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Abstract— The equation F(x VoYL Yy, y(4)):0 is a

one-space dimension version of wave equation. Its solutions can
be classified either as analytic or numerical using finite difference
approach, where the convergence of the numerical schemes
depends entirely on the initial and boundary values given. In this
paper, we have used Lie symmetry analysis approach to solve the
wave equation given since the solution does not depend on either
boundary or initial values. Thus in our search for the solution we
exploited a systematic procedure of developing infinitesimal
transformations, generators, prolongations (extended
transformations), variational symmetries, adjoint-symmetries,
integrating factors and the invariant transformations of the
problem. The procedure is aimed at lowering the order of the
equation from fourth to first order, which is then solved to
provide its Lie symmetry solution.
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FOURTH ORDER NONLINEAR ORDINARY
DIFFERENTIAL EQUATION

e consider the fourth order nonlinear ordinary
differential equation:

A Y
(yy'(y(y) 7)7)=0 o))

which is a special case of

Fcyy y"y"y)=0
)
This case arises in studying the group properties of the
linear wave equation in an inhomogeneous medium.
To solve equation (1) analytically using Lie symmetry
analysis we decompose it in the form

4 A
y( )=f(x,y,y Yy
We thus have:

yD=ay ™y 2-at) 2>+ Yy y v 23y ()
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Since the equation is a fourth order differential equation, we

use the fourth extension of G, which from the nth extension of

the form [5]:
oG 3 B(i) ) (i+1-) ()| _2_
i=1 ay()
is given by
G[4] —+B 8_y+ ([3 o(y) E-’- (B" 2y"a'-y'a’ ) oy

+(B"' 3y"a'-3y" "~ y'(x"') 8y"‘

+ (p®-ayWa6y"ar—ay'ar—ya®) ﬁ @

Where the generator

G= onax B@y (5)

is a symmetry of the differential equation

Ty ey ™M)=0 (6)
if and only if
cl,_=o, ™

which means that the action of the nth extension of G on f is
zero when the original equation is satisfied ([1],[4].[7]).

When G[4] acts on the differential equation (3) we obtain
4 4 =1, .2 =2 =1,
Gt [y( Jay Ly 2+a() 203500y

2, 02 o =1
+y T(Y)TYy"+3y Yy ]=0
Leading to

apy 228y 30)20)-3By 2™
8By ) 5B 2By 2 3By )
80ty 2y sy 228 22 -say L))

—8py L) 2B ) 2SR By o)
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We recall that primes in equation (8) refer to total
derivatives and so the first, the second, the third and the fourth
total derivatives of o can be expressed in terms of partial
derivatives as follows:

da,
5o 5 {Frome - o}
o'= o +yZay Frozm d(a ( )dx+ ( 9)
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—+2y oY S (10)
6x oxoy ayz ay

63(x 63
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o8 ey

3
+3yy" a—a+y36 = (11)
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oy

3

+4y' (12)

and equivalently for .
Subject to equation (3),
we have
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Equation (13) is an identity in X, y, ', y" and y", i.e., it holds
for any arbitrary choice of x, y, y', y" and y"' [2]. Since o and 8
are functions of x and y only, we must equate the coefficients
of the powers of y', y", y™ and their combinations to zero. We
obtain the following systems of partial differential equations
known as determining equations ([2], [3])

1%
v)3yy8y” —-0 (14)
6y
1_& -1 6 a
()2y'y":-8y” 216y T550 (19
1 -10 ﬁ %o
v)7y'y"-16y 6x6y+8y ax2 =0 (16)
1_& do. - OB_
"8 +5 =5 2-=0 17
) y'y":-8y oy 2 oy (17)
Integrating equatlon (14), we find
2 2
gy! a—g‘zos> a—g‘zo
oy oy
Jolod
= Ezclaa:clwcz (18)
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where ¢ and c, are arbitrary functions of x. We substitute
equation (18) in (15) and solve to find

2

_10 ﬁ -1 6 0 E a a
-8y +16y Ll 5 5L 82
2

8y oxoy 8y oxoy
2 2
aB_, aB_ PB_

(c )= 20 20 y+Cq
ayz ax 1 ayz 1= oy 1

C 2
=pB=c 1Y FCgy+Cy (19)
where Cq and ¢ 4 are arbitrary functions of x. Substituting (18)
and (19) in (16) we have

2 2
g OB g 107 6 1_13_ Fa 2.0

OXoy 8y 6x2 y axay ax
a 1 n "o
-2 aX(Zc 1y+c3)+c 1y+e 2—0
=-2(2c" y+C'y)+c" y+c",=0
5—40"1y—2c'3+c"1y+c"220
s—Sc"ly—Zc'3+c"2:O (20)

Since ¢ and C3 depend on x only, we can now equate the

c
12
coefficients of powers of y to zero. This yields

yh-3c" =0 1)
yo:—20'3+c"220 (22)
Now we substitute (18) and (19) in (17) we obtain
_li oo . oB_
-8 ~-5--=0
y ax2 ay oy
-1 62

o 12 : _
=-8y axz(cly +Cay+C ) +5¢,—5(2¢' y+cg)=0

" w1 .
=-8¢ 1y—80 3—80 2 +501—1Oc 1y—503:0 (23)

Again we can equate the coefficients of powers of y to zero
and we obtain

1

y :-8¢";-10c'; =0 (24)
yo:—80"3+501—50320 (25)
y-8c",=0 (26)

We can now solve the differential equations (21), (22), (24),
(25) and (26) as follows.
From (26) we have

~80",=0=¢"=05¢ =H  Sc,=HeH,  (27)
Now from (21)
3¢"1 700700 =Ha=c =HoxH, (28)

Then considering (25), we have
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—8C" 3+5(Hox+H ,)-5,=0=8¢" 3+50,=5H x+5H,  (29)

since cl:H3x+H4. The equation (28) is a nonhomogeneous
differential equation. So on solving by using undetermined
coefficients method, we find the complimentary solution from

8¢5 +5¢5=0 (30)

The characteristic equation for this differential equation and
its roots are

2

8re+5=0=r= gi (31)

The complimentary solution is then given by

5 . 5
c3H—H5cos \/;x+H65|n \/;x (32)
Now proceeding with a particular solution
3 =Ex+F (33)
P

where E and F are arbitrary constants, we find

¢, =E=c", =0 (34)
3p 3p

Applying (32) and (33) into (28), we have

8(0)+5EX+5F=5Hx+5H,,
=5EX=5HX=E=H,

35F:5H43F:H4

3C3P:H3X+H4

Hence

(35)

5 . 5
cS—H 5C0S 8x+H 6Sin \/;x+H3x+ H 4 (36)

Finally from equation (22), we find

c" —2C

c" -2(H c0s \[X+H sin \[X+H x+H

o= 5
2( \/;H55| \[x+\/; 6c05\[x+H
C'y=— \/; Hgsin \/;x+ \/; Hgcos \/;x+2H3
: 5
C'H= 4HSCOS \/ix+ 2HeSIn \/7§x+2H3x+H7

5 5 s 5 .2
a(ky)=(Hx+H Jy+ 75 \/F)Hssm \/;x— 16 \jl_OHGCOS \/%X+H3X +H_xerHg

(38)
a(x,y)=H_xy+H y+i\]EH sin \/Ex—i\]EH COS\FX+H x2+H x+H
Rl 4’ 16 5 8" 16 6 8" '3 78
(39)

We also apply (27), (28) and (36) in (19) to produce

W2 5 . 5
Bxy)= (H x+H4)y +(H5cos \[§X+H65|n \/;X+H3X+H4)y

+H x+H, (40)

B(x,y)=H 3y +H5y005\[x+H6yS|n \[X+H

+Hy+H x+H, - (41)
. 5
+H6ysm g (42)

As a result, the generator G of the infinitesimal transformation
is

_ 2 S : 2
G= H3x +H3xy+H4y+ 16 \/EHssm \/;x
16\/_OH COS\Fx+H7x+H8 %
+ HoxtHo+Hoxy+Hoy 2+ H v4H >
PP FHXY TR HH YT HGYCOS 7\ | X
. 5 0
+H6y5|n\/;x oy
0
G—Hl(xay)

(43)

AR
+H6E[ 36\/_()(:03\[ }gﬁ' [Si“ \/%X}yﬁ%)

g (2)

(44)

5
c _Z\/; 55'”\/% 4\/; 6005\[X+H X“+H_x+Hg  which is an eight parameter symmetry.

_5 . 2 5 2
Cy= 16\/F)H55|n \[x 16\/_OH COS\[X+H3X +H7x+H8

@7
Ha, Hy Hg, Hg, H and Hg are arbitrary

constants. Substituting (28) and (37)in (18) to flnd

where Hl’ H
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Any n- parameter symmetry may be separated into n- one-
parameter symmetry by letting particular parameters take on
specific values. Usually we set one parameter equal to one and
the rest equal to zero in turn. If we do this in (44) we generate
eight one parameter symmetries [5] as follows:

0

G117
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d

Gg=y 6x+y oy
2,0 20

Ce™Y o™ oyt oy

G :[ % \10sin \/EXJ a@+ [cos \/%x}ya—ay
‘[ 16 \10cos \[ }aﬁ [5'“ \/%XJY a%(45)

with nonzero Lie brackets given by

[G}.G3=C,
[G1.G4]=C,
[G3.G4]=C,

(46)
Consider the three-dimensional sub algebra

(47)

which are the Lie solvable algebra of the admitted eight one
parameter symmetries (45).

Using the extended generators (prolongations) up to the fourth
order:

Yield:

(i) For the operator leg

P the required fourth order

prolongation which is

4, 0,, 2

Wi =10 o (48)

In order to integrate the fourth order equation (3), we must
solve the following equation for the characteristic:

dx_dy

1-0 (49)

We obtain the following differential invariant:

y=u (50)

(if)y For the operator W3—x 0

o the required fourth order

prolongation which is
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[4]_ w0

_ _ (4) _0_
W3 7=x ax Yoy ay R ay

-4y (4) (51)

In order to integrate the fourth order equation (3), we must
solve the following equations for the characteristics:

dx _y_ dy" dy" dy(4) (52)
XDy =y =3yt _(4)
Leading to the following differential invariants:
klzxy' (where k1 is a constant)
(4) 2 (4) (4)3
V=25 = 3 v v g v and vg=
y y y y y y
(iii) For the operator W4‘Xa_ay the required fourth order
prolongation which is
[4] 8 0
W, =X - oy G‘y (53)

Let us now reduce equation (3) to a differential equation of
lower order by using Lie algebra. We employ the method of
invariant differentiation [6].

Two lower-order differential invariants of Lie algebra
applicable are equations:

y=u, V= y_ (54)
y

The equation (3) can be reduced to the first order ODE as
follows

du_DX(u)
3
Dy (y1y)
D, (¥)
1 2 3 am P 2. LYty
=t }’—6+5y—% u y—f 3u LS— e (s5)
y’©o oy y y Yy y
or
d _ — 2 2 _ -
d\J Z 2 u' 4—4u"3u' 6+2u"u' 2v—u 2u' 2u"—3u L
(56)
and hence
%+ (Su_1—2u“u'_2)v:4u_1u"2u‘_4—4u Sy by 2y
(57)
Let
P(u)=3u"t-2u"u 2 (58)
and
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1243822y

Q(u)=4u 4u"°u” T -u U “u (59)
then our equation (57) is in the form
dv
qurPUV=Q(U) (60)

which is a first order linear equation.

Hence equation (3) reduces to first order linear equation (60)
which is directly integrable.

Let the integrating factor be I(u).
Hence

—1 n |—2
I(u)=e f(?’“ —2u' )du
= 3Inu+2u"l

3, 2u~!

=u“+e (61)

Therefore

f(u3 0™ )(4u L2 a3y Py
(62)

completes the integration procedure and hence the general
solution of the fourth order nonlinear wave equation (1).
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CONCLUSION

In this work, we have looked at methods of group invariant
solutions, based on the theory of continuous group of
transformations, better known as ‘Lie groups’, acting on the
space of independent and dependent variables of the system.
We have reduced the equation to first order linear ordinary
differential equation which we have then solved to find the
general solution (62) of our problem given in equation (3).
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