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Abstract: Sample survey provides reliable current statistics for large areas or sub-population (domains) with large sample 

sizes. There is a growing demand for reliable small area statistics, however, the sample sizes are too small to provide direct (or 

area specific) estimators with acceptable and reliable accuracy. This study gives theoretical description of the estimation of 

small area mean by use of stratified sampling with a linear cost function in the presence of non-response. The estimation of 

small area mean is proposed using auxiliary information in which the study and auxiliary variable suffers from non-response 

during sampling. Optimal sample sizes have been obtained by minimizing the cost of survey for specific precision within a 

given cost using lagrangian function multiplier lambda and Partial Differential Equations (PDEs). Results demonstrate that as 

the values of the respondent sample increases sample units that supply information to study and auxiliary variable tends to 

small area population size, the non-response sample unit tends to sample units that supply the information as the sampling rate 

tends to one. From theoretic analysis it is practical that the Mean Square Error will decrease as the sub-sampling fraction and 

auxiliary characters increase. As the sub-sampling fraction increases and the value of beta increases then the value of large 

sample size is minimized with a reduction of Lagrangian multiplier value which minimizes the cost function. 

Keywords: Stratified Sampling for Ratio Estimation, Small Area Mean, Auxiliary Variable,  

Linear Cost Function and Non-response 

 

1. Introduction 

1.1. Small Area 

Small Area refers to a population for which reliable 

statistics of interest could not be computed using standard 

methods because of small or even zero sample sizes in the 

area. Some of the perceived small areas include geographical 

regions such as county, sub-county and wards, and 

demographic regions such as age, sex and race. In sampling 

the units are divided into two strata for homogeneity, the first 

strata represent respondents while the second strata represent 

non-respondents. 

1.2. Small Area Estimation 

According to Rahman [13] small area estimation has 

received much attention in recent decades due to increasing 

demand for reliable small area estimates for both public and 

private sectors. Sample data on small areas is inadequate to 

provide statistical estimates with high precision. This 

therefore makes it necessary to borrow strength from data on 

related auxiliary variables using appropriate models. 

Small area estimation is therefore any statistical technique 

that involves the estimation of parameters for small sub-

populations. Methods used in small area estimation are 

categorized as design based and model based. According to 

Rahman [13] design-based method reference was made for 

particular sampling design used whereas model-based 

method involves statistical method based on Bayesian 

approaches. 

Among the models used in small area estimation and 

prediction is Linear Mixed Model that has found wide range 

of applications particularly for its ability to predict linear 

combination of fixed and random effects. Henderson [10] 
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proposed the Best Linear Unbiased Prediction (BLUP) 

method for mixed models of the form 

Y X Zu eβ= + +  

with ( )E Y X β=  

Where; 

 is an n x 1 vector of records to use in the predictions

 refers to known matrix

 is a fixed vector

 is a random vector with mean zero

 being a known matrix and 

 a random vector of errors with mean 

Y

X

u

Z

e

β

zero.

 

The Best Linear Unbiased Estimator (BLUP) method was 

widely used especially in fitting models for the genetic trends 

in animal population based on different traits measured both 

on continuous and categorical scale. Henderson [10] assumed 

that the variances associated with random effect in mixed 

model were known but in practice that was not the case. Such 

variance components are unknown and have to be estimated 

from the sampled data. Several researchers have proposed 

methods of estimating variance, among them was Harville [9] 

who reviewed methods suggested by Henderson of 

Maximum Likelihood and residual maximum likelihood. In 

his proposition he assumed normality which was not the case 

in all estimations. Therefore, in this study a design-based 

model is developed to solve non-linearity of the cost 

estimation. 

Fay and Herriot model have received much attention in the 

previous years. Abhishek [1] applied it in estimating small 

area indicators. The model used was of the form; 

T
i i i iY x v eβ= + +  1,...,i m=  

Where; 

 is a vector of known covariates

 is a vector of unknown regression coefficients

 being the specific random effect

e  represents the sampling error

i

i

i

x

v

β
 

Generally, the Fay and Herriot model assumed linearity in 

estimation of parameters thus making it difficult to estimate 

costs when traveling costs was considered as a component of 

survey cost. Wanjoya et’al [15] carried out a study on small 

area estimation by incorporating a turning (index) parameter 

into the standard area-level (Fay-Herriot) model. In his 

model it was realized that the proposed model was a good 

alternative to the standard Fay-Herriot model though it did 

not consider a case of non-response. Different designs and 

models have been adopted in small area estimation. In this 

study, stratified sampling is considered in the presence of 

non-response during sampling and a linear cost function to 

cater for travel costs that are incurred during sampling. The 

main objective of this study is to develop linear cost model 

considering stratified sampling design in the presence of non-

response and compute reliable estimates for a given small 

area. 

Arnold et'al [4] estimated small area via generalized linear 

model of the form; 

1 1 2 2c c c cY x xβ β ε= + +  

Which was used to solve census data and 

1 1 2 2s s s sY x xβ β ε= + +  

Which was used to solve survey data where; 

 is the (p x 1) vector of parameter

 being the (n x p) design matrix and 

 as the error term

ix

β

ε
 

According to Lohr [11], model-based estimator uses 

prediction approach in which the depended variable Y is 

predicted. The model-based estimates are only model 

unbiased within the structure of that specific model. It was 

realized that the model provides precise parameter 

estimates and explicit model specification. Aditya et'al [2] 

developed a method of estimating domain total for 

unknown domain size in the presence of non-response with 

linear cost function using two stage sampling design. The 

assumption was that the response mechanism was 

deterministic. Expression of the variance of the estimator 

and a suitable cost function for obtaining optimum sample 

size was developed. Empirical results showed that the 

percentage reduction in the expected cost decreased with a 

decrease in unit travel. 

1.3. Optimal Allocation 

Saini [14] proposed a method of optimum allocation for 

stratified two stage sampling design for multivariate surveys. 

The total cost of the survey was expressed as 

/
0 1 1 2

1 1

C=c

L nh

h h h hi

h i

c n c n c m

= =

+ + +∑ ∑                  (1) 

Where; 

1

1

2

 is the overhead cost of the survey

c  defined as the cost used in sampling at the preliminary stage

c  being the cost incurred in the first stage sampling

c  being cost incurred in the second stage 

o

h

h

c

/

sampling 

n  is the first stage sample size

m  is the second stage sample size

n  is a preliminary sample used for double sampling

h

hi

 

In his method the problem of determining optimum 

allocations was formulated as a non-linear programming 

problem (NLPP). The langragian multiplier technique was 

used to solve the formulated NLPPs. 

Cherniyak [7] proposed optimum allocation in double 

sampling with stratification using non-linear cost function. 

The proposed non-linear cost function given was of the form; 
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/ /
,

1

( ) 0

L

k k

k

C c n c nα α
=

= +∑ ≻                  (2) 

Where; 
/  is the cost of classification per unit,

c  is the cost of measuring per unit in stratum kk

c
 

Also proposed, was logarithmic cost function of the form; 

/ / /

1

log

L

k k k

k

C c n n c v W

=

= + ∑  

Alilah et'al [3] proposed a cost function for domain mean 

estimation of the form 

0 1 1 2 2

/ /C ( )d d d d d d d d dc n c n c n c rθ= + + +            (3) 

Where; 

dc′ represents the cost of measuring a unit in the first 

sample of size nd
′  

0dc represents the cost of measuring a unit of the first 

attempt on dy with second phase sample size dn  

1dc represents the unit cost for processing the responded 

data on the dy at the first attempt 
1

nd  

2dc represents the unit cost associated with the subsample 

2 2
 of d dr n  

In his findings, it was noted that the Mean Squared Error 

(MSE) increased as the second sample size decreased for all 

values computed using linear and non-linear cost function. 

Also, MSE of the estimator computed using linear and non-

linear cost function increased with an increase in the inverse 

sampling and non-response rates. Therefore, it was noted that 

an increase in use of auxiliary information reduced non-

response error thus increasing the MSE. 

1.4. Estimation of Population Parameters in the Presence 

of Non-Response 

Hansen and Hurwitz [8] suggested a technique for 

handling the non-response in mail surveys. Mail survey is 

advantageous over the other survey since it is inexpensive. 

Okafor [12] extended Hansen and Hurwitz problem to the 

estimation of the population total in element sampling on 

two successive occasions. Later, Chaundhary and Kumar 

[6] used the Hansen and Hurwitz techniques to estimate 

the population product for sampling on two occasions 

when there was non-response on both occasions. Cochran 

[5] extended Hansen and Hurwitz technique for the case 

when the information on the characteristic under study 

was also available on auxiliary characteristics. 

Chaundhary and Kumar [6] proposed a method of 

estimating the mean of finite population using double 

sampling scheme under non-response. The proposed 

model was based on the fact that both the study and 

auxiliary variables suffered from non-response with the 

information of auxiliary variable X not available. The 

estimate of x  at the first phase was given by; 

1 21 2n hn x n x
x

n

′ ′+
′ =

′
                               (4) 

With the corresponding variance of 

2

* 2 2
2

1 1 1
( ) ( ) x x

L
V X S W S

n N n

′ −′ = − +
′ ′

           (5) 

Where; 

1 2

2

1

2 2

2

2

2

 is the non-responding unit

h  is the responding units from the  non-responding unit

x ,  are the means from the non-responding units n

 are the means from the non-responding unit 

 and 

n h

h

x

n

n

x h

S S

′
′

2

2  are mean squares error of entire group and 

non-response group respectively with phase of 

 as the inverse sampling rate at first phase of sampling.

x

L′

 

From the previous studies, researchers have considered 

linear cost function when estimating small area. In solving 

for non-response most of them considered double sampling. 

2. Model Formulation 

2.1. Proposed Small Area Concept in the Presence of  

Non-Response 

Let U be a finite population with known population size N. 

The population is divided into small area groups defined by 

U1, U2,..., Us with group sizes N1, N2, …, Ns respectively. 

Define the population total as 

1

U=

S

s

s

U

=
∑  and overall 

population size as 

1

S

s

s

N N

=

=∑ respectively. The small area 

study and auxiliary variable are defined as Ys and Xs with 

respective means as  and Xs sY respectively. Let 

 and  be the 
i i

th
s sy x i  unit observation of the small area 

population for the study and auxiliary variable respectively 

with 1,2,..., si N= . Stratified sampling is used to estimate the 

small area auxiliary population mean X s  of the variable sX  

from a large sample size ns. Attributes from the auxiliary 

variable observation 
isx are obtained and a sample small area 

mean 
1s

x are obtained and a sample small area mean sx

computed. Define 
1s

n as sample units that supply the 

information on 
1s

y and 
1s

x respondents while 
2sn be the non-

respondents for both the study and auxiliary variables 

respectively. The sum total small area sample size is given by 

1 2s s sn n n= +  



16 Ongoma Jackson et al.:  Optimal Allocation in Small Area Mean Estimation Using Stratified  

Sampling in the Presence of Non-Response 

By considering the 
2sn as the non-respondent subgroup 

using SRSWOR of 
2sm units are drawn with an inverse 

sampling rate 
2sk defined by 

2

2

2

s

s

s

n
m

k
=  With 

2
1sk ≻                        (6) 

Such that 
2 2 2s s sn k m=  

All the 
2sm units respond after sub-sampling 

2sn non-

responding units. 

In developing the non-response theory let 
1s

N be the 

stratum containing small area population units that respond in 

the first attempt and 
2sN be the stratum with units that do not 

respond such that; 
2 1s s sN N N= − . Both the small area 

stratum units 
1s

N and 
2sN are not known in advance. Further 

let 
1s

W  and 
2sW be the small area stratum weights defined by 

1

1

s

s
s

N
W

N
=

 

and 2

2

s

s
s

N
W

N
= With the corresponding estimates 

defined as 1

1

ˆ s

s
s

n
W

n
= and 2

2

ˆ s

s
s

n
W

n
= respectively. 

Also define the total small area sample size as 
1 2s sn m+

then the small area estimate of population mean for the study 

variable will be defined by; 

1 2

1 2s

s s

s s m
s s

n n
y y y

n n
= +                       (7) 

While for auxiliary variable; 

1 2

1 2s

s s

s s m
s s

n n
x x x

n n
= +                         (8) 

This can then be written as 

1 1 2 2ss s s s my w y w y= +                           (9) 

and 

1 1 2 2ss s s s mx w x w x= +                         (10) 

Respectively where sy  and sx  are the sample small area 

means for the observation 
isy  and 

isx respectively. The 

following sample characteristics are defined when estimating 

small area mean, 

i) 
1

1

1 1

1
s

i

n

s s
s i

y y
n =

= ∑
 

small area mean of the study character 

from the response group based on 
1s

n  units 

ii) 
2

2

2 1

1
s

s i

m

m s
s i

y y
m =

= ∑  small area mean of the study 

character for the non-responding group of 
2sm  

respondent units 

iii) 
1

1

1 1

1
s

i

n

s s
s i

x x
n =

= ∑  small area mean of the auxiliary 

character from the response group based on 
1s

n  units 

iv) 
2

2

2 1

1
s

s i

m

m s
s i

x x
m =

= ∑  small area mean of the auxiliary 

character for the non-responding group of 
2sm  

respondent units 

In estimating the overall small area population mean in the 

presence of non-response, stratified sampling ratio estimation 

of the small area mean is used. Define 

ˆ ˆY *s
s s s s s

s

y
X R X r X

x
= = =  

With assumption that; 

 and Es s s sE y Y x X= =                           (11) 

2.2. Bias of the Ratio Estimator 

Define 

0

s s
s

s

y Y

Y
ε −

=                                (12) 

1

s s
s

s

x X

X
ε −

=                                 (13) 

From (12) 

0s s s sY Y yε + =  

( )
0

1s s sY yε + =  and from (13) 

1s s s sX X xε + =  

( )
1

1s s sX xε + =  

The assumption is that 

( ) ( )
0 1

0s sE Eε ε= =  

Define 

0

2

2 s s
s

s

y Y
E E

Y
ε

 −  =   
 
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2

2

1
s s

s

E y Y
Y

 = −   

( )
2

1
s

s

Var y
Y

=  but 

1 1 2 2ss s s m

s
s

n y n y
y

n

+
=

 

( ) 1 2 1 2s s s s sV y V E y n E V y m   = +     

Considering the first term in equation above 

1 1 2 2

1 2
ss s s m

s

n y n y
V E

n

+ 
 
  

 

1 1 2 2

1

s s s s

s

n y n y
V

n

+ 
 
  

 

2

1
sys s

s
s s

SN n
V y

n N

−
=    this is equal to 

21 1
sy

s s

S
n N

 
= − 
 

                          (14) 

Where, 
2

syS =  Variance of the whole small area population mean 

of the study variable sY
 

2

2

syS =Variance of the small area population mean for the 

stratum of non-respondents for the study variable dY  

Consider also 

( )
2 21 sE V y m  

1 1 2 2

1 2
ss s s m

s

n y n y
E V

n

+ 
 =
 
 

 

( ) ( )1 2

1 2

2 2

1 22 2 s

s s

s m

s s

n n
E V y V y

n n

 
 = +
 
 

 

1 1 1 2 2 2 2

1 2 2

222 2

1 2 2

ms s
yys s s s s s

s s s ss s

ssn n n n n m
E

n n n mn n

  − −  
 = +          

 

1 1 2 2 2 2

1

2 2

22

2
1 2 2

ms

s

ys s s s s s

y
s s ss s

sn n n n n m
E s

n n mn n

  − −  
 = +          

 

21 1 2 2 2

2 2

22

1 2 2
1

ms
ys ss s s

s s ss s

sn mn n n
E

n n mn n

 −   
 = − +          

 

But 

2 2 2s s sn k m=  

1 1 2 2 2 2 2

2 2

22

1 2 2 2
1

ms
ys s s s s s

s ss s s

sn n n k m m
E

n mn n n

  −  
 = − +          

 

2 2 2

2

2 2

22

1 2

1 ms
ys s

s
s ss

sn k
E m

n mn

  − 
 =      

 

2 2

2

2
1

1

ms

s s

y
s s

n k
E s

n n

 −  =    
   

 

2

2
2

2
1

1

ms

s

s y
s

k
E w s

n

 −  =    
   

 

2

2 2

2

( 1)
sy

s s
s

s
W k

n
= −  

2

0 2 2

2 2 2

2

11 1 1
( )

s s

s

s y s y
s s ss

k
E S W S

n N nY
ε

 −  
= − +            

2 2

2

22

2 2

11 1 ss
yy s

s
s s ss s

SS k
W

n N nY Y

−  
= − +     
   

 

1

2

2 s s
s

s

x X
E E

X
ε

 −  =   
 

 

2

2

1
s s

s

E x X
X

 = −   

( )
2

1
s

s

Var x
X

=  

( ) ( )
21 2 1 22

1
s s s s

s

V E x n E V x m
X

   = +    
 

2

2 2

2 2

2

11 1 1
s s

s

x s x
s s ss

k
S W S

n N nX

 −  
= − +          

 

2 2

2

22

2 2

11 1 ss
xx s

s
s s ss s

SS k
W

n N nX X

−  
= − +     
   

               (15) 

Where; 
2

sxS =Variance of the whole small area population mean of 
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the auxiliary variable sX  

2sk =The inverse sampling rate 

2

2

sxS =Variance of the domain population mean for the 

stratum of non-respondents for 

Stratum of non-respondents for the auxiliary variable sX  

Next consider ( )
0 1

s s s s
s s

s s

y Y x X
E E

Y X
ε ε

   − −
=    

    
 

( )( )1
s s s s

s s

E y Y x X
X Y

 = − −
 

 

( )1
s s

s s

Cov x y
X Y

=                                     (16) 

Consider 

( ) ( ) ( ) ( )
2

1 1 1
s s s s s s s s s s

s s s s s s

Cov E y n E x n E Cov y x n E Cov y x m
X Y X Y X Y

    + +     
 

( ) ( )
2

1 1
s s s s s s

s s s s

E Cov y x n E Cov y x m
X Y X Y

  = +   
 

2 2 2 2 2

2 2

2

2

1 1 m ms ss s
x yx y s s ss s

s s s ss s s s s

ss n n mN n
E E

N n n mX Y X Y n

  −  −
  = +           

 

2 2 2 2

22 2
2

2

2

1 1 1 1
s s m m s

s s

s s s s

x y x y m
s s ss s s s s

n k m m
E s E s

n N nX Y X Y n

  −  
  = − +           

 

2

2 2
2

11 1 1 1
s s m ms s

s

x y x y
s s ss s s s

k
E s E w s

n N nX Y X Y

 −    
= − +                 

 

2 2 2

2

11 1 s ss s
x yx y s

s s ss s s s

SS k
w

n N nX Y X Y

−  
= − +     
   

                                                                     (17) 

3. Small Area Ratio Estimator of the Mean  

ˆ s
s s

s

y
Y X

x
= ∗

 

( )
0

1s s sy Y ε= −  

( )
1

1s s sx X ε= +  

( )
( )

1

01ˆ
*

1

s s
s s

s s

Y
Y X

X

ε
ε

+
=

+
 

( ) ( )
0 1

1ˆ
1 1s s s sY Y ε ε

−
= + +  

( ) ( )
0 1 1

2ˆ
1 1 ,...s s s s sY Y ε ε ε= + − + +  

( )
1 1 0 0 1 0 1

2 21 ,...s s s s s s s sY ε ε ε ε ε ε ε− + + − +  

( )
0 1 0 1 1

2ˆ
1s s s s s sY Y ε ε ε ε ε= + − + +                                                                        (18) 
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3.1. Bias of Ratio Estimator ˆ
sY  

Proposition 1 

ˆ
     ? Y ?   sThe Bias of the ratio estimator is given by

 

( ) 2 2

2 22 2 2 22

2 2
1 11 1 1 1

Bias
s s s s s s s s ss

s s

s s x s x x y x y s x y x y
s s s s s s

k k
Y Y C W C C C W C C

n N n n N n
ρ ρ

 − −      
= − + − − −                  

s

s

x

x

s

S
C

X
= ,

s

s

y

y

s

S
C

Y
= , 2

2

s

s

x

x

s

S
C

X
=  and 2

2

s

s

y

y

s

S
C

Y
=  

2

syS =  Variance of the whole small area population mean of the study variable sY  

2

2

syS =Variance of the small area population mean for the stratum of non-respondents 

for the study variable sY
 

2

sxS =Variance of the whole small area population mean of the auxiliary variable sX  

2sk =The inverse sampling rate. 

2

2

sxS =Variance of the small area population mean for the stratum of non-respondents for the auxiliary variable sX  

Proof 

( )
0 1 0 1 1

2Define 1s s s s s s sY Y ε ε ε ε ε= + − − +  

( ) ( ) ( ) ( ) ( ){ }0 1 0 1 1

2ˆ
1s s s s s s sE Y Y E E E Eε ε ε ε ε= + − − +

 

Since

 ( ) ( )
1 0

0s sE Eε ε= =  

( ) ( ) ( )
0 1 1

2ˆ
1s s s s sE Y Y E Eε ε ε = − +
 

 

222 2 2

2 2

22

2 2

1 11 1 1 1
1

s ss s s s
x y xx y xs s

s s s
s s s s s ss s s s s s

S SS Sk k
Y W W

n N n n N nX Y X Y X X

   − −          = − − + + − +                          

 

22 2 2 2 2 2

2 2

22

2 2

1 11 1 1 1ˆ s s s s ss s s

s s

x x y x yx x ys s

s s s s x y s
s s s s s ss s s ss s

S SS S Sk k
E Y Y Y W W

n N n n N nX Y X YX X

ρ
ρ

 − −         − = − + − − −                    

 

( ) 2 2

2 22 2 2 22

2 2
1 11 1 1 1

Bias
s s s s s s s s ss

s s

s s x s x x y x y s x y x y
s s s s s s

k k
Y Y C W C C C W C C

n N n n N n
ρ ρ

 − −      
= − + − − −                  

 

3.2. Mean Square Error (MSE) of the Ratio Estimator 
ˆ
sY  

Proposition 2 

The Mean Squared Error (MSE) of the ratio estimator 
ˆ
sY is given by 

( ) 2

1 2 2

2 2
11 1ˆ s

s s s s
s s s

k
MSE Y W

n N n
φ φ

−  
= − +     
   
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Proof 

( ) 2
ˆ ˆ
s s sMSE Y E Y Y = −

  
 

2
2

ˆ
*s

s s s s
s

y
E Y Y E X Y

x

  − = −     
 

( )
( )

0

1

2

1
*

1

s s

s s

s s

Y
E X Y

X

ε

ε

 +
 = −
 +
 

 

0

1

2

2
1

1
1

s

s
s

Y E
ε
ε

  +
  = −
 +   

 

( ) ( )
( )

0 1

1

2

2
1 1

1

s s

s

s

Y E
ε ε

ε

 + − +
 =
 +
 

 

0 1

2

2

1

s s

s
s

Y E
ε ε

ε
− 

=  +  
 

( )( )
0 1 1

2
1

2 1s s s sY E ε ε ε
− = − +  

 

( ) ( )
0 1 1 1

2
2 21 ,...s s s s sY E ε ε ε ε = − − + +

 
 

0 0 1 0 1 1 1 1

2 2 2 3
s s s s s s s s sY E ε ε ε ε ε ε ε ε = − + − + −

 
 

0 1

22
s s sY E ε ε = −   

( )
0 1 0 1

2 2 2 2s s s s sY E Eε ε ε ε = + −
   

2 2 2 2 2 2

2 2 22 2

22 2 2

2

2 2 2 2

1 1 11 1 1 1 1 1
2

s s ss s s s s

s s s s

y x yy x x x ys s s

s s s x y x y s
s s s s s s s s ss s s ss s s s

s s ss s s s sk k k
Y W W W

n N n n N n n N nX Y X YY Y X X
ρ ρ

  − − −           = − + + − + − − +                               

2 2 2

2 2 22 2 2 2 22

2 2
2 2 2

2 2

1 1 11 1 1 1 1 1
2

s s s s s s s s s s s s

s s ss s
y s y x s x s x y x y s s x y x y

s s s s s s s s ss s

k k kY Y
S W S S W S R S S W R S S

n N n n N n n N nX X
ρ ρ

 − − −           = − + + − + − − +                
            

2 2 2

2 2 2 22 2 2 2 2

2 2 2 2 2 2
1 1 11 1 1 1 1 1

2 2
s s s s s s s s s s s

s s s

y s x s x y s x y s y s s x s s x y x y
s s s s s s s s s

k k k
S R S R R S S W S W R S W R S S

n N n N n N n n n
ρ ρ

 − − −               = − + − − − + + −                  
                

{ } { }2

2 2 2 2 2 2

2 2 2 2 2 2
11 1

2 2
s s s s s s s s s s s s

s

y s x s x y x y s y s x s x y x y
s s s

k
S R S R S S W S R S R S S

n N n
ρ ρ

−  
= − + − + + −    
   

 

{ }
1

2 2 2 2 2
s s s s s ss y s x s x y x yS R S R S Sφ ρ= + −  

( ) 2

1 2 2

2 2
11 1ˆ s

s s s s
s s s

k
MSE Y W

n N n
φ φ

−  
= − +     
   

 

3.3. Optimal Allocation 
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An optimum size of a sample is required so as to balance the precision and cost involved in the survey. The optimum 

allocation of a sample size is attained either by minimizing the precision against a given cost or minimizing cost against a 

given precision. In this study, a linear cost function has been considered. 

Denote the cost function for the ratio estimation by 

( )
1 1 2 2s s s s s s sC c n c n c m

β= + +                                                                 (19) 

sc = Represents the cost of identifying sampling target population sn  

1s
c = Represents the cost of measuring a unit in the response sample

1s
n . 

2sc =  Represents the cost of measuring unit ascertained with sub-sample 
2sm  from 

2sn  

1 2
Further more  and m are not known. Lets sn  

1 1s s sn W n=  

2

2 2

2 2

ss
s s

s s

nn
m W

k k
= =                                                                                (20) 

( )
1 1 2 2s s s s s s sC c n c n c m

β= + +  

( )
1 1 2 2

2

s
s s s s s s s s

s

n
C c n c W n c W

k

β= + +  

( ) 2

1 1 2

2

s

s s s s s s s
s

W
C c n n c W c

k

β  
 = + +
 
 

                                                              (21) 

Proposition 3 

2
         s sThe optimal values of n and k are given by  

1 2 2

1
1

2 2 1
11s s s

s
s

W
n

c

β βφ φ
β λ

+ + −   =      

 

and 

2 1 2 2

2

2

1
2 2 11

2
s s s s

s
s s

c W
k

c

βφ φ
λ

φ β

+ − −
 =
 
 

 

To determine the optimum values of
 sn and 

2sk that minimizes variance at a fixed cost 

Proof 

Define 

( ) ( )2 2 2

1 2 1 1

2

2 2
11 1 s s s

s s s s s s s s s
s s s s

k c W
W W c n n c W C

n N n k

βψ φ φ λ
  −    ′ = − + + + + −              

                                (22) 

To obtain the normal equations, the expression of Equation (22) is differentiated partially with respect to 
2sk and sn  and the 

partial derivatives are equated to zero 

( )
2 2 2 2

2 2

2

2
0

s s s s s

s s s

W n c WW

k n k

φ λψ∂
= − =

∂
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2 2 2 2

2 2 2
s s s s sk W n cφ λ=  

2 2

2

2

2 2

s s

s s

k c

n

λ
φ

=  

22

2

ss

s s

ck

n

λ
φ

=  

2

22

22

2

ss

ss

n

ck

φ
λ

=  

2

2 2

ss

s s

n

k c

φ

λ
=  

2 2

2

s s

s

s

k
n

c

φ

λ
=

 

But 

( ) ( )2

1 2 1 1 2 2

2

2 21 1 1s s
s s s s s s s s s s s

s s s s s

k n
W W c n n c W c W C

n N n n k

βψ φ φ λ
     ′= − + − + + + −     

      

 

Satisfying for 

2

2

,

s

s s

s

k n

n k
 

We obtain 

( ) ( )2 2 2 2

1 2 2 1 1 2 2

2 2

2 21 1 1s s s s

s s s s s s s s s s
s s s s s s

c k
W W c n c W c W C

n N n c c

βλ φ φ
ψ φ φ λ

φ λ λ

           ′= − + − + + + −   
          

          (23) 

Next the partial derivative with respect to sn  obtained as; 

( ) ( )
1 2 2

12 2

2 2

1 1
0s s s s s

s s s

W
W c n

n n n

βψ
φ φ λβ −∂

= − + + =
∂

 

( )
2 2

12 2
1 0s s s sW S c n

βφ φ λβ +− + =  

( )
1

1 2 2

2 2
s s s s sc n W

β

λβ φ φ
+

= −  

( ) 1 2 2

2 2
1 s s s

s
s

W
n

c

β φ φ
λβ

+ −
=  

1 2 2

1
2 2 1
s s s

s
s

W
n

c

βφ φ
λβ

+ −
 =
 
 
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1 2 2

1
1

2 2 1
11s s s

s
s

W
n

c

β βφ φ
β λ

+ + −   =      

                                                               (24) 

2

2

2

s s

s
s

n c
k

λ
φ

=  

Substituting ns 

1 2 2

2

2

2

1
1

12 2 11
1

22
1s s s

s
s

s

s

W
c

c
k

β βφ φ
λ

β λ

φ

+ + −         =  

( ) ( )
2 1 2 2 22

1 1 11 1
2 2 11 2 21 1s s s s s ss

k W c cββ βφ φ β λ φ
− +− −++ += −                                                   (25) 

But the overall cost function is defined as 

( ) 1 2

1 1

2

s s

s s s s s s
s

c W
C c n n c W

k

β  
′  = + +

 
 

 

Substituting in the values of ns and ks2 we obtain 

1

1
1

1 2 2 1 2 2 2

1 1 2 2

2 1 2 2

1
1

2 2 2 2 11 1
1

2
2 2

1 1s s s s s s s s
s s s s s s

s s s s s s

W W c
C c c W c W

c c c W

β β
β

β
β β βφ φ φ φ φ β λ

β λ β λ φ φ

+
++ + +

 
      − −      ′    = + +         −           
  

i  

1

1 2 2 1 2 2

1 1 2 2 2

1
1 1

2 2 2 2 11 1
1 1

2
1 1 1s s s s s s

s s s s s s s
s s

W W
C c c W c W

c c

β
β

β
β β β βφ φ φ φ

φ λ
β λ β λ λ

++ + + +   − −        ′ = + +                 

                 (26) 

Let 

1 2 2

2 2 1
s s s

s
s

W
c A

c

β
βφ φ

β

+ −  = 
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1 2 2

1 1

2 2
s s s

s s
s

W
c W B

c

φ φ
β

 −
  =
 
 

 

And 

2 2 2s s sc W Dφ =  

Substituting A, B and D in (26) 

( )
11

2 11 1
s sC A B D C

ββ
ββ βλ λ λ
−   

− −    ++ +   ′ = + + −             (27) 

1β =  

1 1

2 2 0sA B Cλ λ
− −

+ − =  

1

2 sC

A B
λ

−
=

+
 

1

2

1 sC

A B
λ

=
+

 

Applying the reciprocals to all terms 

1

2

s

A B

C
λ +=  

Squaring both sides 

2

s

A B

C
λ

 +=  
 

 

When 

0β =  

Substituting from equation (27) we obtain a linear equation 
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of the form 

1

21
sB D Cλ λ

−
− + −                            (28) 

With the values of B  and D  defined as 

1 2 2

1 1

2 2
s s s

s s
s

W
B c W

c

φ φ
β

 −
 =
 
 

,
2 2 2s s sD c W φ=  

1

2

let Kλ
−

=  

1 1

2 21 2
Kλ λ λ

− −
− = =  

2 0sBK DK C+ − =  

2 4

2

sD D BC
K

B

− ± +
=  

but  

1

2

K λ
−

=  

1

2

2 4

2

sD D BC

B
λ

− − ± +
=  

1

2

2

2

4 s

B

D D BC
λ =

− ± +
 

Solving for λ  in equation (28) the solution becomes, 

( )
2

2
2

4

4 s

B

D D BC

λ =
− ± +

 

4. Conclusion 

From the results it is noted that as values the respondent 

sample 
1s

n tends to small area population size sN  the non-

response 
2sm  tends to 

1s
n  and the sampling rate 

2sk  tends to 

1. From theoretical analysis it is observed that the Mean 

Square Error of the proposed estimator will decrease as the 

sub-sampling fraction together with the number of auxiliary 

characters is increased. As the sub-sampling fraction also 

increases and the value of β  increases then the value of sn  

is minimized with the reduction in the value of Lagrangian 

multiplier ( λ ) which minimizes the cost function. 
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