝑐1ℎ𝑊1ℎ +

𝑐2ℎ𝑊2ℎ

𝑘2ℎ
∗ ) (√

(𝑉22−𝑉23𝑊2ℎ)

(𝑐ℎ+𝑐1ℎ𝑊1ℎ)
)]𝐿

ℎ=1   

𝑛ℎ𝑜𝑝𝑡

′ = 𝐶∗ × (√
𝑉21

𝑐ℎ
′ ) × ∑ [𝑐ℎ

′ √
𝑉21

𝑐ℎ
′ + (𝑐ℎ + 𝑐1ℎ𝑊1ℎ +

𝑐2ℎ𝑊2ℎ

𝑘2ℎ
∗ ) (√

(𝑉22 − 𝑉23𝑊2ℎ)

(𝑐ℎ + 𝑐1ℎ𝑊1ℎ)
)]

−1
𝐿

ℎ=1

 

𝑛ℎ𝑜𝑝𝑡
= 𝐶∗ ×   (√

𝑉22 − 𝑉23𝑊2ℎ

(𝑐ℎ + 𝑐1ℎ𝑊1ℎ)
 ) × ∑ [𝑐ℎ

′ √
𝑉21

𝑐ℎ
′ + (𝑐ℎ + 𝑐1ℎ𝑊1ℎ +

𝑐2ℎ𝑊2ℎ

𝑘2ℎ
∗ ) (√

(𝑉22 − 𝑉23𝑊2ℎ)

(𝑐ℎ + 𝑐1ℎ𝑊1ℎ)
)]

−1
𝐿

ℎ=1

 

The minimum mean square error of the ratio estimator is given as 

 

𝑀𝑆𝐸(𝑇𝑅)𝑚𝑖𝑛 =
1

𝐶∗
∑ 𝑊ℎ

2 {[𝑉21√
𝑐ℎ

′

𝑉21

 + 𝑉23𝑊2ℎ√
𝑐2ℎ

𝑉23

+ (𝑉22 − 𝑉23𝑊2ℎ)√
𝑐ℎ + 𝑐1ℎ𝑊1ℎ

𝑉22 − 𝑉23𝑊2ℎ

 ]

𝐿

ℎ=1

× [𝑐ℎ
′ √

𝑉21

𝑐ℎ
′ + (𝑐ℎ + 𝑐1ℎ𝑊1ℎ +

𝑐2ℎ𝑊2ℎ

𝑘2ℎ
∗ ) (√

(𝑉22 − 𝑉23𝑊2ℎ)

(𝑐ℎ + 𝑐1ℎ𝑊1ℎ)
)]} 

 

To obtain the optimal allocation for the exponential ratio-ratio type estimator define the Lagrangian function for optimization as  

 

𝜙 = {(
1

𝑛ℎ
′ −

1

𝑁ℎ
) 𝑉31 + (

1

𝑛ℎ
−

1

𝑁ℎ
) 𝑉32 + (

𝑊2ℎ(𝑘2ℎ−1)

𝑛ℎ
) 𝑉33} +  𝜆 [𝑐ℎ

′ 𝑛ℎ
′ + 𝑛ℎ  (𝑐ℎ + 𝑐1ℎ𝑛ℎ𝑊1ℎ + 𝑐2ℎ

𝑊2ℎ

𝑘2ℎ
) − 𝐶ℎ

∗]  

 

, where 𝜆 is a Lagrange’s multiplier. To obtain the optimum values of    𝑛ℎ
′ , 𝑛ℎ and 𝑘2ℎ differentiate the Lagrangian function 

partially with respect to    𝑛ℎ
′ , 𝑛ℎ and 𝑘2ℎ then equate the derivatives to zero  

 
𝜕𝜙

𝜕𝑛ℎ
′ = −

1

𝑛ℎ
′2 𝑉31 + 𝜆𝑐ℎ

′ = 0  

𝑛ℎ
′ = √

𝑉31

𝜆𝑐ℎ
′   

Next differentiate the Lagrangian function with respect to 𝑘2ℎ 

 
𝜕𝜙

𝜕𝑘2ℎ
=

𝑊2ℎ

𝑛ℎ
𝑉33 − 𝜆

𝑐2ℎ𝑊2ℎ
𝑛ℎ

𝑘2ℎ
2 = 0  

 

𝑘2ℎ = 𝑛ℎ√𝜆
𝑐2ℎ

𝑉33
  

 

𝑘2ℎ

𝑛ℎ
= √𝜆

𝑐2ℎ

𝑉33
                         (12) 

 

𝑛ℎ

𝑘2ℎ
= √

𝑉33

𝜆𝑐2ℎ
                         (13) 

The optimum value of 𝑛ℎ is obtained by substituting equations (12) and (13) in the Lagrangian function and differentiating it 

partially with respect to   𝑛ℎ.  

 
𝜕𝜙

𝜕𝑛ℎ
= −

1

𝑛ℎ
2 𝑉32 +

𝑊2ℎ

𝑛ℎ
2 𝑉33 + 𝜆(𝑐ℎ + 𝑐1ℎ𝑊1ℎ) = 0  
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𝑛ℎ = √
𝑉32−𝑉33𝑊2ℎ

𝜆(𝑐ℎ+𝑐1ℎ𝑊1ℎ)
  

Substitute the above equation in the value of 𝑘2ℎ to obtain its optimum value as 

𝑘2ℎ
∗ = √

𝑐2ℎ(𝑉32−𝑉33𝑊2ℎ)

𝑉33(𝑐ℎ+𝑐1ℎ𝑊1ℎ)
  

The Lagrange’s multiplier is obtained by substituting the values of 𝑛ℎ
′ , 𝑛ℎ and 𝑘2ℎ

∗  in the expected total cost function 

 

√𝜆 =
1

𝐶∗
∑ [𝑐ℎ

′
√

𝑉31

𝑐ℎ
′ + (𝑐ℎ + 𝑐1ℎ𝑊1ℎ +

𝑐2ℎ𝑊2ℎ

𝑘2ℎ
∗ ) (√

(𝑉32−𝑉33𝑊2ℎ)

(𝑐ℎ+𝑐1ℎ𝑊1ℎ)
)]𝐿

ℎ=1   

𝑛ℎ𝑜𝑝𝑡

′ = 𝐶∗ × (√
𝑉31

𝑐ℎ
′ ) × ∑ [𝑐ℎ

′ √
𝑉31

𝑐ℎ
′ + (𝑐ℎ + 𝑐1ℎ𝑊1ℎ +

𝑐2ℎ𝑊2ℎ

𝑘2ℎ
∗ ) (√

(𝑉32 − 𝑉33𝑊2ℎ)

(𝑐ℎ + 𝑐1ℎ𝑊1ℎ)
)]

−1
𝐿

ℎ=1

 

𝑛ℎ𝑜𝑝𝑡
= 𝐶∗ ×   (√

𝑉32 − 𝑉33𝑊2ℎ

(𝑐ℎ + 𝑐1ℎ𝑊1ℎ)
 ) × ∑ [𝑐ℎ

′ √
𝑉31

𝑐ℎ
′ + (𝑐ℎ + 𝑐1ℎ𝑊1ℎ +

𝑐2ℎ𝑊2ℎ

𝑘2ℎ
∗ ) (√

(𝑉32 − 𝑉33𝑊2ℎ)

(𝑐ℎ + 𝑐1ℎ𝑊1ℎ)
)]

−1
𝐿

ℎ=1

 

The minimum mean square error of the exponential ratio-ratio type estimator is given as 

𝑀𝑆𝐸(𝑇𝐸𝑅𝑅)𝑚𝑖𝑛 =
1

𝐶∗
∑ 𝑊ℎ

2 {[𝑉31√
𝑐ℎ

′

𝑉31

 + 𝑉33𝑊2ℎ√
𝑐2ℎ

𝑉33

+ (𝑉32 − 𝑉33𝑊2ℎ)√
𝑐ℎ + 𝑐1ℎ𝑊1ℎ

𝑉32 − 𝑉33𝑊2ℎ

 ]

𝐿

ℎ=1

× [𝑐ℎ
′ √

𝑉31

𝑐ℎ
′ + (𝑐ℎ + 𝑐1ℎ𝑊1ℎ +

𝑐2ℎ𝑊2ℎ

𝑘2ℎ
∗ ) (√

(𝑉32 − 𝑉33𝑊2ℎ)

(𝑐ℎ + 𝑐1ℎ𝑊1ℎ)
)]} 

 

To obtain the optimal allocation for the exponential product-ratio type estimator define the Lagrangian function for optimization 

as  

 

𝜙 = {(
1

𝑛ℎ
′ −

1

𝑁ℎ
) 𝑉41 + (

1

𝑛ℎ
−

1

𝑁ℎ
) 𝑉42 + (

𝑊2ℎ(𝑘2ℎ−1)

𝑛ℎ
) 𝑉43} +  𝜆 [𝑐ℎ

′ 𝑛ℎ
′ + 𝑛ℎ  (𝑐ℎ + 𝑐1ℎ𝑛ℎ𝑊1ℎ + 𝑐2ℎ

𝑊2ℎ

𝑘2ℎ
) − 𝐶ℎ

∗]  

, where 𝜆 is a Lagrange’s multiplier. To obtain the optimum values of   𝑛ℎ
′ , 𝑛ℎ and 𝑘2ℎ differentiate the Lagrangian function 

partially with respect to  𝑛ℎ
′ ,  𝑛ℎ and 𝑘2ℎ then equate the derivatives to zero  

 
𝜕𝜙

𝜕𝑛ℎ
′ = −

1

𝑛ℎ
′2 𝑉41 + 𝜆𝑐ℎ

′ = 0  

 

𝑛ℎ
′ = √

𝑉41

𝜆𝑐ℎ
′   

 

Next, differentiate the Lagrangian function with respect to 𝑘2ℎ 

 
𝜕𝜙

𝜕𝑘2ℎ
=

𝑊2ℎ

𝑛ℎ
𝑉43 − 𝜆

𝑐2ℎ𝑊2ℎ
𝑛ℎ

𝑘2ℎ
2 = 0  

 

𝑘2ℎ = 𝑛ℎ√𝜆
𝑐2ℎ

𝑉43
  

 

𝑘2ℎ

𝑛ℎ
= √𝜆

𝑐2ℎ

𝑉43
                          (14) 

 

𝑛ℎ

𝑘2ℎ
= √

𝑉43

𝜆𝑐2ℎ
                          (15) 

 

The optimum value of 𝑛ℎ is obtained by substituting equations (14) and (15) in the Lagrangian function and differentiating it 

partially with respect to   𝑛ℎ.  

 
𝜕𝜙

𝜕𝑛ℎ
= −

1

𝑛ℎ
2 𝑉42 +

𝑊2ℎ

𝑛ℎ
2 𝑉43 + 𝜆(𝑐ℎ + 𝑐1ℎ𝑊1ℎ) = 0  

 

𝑛ℎ = √
𝑉42−𝑉43𝑊2ℎ

𝜆(𝑐ℎ+𝑐1ℎ𝑊1ℎ)
  

 

Substitute the above equation in the value of 𝑘2ℎ to obtain its optimum value as 
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𝑘2ℎ
∗ = √

𝑐2ℎ(𝑉42−𝑉43𝑊2ℎ)

𝑉43(𝑐ℎ+𝑐1ℎ𝑊1ℎ)
  

 

The Lagrange’s multiplier is obtained by substituting the values of  𝑛ℎ
′ , 𝑛ℎ and 𝑘2ℎ

∗  in the expected cost function 

 

√𝜆 =
1

𝐶∗
∑ [𝑐ℎ

′
√

𝑉41

𝑐ℎ
′ + (𝑐ℎ + 𝑐1ℎ𝑊1ℎ +

𝑐2ℎ𝑊2ℎ

𝑘2ℎ
∗ ) (√

(𝑉42−𝑉43𝑊2ℎ)

(𝑐ℎ+𝑐1ℎ𝑊1ℎ)
)]𝐿

ℎ=1   

𝑛ℎ𝑜𝑝𝑡

′ = 𝐶∗ × (√
𝑉41

𝑐ℎ
′ ) × ∑ [𝑐ℎ

′ √
𝑉41

𝑐ℎ
′ + (𝑐ℎ + 𝑐1ℎ𝑊1ℎ +

𝑐2ℎ𝑊2ℎ

𝑘2ℎ
∗ ) (√

(𝑉42 − 𝑉43𝑊2ℎ)

(𝑐ℎ + 𝑐1ℎ𝑊1ℎ)
)]

−1
𝐿

ℎ=1

 

𝑛ℎ𝑜𝑝𝑡
= 𝐶∗ ×   (√

𝑉42 − 𝑉43𝑊2ℎ

(𝑐ℎ + 𝑐1ℎ𝑊1ℎ)
 ) × ∑ [𝑐ℎ

′ √
𝑉41

𝑐ℎ
′ + (𝑐ℎ + 𝑐1ℎ𝑊1ℎ +

𝑐2ℎ𝑊2ℎ

𝑘2ℎ
∗ ) (√

(𝑉42 − 𝑉43𝑊2ℎ)

(𝑐ℎ + 𝑐1ℎ𝑊1ℎ)
)]

−1
𝐿

ℎ=1

 

The minimum mean square error of the exponential product-ratio type estimator is given as 

𝑀𝑆𝐸(𝑇𝐸𝑃𝑅)𝑚𝑖𝑛 =
1

𝐶∗
∑ 𝑊ℎ

2 {[𝑉41√
𝑐ℎ

′

𝑉41

 + 𝑉43𝑊2ℎ√
𝑐2ℎ

𝑉43

+ (𝑉42 − 𝑉43𝑊2ℎ)√
𝑐ℎ + 𝑐1ℎ𝑊1ℎ

𝑉42 − 𝑉43𝑊2ℎ

 ]

𝐿

ℎ=1

× [𝑐ℎ
′ √

𝑉41

𝑐ℎ
′ + (𝑐ℎ + 𝑐1ℎ𝑊1ℎ +

𝑐2ℎ𝑊2ℎ

𝑘2ℎ
∗ ) (√

(𝑉42 − 𝑉43𝑊2ℎ)

(𝑐ℎ + 𝑐1ℎ𝑊1ℎ)
)]} 

 

4. Conclusion 

The present study has proposed a ratio, exponential ratio-ratio type and exponential product-ratio type estimators of the population 

mean in the presence of nonresponse and measurement errors under double sampling for stratification. The expression of mean 

square errors and biases of the estimators have been derived. The cost of the survey has been studied theoretically. The optimum 

values of the sample sizes and the inverse sampling rate have been derived. It is noted that the optimum value of the sample size 

depends on the value of the Lagrange’s multiplier. The mean square error of the estimators decreases with the increase in the cost 

of the survey. A high cost of the survey results in the selection of a large sample size. 
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