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Abstract

The present study addresses the problem of minimum cost and precision in the estimation of the
population mean in the presence of nonresponse and measurement errors. It is assumed that both the
survey variable and the auxiliary variable suffer from nonresponse and measurement errors in the second
phase sample. A ratio, exponential ratio-ratio type, and exponential product-ratio type estimators of the
population mean are proposed using the information on a single auxiliary variable. The expression of
biases and mean square errors of the proposed estimators are obtained up to the first order of
approximation. The cost of the survey is studied theoretically. The optimum stratum sample size and the
inverse sampling rate are derived. It is noted that the size of the sample to be selected increases with the
increase in the cost of the survey. A minimum mean square error is attained when the cost of the survey
is high.

Keywords: Double sampling for stratification, population mean, nonresponse, and measurement error.

1. Introduction

1.1 Nonresponse and Measurement Errors

The presence of nonresponse and measurement errors in a survey contaminates data making
analysis to result in under-estimated or over-estimated parameters. This leads to invalid
statistical inferences that may have undesirable consequences in policymaking. In a survey, a
researcher faces the problem of estimating the population mean and choosing the optimal
stratum sample size that minimizes the variance for a specified cost in the presence of errors.
In the literature authors who have studied nonresponse under the different sampling schemes
include -5 and measurement errors include €1,

The precision of the statistic being estimated in a survey increases with the decrease in the
variance. The variance of the statistic depends on the size of the strata which can be
determined prior using the allocation method. The optimization technique is used in a survey
to obtain a robust estimator of the population parameter for a fixed cost. Double sampling for
stratification encounters a major drawback of determining the first phase and the second phase
stratum sample sizes that give the desired precision for a specified cost.

The problem of optimal allocation in the estimation of the population mean using the auxiliary
variable in the presence of errors is not addressed in the literature. The aim of the present study
is to use the information on a single auxiliary variable to propose estimators of the population
mean in the presence of nonresponse and measurement errors. The expression of biases and
mean square errors of the proposed estimators are obtained. The cost of the survey is studied
theoretically. The optimum sample sizes and the value of the inverse sampling rate are derived.

1.2 Sampling Procedure

In double sampling for stratification, a heterogeneous population of size N is considered. A
first phase sample of size n’ is drawn from the population using a simple random sampling
without replacement design and the units classified into L homogeneous strata of size nj, each.
The auxiliary variable is studied in the first phase sample. A second phase random sample of
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size ny, is drawn from the first phase sample and both the survey variable and the auxiliary variable are studied.

. - . . _ 1 ! .
The ht" stratum first phase sample mean of the auxiliary variable is given as x;, = n—,Z?z"l xp;- The second phase sample is
h

divided into responding and nonresponding groups of sizes n,, and n,;, respectively. A random sample of size r,;, = % where
2h

k., > 1 is the inverse sampling rate, is drawn from the nonresponding group and used in the estimation of the population

mean. Let (y;, xp;) denote the survey variable and the auxiliary variable respectively The population mean of the survey

variable and the auxiliary variable in the A" stratum is given as ¥, = Z  Yn and X, = hz‘,f’:’ll Xn; respectively. The

population mean of the survey variable and the auxiliary variable for the nonrespondlng units in the ht" stratum is given as ¥, =
—ZNZh Y, and X5, = —ZNZh Xy respectively. The ht" stratum population variance of the survey variable is given as S, =

1 1 N
Np—1 mZ MY — Yon)?. The h'" stratum

population variance of the auxiliary variable is given as Sz, = #Z{V_" (xni — Xp)? while that of the nonresponding units is
1

Nop—-1

extended to double sampling for stratification and is defined as y = ynlh + yTZh, where ¥,,,, and ¥,,, are the sample

Zi:l(y’li -¥,)? wh|Ie that of the nonresponding units is given as SYMZ) =

given as S,%h(z) = ZNZh(xhl — X,1)?. The estimator of the populatlon mean proposed by Pl'in the presence of nonresponse is

mean of the responding units and the subsample mean of the nonrespondlng unlts respectively. The population mean of the
auxiliary variable is given as x; = xnlh + xrz,l, where x,,,,, and x,,; are the sample mean of the responding units and the

subsample mean of the nonrespondlng units respectlvely

Let the observed values of the auxiliary variable and the survey variable be (x;;,yr;) and their corresponding true values be
(Xp;, Yni) respectively in the presence of measurement errors. Define the measurement errors associated with the survey variable
as Uy,; = yn; — Yni and those associated with the auxiliary variable as  Vy;; = x5; — X;,;. The measurement errors are independent
and uncorrelated. They are assumed to occur randomly in nature with mean zero. The variance of the measurement errors of the
survey variable and the auxiliary variable for the responding units are Sz, and SZ, while for the nonresponding units are Sﬁhm

and Sy ,) respectively.

2. The Proposed Estimators of Population Mean
The study proposes the following estimators of the population mean in the presence of nonresponse and measurement errors on
both the auxiliary variable and the survey variable in the second phase sample. The ratio estimator is defined as

Tp = Zlf1=1 Wi Vh (%)
h

The exponential ratio-ratio type estimator is defined as

! ! —%
—_ VL S+ [Xh Xh~*h
Tgrr = Xh=1WrVh (a) exp (,/ 7*)

xh+xh

The exponential product-ratio type estimator is defined as

_r I
*

!
—_ V'L Sx [ Xh Xh~"Xh
Tgpr = Xh=1Wr¥h (g) exp (f* 4>

htXn

To obtain the expression of biases and mean square errors of the proposed estimators, let
= Z \Ohi = 1)?

Multiply both sides by ni and introduce the square root to obtain
h

1 * 1 * v
\/ThO-Yh = ™ Vhi — V) 1)
Also, define

UUh =_Z ( Yhi Yiti)z

Multiply both sides by ni and introduce the square root to obtain
h

1

=i = o S O = i) @
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Combine equation (1) and (2) to obtain

1 * * 1 * \V4 * *
E(Um +ogn) = EZ?:’H{(YM V) + On — Y} 3
Let \/%_h (ayy, + o) = oy, and simplify equation (3) to obtain

Oyn = Vi — Yy 4
Similarly, the following can be obtained for the auxiliary variable

oxn = x5, — X, 5)
Since the first phase sample does not suffer from nonresponse and measurement errors,

Oxin = X, — X (6)
Square both sides of equations (4), (5) and (6) then introduce expectations to obtain

E(oxp)* = 0, (Sgn + Sin) + Gﬁ(sgh(z) + S&h(z)) = Ap

E(0yn)® = 0n(Stn + Son) + 05(Stn) + Sin)) = Bn

E(ox1n)? = E(0x100xn) = 64Sgn = Ch

E(0x1n0yn) = OnPxyrSxnSyn = Dn

E(0xn0yn) = OnPxynSxnSxn + OnPxyn2)SxnSvnez) = En

1 1 1 1 «  Wop(kap—1
» Where 6;, = <—, - —>, On = (— - —) and 6; = Yzntkzn—1)
np  Np np Np np

E(oyn) = E(oxn) = E(ox1n) =0

2.1 Bias and Mean Square Error of the Ratio Estimator
To obtain the expression of bias and mean square error of the ratio estimator substitute equations (4), (5) and (6) in T to obtain

Tr = Yho1 Wa (Y, + oyn) (1 + U))?(—,llh) (1 + %zh)_l

Simplify the right-hand side in terms of power series ignoring terms of order greater than 2 and subtract the population mean to
obtain

7\ ~ TL OXhOyh , Rn 2 9x1h9vh _ Rn
(Tr = Y) = Xpogwy [UYh — Rypoxp — %, + X, Oxn + Rpoxin + Tk, Xy, OxXnOxin (7)

Take expectations on both sides of equation (7) to obtain

= E( ) R E( ) _R
E(Ty = V) ~ They Wa [E(0yn) = RyE(oxn) = “25270 4 2LE(0,) + RyE (0x1n) + =™ — 2L (G aany |

The approximation of bias is given as

= w
E(Ts —Y) = i=17: [R,(A, — C,) + Dy, — Ep]

To obtain the expression of mean square error, square equation (7) and ignore terms of order greater than 2
(Tr = Y)? = Tk wi (0yn, — RpOxn + Rpox1p)?

Simplify and take expectations on both sides to obtain the approximation of mean square error as

E(TR —Y)* = lf1:1 th [E(U}Eh) + RizlE(O-)?h) - RizlE(U)§1h) + 2RL1E (0yn0x11) — 2RKE (Oyn0xp)]

E(Tg —Y)* = ¥y WZ[By + Ri(Ap — Cp) + 2R, (Dy, — Ep)]
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This can be further simplified into
MSE (Tg) = Yhey Wi [0, Va1 + 0,Va2 + 6;,V5]

,where Vy; = 2Ry pxynSxnSyn — RiSin
Vaz =S¢ + Sin + RiSin + RiSin — 2RupxynSxnSvn
Vaz = Sty + Sonez + RiStnczy + REStn(z) = 2RnPxvn(2)Sxn)Svh2)

2.2 Bias and Mean Square Error of the Exponential Ratio-ratio Type Estimator
To obtain the expression of bias and mean square error of the exponential ratio-ratio type estimator substitute equation (4), (5) and
(6) in Tygg to Obtain

Tonn = Shes Wa Ty + o) (14 228) (14 22) 7 exp [ -osaonn_]

2Xptoxintoxn
Simplify while ignoring terms of order greater than 2 and subtract the population mean from both sides to obtain

3 0xHO 15R
(Tgrr — Y) = Xhoq Wy [Uyh —RhUXh 2% + Whh xn T35 Rho-th +3
(8)

Take expectations on both sides of equation (8) to obtain the approximation of bias as

30x1n0yn _ 9Rn 2 ]
=t __1g + a
% 1%, 0xh Ox1n X1h

E(Tgrn = 7) ~ Ther gt |5 Ru(An = C) + 3(Dn — B
To obtain the expression of mean square error, square both sides of equation (8) and ignore terms of order greater than 2
72 L 2 3 3 z
(Terr = Y)* = X1 Wit [Uyh — 5 Rnoxn + ;Rhgxm]
Simplify and take expectations on both sides to obtain
— 9 9
E(Tgrr = V)% = koo W2 [E(of) + 2 REE(03) — 2 RZE(0714) + 3R4E (0ynOxan) — 3RnE (0y0xn)]
S 9
E(Tgpr — V) = Thy W By +2RE(Ay — C1) + 3Ry (Dy — En)|
This can be further simplified into
MSE (Tgggr) = Xho1 Wi 04Vs1 + 0,Vsz + 6;V35]
9 2
,where V3; =Ry (3pXYhSXhSYh - ZRhSXh)
9 9
Vaz = SPn + Sin + S RiSin + 5 RiSUn — 3RnPxvnSxnSvn
9 9
Vaz = Stz + Shney + ZRPZlS)%h(Z) + ZRiZLSI;h(Z) — 3RnPxyn(2)Sxn(2)Svr2)

2.3 Bias and Mean Square Error of the Exponential Product-ratio Type Estimator
To obtain the expression of bias and mean square error of the exponential product- ratio type estimator substitute equation (4), (5)
and (6) in Tgpg to obtain

Topp = Zhey Wi (T o) (1+ 228 (14 222) ™ exp [0 ]

2Xpt+ox1ntoxn
Simplify the right-hand side in terms of power series ignoring terms of order greater than two and subtract the population mean
from both sides to obtain

7Y ~ YL 1 Ox1h0yh _ 1 OxhOYh _ Rn 2 3Rp 2 Rp
(Tepp —Y) = Xjoq Wy [UYh+ SRrOx1in + = — S RpOxn — = — — x1n T a%y, OXh T 3%, OXROX1h

2Xp 2Xp 8Xp
9)

Take expectations on both sides of equation (9) to obtain the approximation of bias as

E(Tgpp = V) = L3R, (4, — ) + (Dn — By

h 12X
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To obtain the expression of mean square error, square equation (9) and ignore terms of order greater than 2
> L 2 1 1 2
(Tepr = Y) = Lp=y Wi [Uyh — 5 Rnoxn + ;Rhaxm]
Simplify and take expectations on both sides to obtain the approximation of mean square error as
> 1 1
E(Tgpr — Y)? ~ Loy WY [E(U}Eh) + ZRfZLE(o_)gh) - ;RﬁE(U)%m) + RyE(0ynox1n) — RhE(UYhUXh)]
> 1
E(Tgpr — V) = Thy W2 By + 1 RE(Ay — Cn) + Ry(Dy — Ey)]
This can be further simplified into

MSE (Tgpr) = Xhe1 Wi [0nVar + 0,Vay + 0 V4s]
1 2
, where Vy; =R, (pXYhSXhSYh - ZRhSXh)

1 1
Vao = Sin + S + ZRPZIS)%h + ZRPZLSI;h — RypPxynSxnSvn

1
Vis = Stnez) + Stny + ZRiZIS)%h(Z) + ZszlSr%h(z) — Rupxyn2)Sxn2)Svn(2)

3. Optimal Allocation in the Presence of Nonresponse and Measurement Error
Define the total cost of the survey in the ht" stratum as

Cr = cpnp + cpp + CipMup + ConTan,
, Where
¢y, = Cost of measuring a unit in the first phase stratum sample of size n},
c,= Cost of measuring a unit in the second phase stratum sample of size n,,
c1p, = Unit cost of processing respondent data in the first attempt of size ny,,
c,,= Unit cost of processing data in the subsample of size r,;, obtained from the nonresponding units.
N2h

The values of ny; and ry, are unknown until the first attempt is done. Let wy, = % Wyp = % and ry, = P Therefore the
h h 2h
expected cost function is defined as

Cr =cpnp, +np (Ch + Wi + Con —?:2:)
2
The expected total cost function is given as

C*=¢Cj,
To obtain the optimal allocation for the ratio estimator of the population mean define the Lagrangian function for optimization as

¢ = {(i 1 )V21 + (i _ 1 )sz + (%ﬁh—l)) V23} + A [c;ln;l +n, (ch + cipnyWip + con %) — Cﬁ],

Tl;l Np np  Np

, where 1 is a Lagrange’s multiplier. The optimum values of nj,, n, and k,, are obtained by differentiating the Lagrangian
function partially with respect to ny,, n;, and k,j, and equating the derivatives to zero as follows

9 _

1 o
a‘l’l;L - _FV21 +1Ch —_ 0

h

r_ ’V21
n, = E

Next differentiate the Lagrangian function with respect to k,,

0p _ Wap C2hwyp™h _
kan np k3n
c
kZh = nh Avih
23

k [4
L2h _ )2k (10)
np Va3

n V:

Ith _ 23 (12)
k2n Acap
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The optimum value of n, is obtained by substituting equations (10) and (11) in the Lagrangian function and differentiating it
partially with respectto n,.

a¢ 1 w
g _n_ﬁvzz + n_zﬁhvzs + Alep + W) =0

n. = V22—=V23Wan
h Alcp+c1pWip)

Substitute the above equation in the value of k,;, to obtain its optimum value as
ki = c2n(Va2—V23Wap)
2h V2z(ch+cinWin)

The Lagrange’s multiplier is obtained by substituting the values of ny,, n, and k3, in the expected cost function and is defined
as

_1yL 1 |Va1 CZthh) ( (VZZ_VZ3W2h))]

=—yk_ /— W, /

o Lh=1 [Ch a1 <Ch +enWin + = CntenWan)

L
, N V21 , Va1 Conw (Vo = VasWap)
Moy = € X c’ X Z lch = +cp + iy, Wap + zh

-1

k3 (cn + cinWin)

V22 V23W2h Conw (Vo — Vo3Wap)
n, =C*x z ! c + ¢, W. zh
hopt (Ch + 1, Wip) “n hT ¥ k3 (cn + cinWin)

The minimum mean square error of the ratio estlmator is given as

~ Cnt+ CinWin c1inWin
MSE (TR) min = C* Wh V21 + V23W2h + (Vg — VosWoy) sz —VyaWs,
V1 < Czhwzh) (Vaz = VosWap)
X |ep |[=+ | cn + Wi +—=
l el R TIRTR T e (ch + c1nWin)

To obtain the optimal allocation for the exponential ratio-ratio type estimator define the Lagrangian function for optimization as

-1

¢ = {(i, - i) Va1 + (i - —) Vs, (%ﬁh_l)) Vs } + 1 [chnh +ny (ch + cipnpy Wi + CZh:/ ) Ch]

np Np np

, where A is a Lagrange’s multiplier. To obtain the optimum values of ny, n, and k,, differentiate the Lagrangian function
partially with respectto ny,, n, and k,;, then equate the derivatives to zero

¢ 1 ,
= Vet A =0
h ny
’ V31
n, = |
h Acy,

Next differentiate the Lagrangian function with respect to k,,

ap _ Wy _pShwanth _ g
ok - 33 k2 -
2h Nh 2h
c
kan = ny AL
V33
k c
2h [y 22k (12)
np V33
n 1%
[ (13)
kan Aczn

The optimum value of n, is obtained by substituting equations (12) and (13) in the Lagrangian function and differentiating it
partially with respectto nj,.

9 1 w
= w2Vt n_2’21hV33 +A(ch + c1nWip) = 0

~g~
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. = V32=V33Wah
h Alcp+c1pW1p)

Substitute the above equation in the value of k,;, to obtain its optimum value as

ki = c2n(V32—V33W3p)
Zh Vzs(cp+cinWan)

The Lagrange’s multiplier is obtained by substituting the values of nj,, n,, and k3, in the expected total cost function
—15L r (Va1 C2rWop (VBZ_V33W2h))]
cr Zh=1 [Ch\] ch + (Ch +anWin + K3n > (\J (cp+c1nW1n)
V. < v c (Vay — Vs W)
n, =C*"X 3,1 X Z ch $ +|cp +cipWip + ZhZVZh 32 33 2h
ot Ch = Ch k3n (cn + c1aWin)
V V33W2h Conw (V32 - V33W2h)
n, . =C*"x Z c c + ¢, W zh
fopt (Ch + c1nWin) " h T Cntan k3n (cn + c1nWin)
The minimum mean square error of the exponentlal ratlo ratio type estimator is given as
Ch + c1nWin
MSE(TERR)an = Z Wh V31 + V33W2h (V32 V33W2h)
- V33W2h
V. c Viy — Va3 W.
x C;’l g + <Ch + cthm + Zh*th) ( 32 33 Zh)
Ch k3n (cn + c1aWin)

To obtain the optimal allocation for the exponential product-ratio type estimator define the Lagrangian function for optimization
as

-1

-1

r_x 1_1 Wan(kzn=1) Wan
¢ = {(nk Nh) Vi + (nh )V4 ( - )V } + 4 [chnh +n, (ch + cipnpyWip + cop P ) Ch]
, where 1 is a Lagrange’s multiplier. To obtain the optimum values of np, n, and k,, dlfferentlate the Lagrangian function

partially with respect to n;, n, and k,; then equate the derivatives to zero

a¢ 1 ,
ﬁ_ —7[/41 +ACh =0
h np
’ Va1
n, = |—=
h Ac;l

Next, differentiate the Lagrangian function with respect to k.,

0 _ Wany, 5 C2hWopmh _ o
Okzn ~ mp 3 kZn
c
kZh = nh Aﬂ
Va3
k. [4
2h 2R (14)
np Vaz
n V.
o [Vas (15)
kan Aczp

The optimum value of n, is obtained by substituting equations (14) and (15) in the Lagrangian function and differentiating it
partially with respectto nj,.

9% _
0Tlh -

n, = Vaz=VazWip
h Alcp+c1pnW1p)

Substitute the above equation in the value of k,;, to obtain its optimum value as

1 w
_n_ﬁszz + n_Z,ZIhV‘B + Alep + c1p)Wip) =0

~43~


http://www.mathsjournal.com/

International Journal of Statistics and Applied Mathematics http://www.mathsjournal.com
kr = |2h(az=VasWan)
2h Vaz(cp+cinWap)

The Lagrange’s multiplier is obtained by substituting the values of ny,, n;, and k3, in the expected cost function

_ 151 1 |Var C2hWyp (Va2—Va3W3an)
Va= cr Ln=1 [Ch\J ch + <Ch +enWan + 599 ) (\] (cp+cinW1n) )]

-1

V Vo — Vs W-
n, = C*x Va1 Z ﬂ_l_ Ch + oW + ZhZVZh Vaz :3Wan)
ovt k3n (cn + cinWip)

Vio V43W2h Conw (Vaz — VasWap)
n =C" X Z ; c + ¢y W, 2
hopt (Ch + c1nWin) “h h T Cntan ® k3n (cn + c1nWin)

-1

The minimum mean square error of the exponentlal product ratio type estimator is given as

Ch + cipnWin
MSE (Tgpr)min = Wh Va1 |5~ + V43W2h + (Vaz — VasWap) Vo —ViWor
43Wan
Var C2hw,p, (Vag — VasWsp)
X len |— + cp + e Wiy +
l h, Ch S k3n (cn + c1nWin)

4. Conclusion

The present study has proposed a ratio, exponential ratio-ratio type and exponential product-ratio type estimators of the population
mean in the presence of nonresponse and measurement errors under double sampling for stratification. The expression of mean
square errors and biases of the estimators have been derived. The cost of the survey has been studied theoretically. The optimum
values of the sample sizes and the inverse sampling rate have been derived. It is noted that the optimum value of the sample size
depends on the value of the Lagrange’s multiplier. The mean square error of the estimators decreases with the increase in the cost
of the survey. A high cost of the survey results in the selection of a large sample size.
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