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1. Introduction

T he class of elementary operators is among the classes of bounded linear operators on C∗-algebras.
Elementary operators have great applications in operator theory, non-commutative algebraic geometry

and solid state physics [1]. Moreover, several properties of the norm of elementary operators have been studied
in [2–4] and [5]. Shulman and Turovskii [6] presented tensor spectral radius technique and tensor Jacobson
radical which have applications to spectral theory of elementary operators and multiplication operators on
Banach algebras. In [6], it was shown that the intersection of two flexible ideals is a flexible ideal with respect to
the normed ideal. In the study of locally elementary operators, Nair [7] showed that every locally elementary
operator is an elementary operator and every locally elementary operator is the strong limit of a sequence
of elementary operators. Some properties of elementary operators have been studied like the coefficients
and spectra [8]. Boudi and Bracic [8] characterized the relationship between non-invertibility (invertibility) of
elementary operators and properties defining the coefficients.

In [8], it was proved that an operator Φ ∈ B(B(H)) is non-invertible if it is a right zero divisor or left
zero divisor and if a length 2 elementary operator Φ is annihilated by elementary operator, then there exists a
multiplication operator M such that MΦ = 0 (or ΦM = 0). Hejazian and Rostamani [9] proved that the class
of spectrally compact operators is strictly contained in the class of compact operators and the set of spectrally
compact operators on spectrally normed space E is a right ideal of spectrally bounded operators which are
two sided ideals. Moreover, Kittaneh [10] proved several spectral radii inequalities for sum, products and
commutators of Hilbert operators and found that the spectral radius preserves commutativity by the following
equation r(AB) = r(BA) for every A, B ∈ B(H).

Moreover, Okelo and Mogotu [11] established orthogonality and norm inequalities for commutators of
derivations. In [12], a ring R is said to be prime if it contains no non-zero orthogonal ideals. Mathieu [12]
discussed the interrelations between primeness and properties of multiplications on prime C∗-algebras while
in [13] the necessary and sufficient conditions for elementary operator TAi ,Bi (X) = A1XB1 + ... + AnXBn to
be identically zero or to compact map or (Hilbert space) for induced mapping on the Calkin algebra to be
identically equal to zero were discussed. Also, Gogic and Timoney [14] established closure conditions of
multiplication operators on C∗-algebras. It was shown in [14] that a basic elementary on a C∗-algebra A with
the coefficients inA is norm closed for all primitive C∗-algebra PrimA (where PrimA is the primitive spectrum
which is the set of irreducible representations ofA equipped with Jacobson topology). Still on prime ideals, the
authors [2] established the relationship between inner derivations implemented by a norm attainable element
of a C∗-algebra to those of ideals and primitive ideals.
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Kumar and Rajpal [15] showed that the Banach projective tensor A⊗γ B and operator space projective
tensor product A⊗̂B of two C∗-algebras A and B are symmetric. Furthermore, in [15] the author showed that
a Banach algebra is said to be quasi-central if no primitive ideal contain its centre. For a weakly Wiener Banach
algebra A has an approximate identity element which is quasi-central that belongs to Z(A) [15]. In addition,
studies on centrality and spectrum of algebra was shown [16], that semi-simple algebras containing some
algebraic element whose centralizer is semi-perfect are Artinian and a semi-simple complex Banach algebra
containing some element whose centralizer is algebraic are finite dimensional. Bratteli [17] proved that any
separable abelian C∗-algebra is the centre of C∗-algebra with inductive limit of an increasing sequence of finite
dimensional C∗-algebras.

Suppose that E is a Banach lattice then its ideal centre Z(E) is embedded naturally in the ideal centre
Z(E

′
) of its dual. The embedding may be extended to a contractive algebra and lattice homomorphism of

Z(E)
′′

into Z(E
′
). Orhon [18] showed that the extension is onto Z(E

′
) if and only if E has a topological

full centre. Other studies on centre are outlined in [1], for example, the centre of C∗-algebra A contains
information about properties of operators defined on A which are compatible with ideals of A such as
derivations, automorphisms, elementary operators, among others. In [1], it was shown that every C∗-algebra
B of Mloc(A) is containing both Cb and A is boundedly centrally closed. Sarsour and As’ad [19] established
the relationship between centrality of Banach algebras and centrality of its closed subalgebras. In [19], it
was shown that for a closed subalgebra B of a unital complex Banach algebra A, then the quasicentral
Q(A), σ-quasicentral Qσ(A) and ρ-quasicentral Qρ(A) sets need not be subsets of Q(B), Qσ(B) and Qρ(B)
respectively. Moreover, Q(B), Qσ(B) and Qρ(B) need not be subsets of Q(A), Qσ(A) and Qρ(A) respectively.
In addition, As’ad [20] studied the extended centre, extended quasi-centre, the extended σ-quasi centre and
extended ρ-quasi centre of complex Banach algebra. In [20], if A is a unital complex Banach algebra then
Ze(A) ⊆ Qe ⊆ Qρe(A) and Qe(A) ⊆ Qρe(A), Qe(A) ⊆ Qσ(A) and Ze(A) is a unital normed subalgebra
of A, Z(A) ⊆ Ze(A), Q(A) ⊆ Qe(A), Qσ(A) ⊆ Qσe(A) and Qρ(A) ⊆ Qρe(A). Furthermore, Rennison
[21] gave a number of conditions related to centrality of Banach algebras which include non-unital algebras,
analytic functions of quasi central elements and algebras having all quasi central elements are central.

We see that there are a lot of studies on elementary operators, locally elementary operators, spectrum,
spectral radius, compactness, commutativity and tensor products of Banach algebras. However, properties
of the centre of dense irreducible subalgebras of compact elementary operators that are spectrally bounded
remain interesting. Therefore, in this paper we endeavour to investigate properties of the centre of dense
irreducible subalgebras of compact elementary operators that are spectrally bounded on C∗-algebras.

2. Preliminaries

In this section, we outline preliminary concepts which are useful in the sequel. LetA be a Banach algebra.
We denote a dense irreducible C∗-subalgebra of A by ADIR. The algebra of all compact elementary operators
on A is denoted by C(E). We also denote the algebra of all spectrally bounded compact elementary operators
on ADIR is denoted by CSBD(E).

Definition 1. ([22]) Let V be a linear vector space. A non-negative real valued function ‖.‖ : V → R is called a
norm on V if it satisfies the following conditions:

(i). ‖a‖ ≥ 0 and ‖a‖ = 0, if and only if a = 0, for all a ∈ V.
(ii). ‖αa‖ = |α|‖a‖, for all a ∈ V and α ∈ K.

(iii). ‖a + b‖ ≤ ‖a‖+ ‖b‖, for all a, b ∈ V.

The ordered pair (V, ‖.‖) is called a normed space.

Definition 2. ([23], Section 2) Consider a C∗-algebra A and let T : A → A. The operator T is called an
elementary operator if it has the following representation: TAi ,Bi (X) = ∑n

i=1 AiXBi ∀ Ai, Bi are fixed in A or
M(A) is multiplier algebra of A. For A, B ∈ B(H), we define particular elementary operators

(i). the left multiplication operator LA : B(H)→ B(H) by LA(X) = AX, ∀ X ∈ B(H).
(ii). the right multiplication operator RB : B(H)→ B(H) by RB(X) = XB, ∀ X ∈ B(H).

(iii). the generalized derivation (implemented by A, B) by δA,B(X) = LA − RB, ∀ X ∈ B(H).
(iv). the basic elementary operator (implemented by A, B) by MA,B(X) = AXB, ∀ X ∈ B(H).
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(v). The Jordan elementary operator (implemented by A, B) by UA, B(X) = AXB + BXA, ∀ X ∈ B(H).

Definition 3. ([24], Definition 4.1) If A is any C∗-algebra and Φ : A → B(H) is a representation then Φ is
irreducible if Φ(A) is an irreducible subalgebra of B(H).

Definition 4. ([25], Definition 2.2) Let A and B be complex Banach algebras. A linear mapping T : A → B is
called spectrally bounded if there exists a constant M ≥ 0 such that r(Tx) ≤ Mr(x) and spectrally infinitesimal if
r(T(x)) = 0, for all x ∈ A. If r(T(x)) = r(x), for all x ∈ A we say that T is a spectral isometry. If r(x) = 0, then
x is called quasi-nilpotent.

Definition 5. ([26], Definition 4.2.12) A representation T of an algebra A on a linear space X is called strictly
dense if whenever x1, x2, ..., xn is a finite list of linearly independent vectors in X and y1, y2, ..., yn is a list of
vectors in X then there is an element a ∈ A with Taxj = yj for j = 1, 2, ..., n.

Definition 6. Let TAi ,Bi ∈ C(E). We define the spectral operator norm of TAi ,Bi by ‖TAi ,Bi‖σ = inf{M ≥
0 |r(TAi ,Bi (Xn))| ≤ Mr(X)}, for all X ∈ ADIR.

Definition 7. Let CSBD(E) be a Jordan Banach algebra. Then two elements P, Q ∈ CSBD(E) are orthogonal if
one the following equivalent conditions hold:

(i). P ≤ I −Q.
(ii). P ◦Q = 0.

(iii). UPUQ = 0.

Definition 8. ([27], Definition 1.3) The centre of a Banach algebra A is defined by Z(A) = {a ∈ A : ax =

xa, ∀x ∈ A}.

Definition 9. ([28], Section 3) A Jordan homomorphism between two Banach algebras A and B is a
linear mapping T : A → B which preserves the derived Jordan product, i.e T(ab + ba) = T(a)T(b) +
T(b)T(a), ∀ a, b ∈ A.

Definition 10. ([29]) A Jordan-Banach algebraA is a Jordan algebra with the complete norm ‖x ◦ y‖ ≤ ‖x‖‖y‖,
for all x, y ∈ A.

Definition 11. ([26], Definition 4.1.1) Let A be an algebra and let X be a linear space. A representation
(anti-representation) T of A on X is a homomorphism (anti-homomorphism) a 7→ Ta of A in B(X). A
subspace Y of X is said to be T-invariant if Tay belong to Y, for all y ∈ Y and a ∈ A. The representation
(anti-representation) T of A on X is said to be:

(i). Faithful if the homomorphism is injective.
(ii). Trivial if Ta = 0 for every a ∈ A.

(iii). Irreducible if {0} and X are the only T-invariant subspaces and T is not trivial.
(iv). Cyclic if there exists a vector z ∈ X satisfying X = {Taz : a ∈ A}.

Definition 12. ([30], Definition 2.1.2) If E is a vector space, a set A ⊂ E is called convex if x, y ∈ A, t ∈
[0, 1] =⇒ tx + (1− t)y ∈ A.

Definition 13. ([31], Definition 3.10) Let X be a linear space and C be a convex subset of X. A point x ∈ C is
said to be extreme point of C if and only if C \ {x} is still convex. That is, if any time x = λx1 + (1− λ)x2

where x1, x2 ∈ C and 0 < λ < 1, then x = x1 = x2.

3. Main results

In this section, we give results on the centre of dense irreducible subalgebras of compact elementary
operators that are spectrally bounded.
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Proposition 1. The centre Z[CSBD(E)] is an irreducible subalgebra of CSBD(E).

Proof. The centre Z[CSBD(E)] = {S ∈ CSBD(E); ST = TS, ∀ T ∈ CSBD(E)}. To show that Z[CSBD(E)]
is indeed a subalgebra of CSBD(E), let Q ∈ CSBD(E) then for all S, T ∈ Z[CSBD(E)], we have SQ = QS
and TQ = QT. Also (S − T)Q = SQ − TQ = QS − QT = Q(S − T) and (S + T)Q = SQ + TQ = QS +

QT = Q(S + T). Similarly, (ST)Q = S(TQ) = S(QT) = (SQ)T = (QS)T = Q(ST). Finally, we show that
Z[CSBD(E)] is irreducible, if T ∈ Z[CSBD(E)] is a projection i.e T2 = T and TS = ST ⇒ S = {0} and T = I
hence Z[CSBD(E)] is an irreducible subalgebra of CSBD(E).

Proposition 2. The centre Z[CSBD(E)] is a commutative irreducible subalgebra of CSBD(E).

Proof. From Definition 8, the centre Z[CSBD(E)] is commutative. Now, let S, T ∈ Z[CSBD(E)] then for all
R ∈ Z[CSBD(E)] we have SR = RS and TR = TR. Hence, R(S − T) = RS − RT = SR − TR = R(S − T)
and R(S + T) = RS + RT = SR + TR = R(S + T) hold. Furthermore, R(ST) = (RS)T = (SR)T = S(RT) =
S(TR) = (ST)R which implies that ST ∈ Z[CSBD(E)]. Finally, we show that Z[CSBD(E)] is irreducible, if
T ∈ Z[CSBD(E)] is a projection then the only trivial projection is T2 = T and TS = ST ⇒ S = {0} and T = I
hence Z[CSBD(E)] is a commutative irreducible subalgebra of CSBD(E).

Proposition 3. Let CSBD(E) be unital C∗-algebra. Then Z[CSBD(E)] is a unital C∗-subalgebra of CSBD(E).

Proof. Consider a positive cone E and F a unit ball in Z[CSBD(E)] such that the set G = E∩ F contains extreme
points of the centre Z[CSBD(E)] which are unital. We proceed to show that the extreme points of the convex
set G denoted by δe(G) coincides with the the set of idempotents in Z[CSBD(E)] which are unital. Now, let P
be a projection such that P = S+T

2 ; S, T ∈ G = E ∩ F. Then S = 2P− T since 0 ≤ S ≤ 2P, S = PZ[CSBD(E)]P
and S commutes with T from Proposition 2. Therefore, the centre Z[CSBD(E)] is a commutative C∗-subalgebra
generated by S and T are equal hence S = T = P. Furthermore, the centre Z[CSBD(E)] is a spectral dual
and its unit ball F is weak∗-compact and applying Krein-Milman theorem, F must have an extreme point S.
So applying spectral decomposition, S = S+ − S− where S+, S− are elements CSBD(E) corresponding to
functions on the spectrum of S, σ(S), defined by

Ψ+(λ) =

{
λ, λ ≥ 0;
0, λ ≤ 0.

and Ψ−(λ) =

{
0, λ ≥ 0;
−λ, λ ≤ 0.

which are closed under algebraic multiplicity since

the norm ‖S2 − T2‖ = max{‖S‖2, ‖T‖2}. Consider the self-adjoint elements in Z[CSBD(E)] which are unital
such that S = S+ − S− is an extreme point in δe(Z[CSBD(E)]∗ ∩ F), where δe(.) is extreme point. It follows that
S+ and S− must be extreme in E ∩ F. For instance, if S+ = X+Y

2 , for all X, Y ∈ E ∩ F then X − S−, Y − S− ∈
Z[CSBD(E)]∗ ∩ F and S = X−S−+Y−S−

2 . Therefore, S = X − S− = Y − S− and so X = Y = S+. Following
the above procedure, S− is an extreme point in E ∩ F. Since S+ and S− are projections, then S+ + S− = I
and S2 = P. Also, let T be an element of (I − 2LP + UP)Z[CSBD(E)] such that ‖T‖ ≤ 1 and R ∈ Z[CSBD(E)]
then T = (I − 2LP + UP)R is a Jordan Banach algebra isomorphism. Therefore, the subalgebra Z[S, R] of
Z[CSBD(E)] generated by S and R is isometrically Jordan isomorphic to a Jordan Banach algebra of self-adjoint
operators on a complex Hilbert space. Thus,

S ◦ T = 0 (1)

and
S2 ◦ T2 = 0. (2)

It follows from Equation 1 that P ◦ S = 0 and Equation 2 that UPT2 = 0 since {PT2P} = 0 and by Jordan
isomorphism property, we have

‖P + T2‖
1
2 = max{1, ‖T2‖

1
2 } ≤ 1. (3)

Applying Equation 1 and Equation 2 we have,

‖S± T‖ = ‖(S± T)2‖
1
2 = ‖S2 ± 2(S ◦ T) + T2‖ = ‖P + T2‖

1
2 ≤ 1.
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However, we know that S is an extreme point of F and S = 1
2 (S+ T)+ 1

2 (S− T). So, T = 0 and (I− 2LP +

UP)Z[CSBD(E)] = {0}. This shows that for all W ∈ Z[CSBD(E)], ‖W − P ◦W‖2 ≤ ‖(I − 2LP + Q)W‖‖W‖ =
0 and linearity follows since the projection P is an identity for Z[CSBD(E)]. Thus, Z[CSBD(E)] is a unital
C∗-subalgebra of CSBD(E).

Theorem 1. Let P and Q be idempotents in CSBD(E). If CSBD(E) is a Jordan-Banach algebra with Identity I and
P ∈ Z[CSBD(E)], then the supports from the centre z(P) and z(Q) are orthogonal.

Proof. Let P ∈ CSBD(E) then the support from the centre z(P) is defined by z(P) = ∧{Q : Q ∈
Z[CSBD(E)], P ≤ Q} or

z(P) = ∧{Q : Q ∈ Z[CSBD(E)], UQP = Q}. (4)

If W ∈ Z[CSBD(E)] and P ∈ CSBD(E) with P ≤ Z, then the support from the centre of P in
a Jordan-Banach algebra CSBD(E) is denoted by zw(P). In this case, the centre Z[CSBD(E)] of a Jordan
Banach algebra CSBD(E) is an associative Jordan Banach algebra and is isomorphic to Jordan Banach algebra
K(HP,M8

3) (where K(HP,M8
3) is Jordan Banach algebra of continuous functions from Hyperstonean spaceHP

into M8
3 hermitian 3× 3 matrices over Cayley numbers). Therefore, the following conditions hold,

UP + UI−P = I (5)

and
UPUQ = UQUP, ∀ Q ∈ CSBD(E). (6)

Thus, the centre Z[CSBD(E)] is equal to K(HP), the dual space of real valued continuous functions onHP
and the support from the centre z(P) is defined by

z(P) = ∧{χA : A ⊆ HP, closed and open, P(E) ≤ χA(E)I, ∀ E ∈ HP}
= ∧{χA : A ⊆ HP, closed and open, P(E) = 0, ∀ E ∈ A}
= (∨{χA : A ⊆ HP, closed and open, P(E) = 0, ∀ E ∈ A})′

= χB, B is the complement of the closure of the set B0.

Here χA is the characteristic function of A ⊆ HP, I is the identity in M8
3 and B is the complement of the

closure of the set B0, that is,

B0 = ∪{A : A ⊆ HP, closed and open, P(E) = 0, ∀ E ∈ A}. (7)

The centre z(Q) is defined by

z(Q) = ∧{χA : A ⊆ HP, closed and open, Q(E) ≤ χA(E)I, ∀ E ∈ HP}
= ∧{χA : A ⊆ HP, closed and open, Q(E) = 0, ∀ E ∈ A}
= (∨{χA : A ⊆ HP, closed and open, Q(E) = 0, ∀ E ∈ A})′

= χD, D is the complement of the closure of the set D0,

Also, here χD is the characteristic function of A ⊆ HP and D is the complement of the closure of the set
D0 given by

D0 = ∪{A : A ⊆ HP, closed and open, Q(E) = 0, ∀ E ∈ A}. (8)

Next, we need to show that B ∩ D is empty. Let E ∈ B ∩ D, then P(E) and Q(E) are idempotents in M8
3

such that UP(E),Q(E)M8
3 = {0}. Thus, atleast one of P(E) and Q(E) is zero. Thus, B1 and D1 are closed subsets

of closed and open set B ∩ D given by

B1 = {E : E ∈ B ∩ D, P(E) = 0}, D1 = {E : E ∈ B ∩ D, Q(E) = 0}, (9)
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which covers B∩D. Consequently, the open set B
′
1 ∩ B∩D is contained in closed set B1. In fact, the closed and

open set B′1 ∩ B ∩ D is contained in B1 and by Equation 8 and 9 we have, B
′
1 ∩ B ∩D ⊆ B′1 ∩ B ∩ D ⊆ D

′
which

shows that the set B
′
1 ∩ B ∩ D is empty. Thus, the closed and open set B ∩ D is contained in the B1 and from

Equation 7, we have B ∩ D ⊆ B
′

hence we see that B ∩ D is empty. Therefore, we conclude that the supports
from the centres z(P) and z(Q) are orthogonal.

Corollary 2. Let P be an idempotent in a Jordan-Banach algebra CSBD(E). Then the centre Z[C�SBD(E)] of hereditary
Jordan-Banach subalgebra C�SBD(E) of CSBD(E) coincides with the range of the centre U(Z[CSBD(E)]) of CSBD(E)
under the projection UP.

Proof. We know that CSBD(E) is an associative Jordan-Banach algebra. It follows that the centres Z[CSBD(E)]
and Z[C�SBD(E)] are associative Jordan Banach subalgebras which are idempotent. We prove that the projection
UP maps idempotents U(Z[CSBD(E)]) onto U(Z[C�SBD(E)]). Thus, for every Q ∈ U(Z[CSBD(E)]) and using
Equation 6, (UPQ)2 = UPUQP2 = UPUQUP I = UPUPUQ I = UPQ. Thus, UPQ ∈ U(CSBD(E)). Moreover, using
Equation5 and Equation 6, we have

UUPQ + UP−UPQ = UUPQ + UUP(I−Q)

= UPUQUP + UPUI−QUP

= UP(UQ + UI−Q) = UP.

This shows that UPQ is central idempotent in U(CSBD(E)). We need to show that the for every central
idempotent R ∈ C�SBD(E), there exists a central idempotent Q ∈ CSBD(E) with range R under projection UP. So
we show that R and P− R are idempotents in CSBD(E) and applying Equation 5, we have URUP + UP−RUP =

UP. Moreover, R, P− R ≤ P, hence
UR + UP−R = UP, (10)

or UR,P−RCSBD(E) = {0}. It is known from Theorem 1 that the supports from the centre z(R) and Z(P− R) of
the idempotents R and P− R are orthogonal. Hence, from Equation 6 we have

URz(R) = URUz(R) I = Uz(R)UR I = Uz(R)R = R, (11)

and by Equation 5 we have

UP−Rz(R) = Uz(R)(P− R) = (P− R)− UI−Z(R)(P− R). (12)

The orthogonality of the centres z(P) and z(P− R) implies that z(P− R) ≤ I − Z(R). Hence by Equation
4 and Equation 12

UP−Rz(R) = 0. (13)

And applying Equation 10, Equation 11 and Equation13, we obtain the equation UPz(R) = URz(R) +
UP−Rz(R) = R. Thus, the centre Z[C�SBD(E)] of hereditary Jordan-Banach subalgebra C�SBD(E) coincides with
the range of the centre U(Z[CSBD(E)]) under the projection UP.

Proposition 4. Let CSBD(E) be a prime and irreducible C∗-subalgebra with polynomial identity I and centre
Z[CSBD(E)]. If J is a nonzero ideal of CSBD(E) then J ∩ Z[CSBD(E)] is non-zero.

Proof. Let ASBD ⊆ CSBD(E) be such that there exists a homomorphism from CSBD(E) onto ASBD . Since
ASBD is C∗-subalgebra of CSBD(E) then ASBD is prime and irreducible with the same polynomial identity I
and hence has the same dimension less than ( n

2 )
2 over its centre Z[CSBD(E)]i by (Kaplansky’s theorem). Let

Φi : CSBD(E) → ASBD be a canonical projection such that
⋂

i KerΦi = {0}, whenever we restrict Φi to ideal
J is nonzero for every i and set F = {i : Φi | J is nonzero}. Suppose Φi : CSBD(E) → ASBD is surjective,
then Φi(J ) is a nonzero ideal ofASBD for every i ∈ F and thusASBD is prime and irreducible, since for every
i ∈ F, Φi restricted to J is surjective. Suppose further that i0 ∈ F such that A0

SBD has maximal dimension n2
0

over its centre for every i ∈ F and let Xn0 be a non-vanishing central polynomial for anyASBD of degree n over
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its centre Z[CSBD(E)]. Since Xn0 is central for Mn0, then Xn0 is central for smaller degree matrix algebras, hence
Xn0 is central for ASBD for every i ∈ F. Also, Suppose that A1, .., Am ∈ A0

SBD such that Xn0(A1, ..., Am) 6= 0
and let J1, ..., Jm ∈ J such that Φi0(Jk) = Ak, 1 ≤ k ≤ m. Then Xn0 is homogenous of degree > 0 and its
constant term is 0, for all i /∈ F, so

Φi(Xn0(J1, ..., Jm)) = Xn0(Φi(J1), ..., Φi(Jm)) = Xn0(0, ..., 0) = 0

and Φi(Xn0(J1, ..., Jm)) = Xn0(Φi(J1), ..., Φi(Jm)) ∈ Z[CSBD(E)]i,for all i ∈ F. In particular,

Φi0(Xn0(J1, ..., Jm)) = Xn0(Φi0(J1), ..., Φi0(Jm)) = Xn0(A1, ..., Am) 6= 0,

but belong Z[CSBD(E)]i0 . Hence Xn0(J1, ..., Jm) ∈ Z[CSBD(E)] and is non-zero. However, Xn0(J1, ..., Jm) ∈ J ,
hence J ∩ Z[CSBD(E)] is non-zero.

Lemma 1. Let CSBD(E) be a prime and irreducible C∗-subalgebra with polynomial identity I and centre Z[CSBD(E)].
Then CSBD(E) is simple.

Proof. From Proposition 4, J is a nonzero ideal of CSBD(E) and J ∩ Z[CSBD(E)] is non-zero. Thus, it follows
that J = CSBD(E) is simple.

Theorem 3. Let CSBD(E) be a prime and irreducible C∗-subalgebra with polynomial identity and centre Z[CSBD(E)].
Then there exists simple prime C∗-subalgebra BSBD equal to CSBD(E)Z[CSBD(E)] such that Z[CSBD(E)] =

CSBD(E) \ Z[CSBD(E)] is the quotient algebra of CSBD(E) and it is finite dimensional over Z[CSBD(E)] with the
centre of BSBD = Z[CSBD(E)].

Proof. We know that CSBD(E) is prime and irreducible with its centre is non-zero by Proposition 4.
Since BSBD is simple from Lemma 1, we can define BSBD = {XW−1, X ∈ CSBD(E); W 6= 0 ∈
Z[CSBD(E)] | X1W−1

1 = X2W−1
2 if and only if X1W2 = X2W1}. It follows that multiplication is closed under

(X1W−1
1 )(X2W−1

2 ) = (X1X2)(W1W2)
2 and addition X1W−1

1 + X2W−1
2 = (X1W1 + X2W2)(W1W2)

−1. To show
that the centre of simple prime C∗-subalgebra BSBDis equal to Z[CSBD(E)], we prove Z[CSBD(E)] ⊆ Z[BSBD ]
and Z[BSBD ] ⊆ Z[CSBD(E)]. Suppose that Z[CSBD(E)] ⊆ Z[BSBD ], then XW−1 ∈ Z[BSBD ]. Similarly,
if (XW−1)W ∈ Z[BSBD ] then X ∈ CSBD(E) ∩ Z[BSBD ] ⊆ Z[CSBD(E)] and XW−1 ∈ Z[CSBD(E)] thus
Z[BSBD ] = Z[CSBD(E)]. Furthermore, BSBD is prime since A1BSBDA2 = 0 for all A1, A2 ∈ BSBD and
A1(XW−1)A = 0 for all X ∈ CSBD(E), W 6= 0 ∈ Z[CSBD(E)]. Suppose that A1 = X1W−1

1 , A2 = X2W−1
2 for all

Xi ∈ CSBD(E), i = 1, 2 and Wi ∈ CSBD(E), i = 1, 2. Then 0 = X1W−1
1 XW−1X2W−1

2 = (X1XX2)(W1WW2)
−1

for all X ∈ CSBD(E), W ∈ Z[CSBD(E)]. Hence, X1XX2 = 0 for all X ∈ CSBD(E). However, since CSBD(E)
is prime, then either X1 or X2 is 0 and hence either A1 or A2 is 0. Thus BSBD is prime and BSBD satisfies
polynomial identity property. Hence, by Proposition 4, if J is a non-zero ideal of BSBD , J ∩ Z[CSBD(E)] 6= 0
thus J = BSBD and BSBD is simple and finite dimensional over its centre Z[CSBD(E)].

Corollary 4. Let CSBD(E) be a unital C∗-subalgebra and T = ∑n
i=1 AiXBi be an elementary operator on CSBD(E). If

the elementary operator T = ∑m
i=1 CiXDi where Ci ∈ A(T) and Di ∈ B(T) for every 1 ≤ i ≤ m. Then ∑n

i=1 Bi Ai −
∑m

i=1 DiCi ∈ Z[CSBD(E)], where A(T) = span{Ai, ..., An} the linear span of A, B(T) = span{Bi, ..., Bn} the linear
span of B and C(T) = span{Bi Aj; 1 ≤ i, j ≤ n} the linear span of BA.

Proof. By Proposition 3 and Theorem 3, Z[CSBD(E)] is a commutative C∗-subalgebra of CSBD(E) which is
prime hence ∑n

i=1 Bi Ai − ∑m
i=1 DiCi ∈ Z[CSBD(E)]. Let the length of T be n and {C1, ..., Cn} be linearly

independent. If n = m, then Ci = ∑n
k=1 βik Ak, 1 ≤ i ≤ n and Bk = ∑n

k=1 βikDi, 1 ≤ k ≤ n. It follows
that ∑n

i=1 Bi Ai = ∑n
i=1 DiCi. If n < m, then we express Cj = ∑k

k=1 β jkCk ∀ n + 1 ≤ j ≤ m and the elementary
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operator T = ∑n
i=1 CiXDi + ∑m

j=n+1 ∑n
k=1 β jkCkXDj. Thus T = ∑n

i=1 CiXDi + ∑m
j=n+1 CkXβ jkDj which shows

that T = ∑n
i=1 CiXDi + ∑n

k=1 ∑m
j=n+1 CkXβ jkDj, hence

T =
n

∑
k=1

CiXDi +
n

∑
k=1

m

∑
j=n+1

CkXβ jkDj

=
n

∑
k=1

CkX[Dk +
n

∑
j=1

β jkDj].

Replacing D0
k = Dk + ∑n

j=1 β jkDj, we have ∑m
k=1 D0

k Ck = ∑n
k=1 Bk Ak. Thus, ∑n

i=1 Bi Ai = ∑n
i=1 DiCi and

∑n
i=1 Bi Ai −∑m

i=1 DiCi ∈ Z[CSBD(E)].

Corollary 5. Let ASBD , BSBD be two unital C∗-subalgebras of CSBD(E) and I , J be ideals of ASBD and BSBD
respectively. If T : ASBD → BSBD then there exists a spectrally bounded linear mapping T̂ : ASBD/I → BSBD/J
with ‖T̂‖ ≤ ‖T‖σ such that Bi Ai ∈ Z[CSBD(E)], for all T = AiXBi ∈ C(E).

Proof. Suppose that X ∈ ASBD and Y ∈ I such that the spectral radius of r(X + Y) ≤ r(X + I) + ε, for any
ε > 0 then,

r(T̂(X + I)) = r(TX + J) ≤ inf
W∈J

r(TX + W)

= r(TX + TY) ≤ ‖T‖σr(X + Y)

= ‖T‖σ(r(X + I) + ε).

This means that r(T̂(X + I)) ≤ ‖T‖σr(X + I) and ‖T̂‖ ≤ ‖T‖σ holds. Thus, by Corollary 4, Bi Ai ∈
Z[CSBD(E)].
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