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Abstract

In this paper, we examine conservative autonomous dynamic vibration equation, ẍ = − tanh2 x,
which is time vibration of the displacement of a structure due to the internal forces, with no damping
or external forcing. Numerical results using Wilson-theta method are tabulated and then represented
graphically. Further the stability of the algorithms employed are also discussed.
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1 Introduction

Most structures are in a continuous state of dynamic motion because of random loading such as

wind, vibration equipment, or human loads. Therefore a lot of consideration has been given in the

design of certain facilities or structures which need to resist sudden but strong vibrations. Small sur-

rounding vibrations are normally near the natural frequencies of the structure and are terminated by

energy dissipation in the real structure.

In this study we examine the time vibration of the displacement of a structure due to the internal

forces, with no damping or external forcing.

Practically, vibrations decay with time but in theory they are not so. For vibrations due to purely

internal forces, the dynamic systems are referred to as conservative systems.

The methods of solution adopted for solving non-linear single-degree-of-freedom problems may be

extended to multi-degree-of-freedom problems. There are a number of studies on the application of these

methods of solution to linear problems but only a few have been applied to the non-linear problems.

2 Non-Linear Conservative Autonomous Second Order System

Let us consider the non-linear conservative autonomous second order system equation which is

generally given by

ηẍ = −µẋ− τf(x) (1)

with some initial conditions x(0) = α0 and ẋ(0) = α1, where η, µ and τ are real positive numbers and

−µẋ is the damping force.

We note that:

7
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(a) the system is conservative because dynamic systems obey the principle of conservation of energy

which asserts that the sum of kinetic and potential energies is constant in a conservative force

field.

(b) the system is autonomous because we are concerned with a system of ordinary differential equa-

tions which does not explicitly but implicitly contain the independent variable t (time).

(c) the restoring force, f(x), defines the position of the moving object from its equilibrium point.

(d) there is no damping force that is, no resisting medium so that −µẋ = 0.

Thus substituting η = 1, −µẋ = 0 and τ = 1 in (1) we have

ẍ = −f(x) (2)

and for this study let us consider

f(x) = tanh2 x (3)

leading to the dynamic vibration equation

ẍ = −f(x), x(0) = α0, and ẋ(0) = α1 at t = 0 (4)

From equation (2), we can derive an autonomous system, in the form of

dx

dt
= y,

dy

dt
= −f(x) (5)

where the right hand side does not involve t explicitly but implicitly through the fact that x and y

themselves depend on t and thus being self governing.

The above reduction of the second order non-linear to equivalent first order non-linear is by introduc-

ing a new independent variable y = dx
dt and since dy

dt = d2x
dt2

, the variables x and y satisfy the equivalent

first-order system
dx

dt
= y,

dy

dt
= −f(x)

where equivalent means that each solution to the first order system uniquely corresponds to a solution

to the second order equation and vise versa.

Specifically, equation (2) is equivalent to the autonomous system,

dx

dt
= y,

dy

dt
= −f(x), x(0) = α0 and y(0) = ẋ(0) = α1 at t = t0 (6)

From (6)
dy

dx
= −f(x)

y
(7)

⇒
∫ y

α1

ydy = −
∫ x

α0

f(x)dx or
y2

2
− α1

2

2
= −{

∫ 0

α0

f(x)dx+

∫ x

0
f(x)dx}
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or
y2

2
+

∫ x

0
f(x)dx =

α2
1

2
+

∫ α0

0
f(x)dx (8)

Thus, KE + PE = c where KE = y2

2 is the kinetic energy of the dynamic system (2), PE =∫ x
0 f(x)dx is the potential energy of the dynamic system (2) while c =

α2
1
2 +

∫ α0

0 f(x)dx is the constant

(energy level). So equation (8) expresses the law of conservation of energy.

For the physical interpretation of the study, the non-linear restoring force, f(x) above, gives rise to

special cases of non-linear spring motion according to its behaviour.

equation (2) is said to represent the motion of:

(i) a ’hard’ spring if the magnitude of the restoring force, f(x) acting on the mass, does increase more

rapidly than that of a linear spring,

(ii) a ’soft’ spring if the magnitude of the restoring force, f(x) acting on the mass, does increase less

rapidly than that of a linear spring.

The above mentioned two special cases of equation (2) form the central subject of discussion in this

paper.

Considering the function (2) with the restoring force

f(x) = x5 + x (9)

we have two cases: (see the figures below)

(a) d2x
dt2

+ x5 + x = 0,

(b) d2x
dt2

+ tanh2 x = 0.

0
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Figure 1:
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Figure 2:

The behaviour of the graphs depict clearly the idea of the ’hard’ spring and ’soft’ spring for the two

non-linear restoring forces given.

Considering the magnitude of the non-linear restoring force, f(x) = x5 +x in case (a), since it does

increase more rapidly than that of a linear spring i.e. f(x) = x, it represents a ’hard’ spring.

On the other hand, considering the magnitude of the non-linear restoring force f(x) = tanh2 x in

case (b), since it increases less rapidly than that of a linear spring, that is, f(x) = x, it represents a ’soft’

spring.

3 Numerical Solution of Equation (2)

Several numerical methods are available for the applications in determining solutions of non-linear

systems. For the implicit non-linear dynamic system (4), the implicit dynamic methods applicable

are Wilson-theta, Newmark, Hilber-Hughes-Taylor and Houbolt. Out of these, Wilson-theta method is

highly stable numerically and able to converge rapidly to a meaningful solution:

3.1 Wilson-theta’s Algorithm

We consider the equation

K
d2x

dt2
+ f(x) = 0 (10)

where x = displacement of a mass K at the end of a spring whose response is non-linear and d2x
dt2

is the

acceleration.

Let dxdt = V , d
2x
dt2

= V̇ ; V -the velocity.

Without loss of generality the mass K is taken as unity, that is, K = 1.

Reduced to its equivalent first order system of ordinary differential equations, equation (10) becomes

d

dt

(
x

V

)
=

(
V

−f(x)

)
= f(Z) where Z =

(
x

V

)
(11)
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⇔
Ż = f(Z) (12)

In order to make the Wilson-theta method unconditionally stable, Wilson [11] proposed the idea of

applying the equation of motion not at time t + ∆t but at t + θ∆t and thus Wilson-Theta Method is

given by

Zn+1 − Zn = θ∆tf(Zn+1) + (1− θ)∆t.f(Zn) (13)

⇔

aVn+1 + bVn = xn+1 − xn (14)

Vn+1 − Vn = −afn+1 − bfn (15)

with a = hθ, b = h(1− θ), h = ∆t substitute n− 1 for n in (14) and (15):

aVn + bVn−1 = xn − xn−1 (16)

Vn − Vn−1 = −afn − bfn−1 (17)

Eliminating Vn+1 from (14) and (15) and eliminating Vn−1 from (16) and (17) we have

xn+1 + a2fn+1 = (a+ b)Vn + xn − abfn (18)

(a+ b)Vn = xn − xn−1 − abfn − b2fn−1 (19)

Substitute (a+ b)Vn from (19) in (18), we get

xn+1 + a2fn+1 = 2xn − 2abfn − (xn−1 + b2fn−1) (20)

or

xn+1 + h2θ2fn+1 = 2xn − 2h2θ(1− θ)fn − (xn−1 + h2(1− θ)2fn−1) (21)

or

xn+1 + h2θ2fn+1 = A (22)

where A is a known value.

The left-hand sides of equations (20-22) are non-linear in xn+1 and so require an iterative method of

solution such as Newton-Raphson.

When θ = 0 then we obtain the explicit scheme

xn+1 = 2xn − (xn−1 + h2fn−1) (23)

4 Numerical Results of The Equation

Using the numerical algorithms developed above(22), we obtain the required numerical results as fol-

lows:



12 Titus J. O. Aminer and N. B. Okelo

4.1 Wilson-theta Algorithm

Considering the scheme (22)

xn+1 + h2θ2 tanh2 xn+1 = A

where

A = 2xn − 2h2θ(1− θ) tanh2 xn − (xn−1 + h2(1− θ)2 tanh2 xn−1)

which is also the displacement only and two-step (three-time-level) scheme.

Using C++ computer programming with Newton-Raphson’s iteration,

xn+1 = xn − F (xn)
F ′(xn)

,

from the scheme (22)

F (xn) = xn + h2θ2 tanh2(xn)−A
thus

F ′(xn) = 1 + 2h2θ2 tanh(xn)sech2(xn)

leading to

xn+1 = xn− xn+h2θ2 tanh
2(xn)−A

1+2h2θ2 tanh(xn)sech2(xn)
where sech2(x) is expressed as 1

cosh2(x)
to be used in the computer

programme as follows:

]include 〈cmath〉
]include 〈cstdlib〉
]include 〈iostream〉
]include 〈cstdlib〉
inline double A( double theta, double h, double x0, double x1 )

{double u = tanh( x0) ∗ tanh( x0);

double v = tanh( x1) ∗ tanh( x1);

return 2 ∗ x1− 2 ∗ h ∗ h ∗ theta ∗ (1− theta) ∗ v − (x0 + h ∗ h ∗ (1− theta) ∗ (1− theta ∗ u);}
inline double ThetaNewton( double result, double h, double theta, doublex1)

{doublev = tanh( x1) ∗ tanh( x1);

double z = cosh( x1) ∗ cosh( x1);

returnx1−(x1+h∗h∗theta∗theta∗v−result)/(1+2∗h∗h∗theta∗theta∗(tanh( x1))/z);}
main( int argc, char∗ ∗ argu, char∗ ∗ argv, char∗ ∗ argz )

{double theta, h, result, x0, x1, peg0, peg1;

std::cout << ′′Enter the values :′′ << std::end1;

std::cout << ′′parameter theta :′′; std::cin>> theta;

std::cout << ′′step size, h :′′; std::cin>> h;

std::cout << ′′Enter x0 :′′; std::cin>> x0;

std::cout << ′′Enter x1 :′′; std::cin>> x1;

for (short n = 0; n < 30; n++)

{peg0 = x1;

result = A(theta, h, x0, x1);

std::cout<< ′′With A′′ << n << ′′ = ′′ << result <<std::end1;
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std::cout << ′′x′′ << n << ′′ = ′′ << x0 << std::end1;

std::cout << ′′x′′ << n+ 1 << ′′ = ′′ << x1 << std::end1;

for (short m = 0; std::abs (x0-x1) > 1e− 50; m++)

{x0 = x1;

x1 = ThetaNewton(result, h, theta, x1);}
x0 = peg0;

std::cout << std::end1;}
system(′′pause′′); }

The following conditions are taken into account when compiling the results:

1. In equation (13), 0 ≤ θ ≤ 1 with maximum accuracy achieved when θ = 1
2 according to

Zienkiewicz [12] and Wood [11];

2. The stability of the numerical schemes is governed by small step size, h, according to Hughes,

Caughey and Liu [3].

Given that x1 = x0 + hẋ0, let x0 = 0.2 and ẋ0 = 0.15.

Thus x1 = 0.2 + 0.1(1.5) = 0.35 and we have the following results:

t x when θ = 0.475 x when θ = 1
2 x when θ = 0.12

0 0.2 0.2 0.2

0.1 0.35 0.35 0.35

0.2 0.472285 0.47136 0.485752

0.3 0.548559 0.546053 0.587862

0.4 0.565595 0.561539 0.634747

0.5 0.519875 0.515115 0.609886

0.6 0.4188 0.414786 0.50761

0.7 0.27831 0.27661 0.336085

0.8 0.117071 0.118834 0.116551

0.9 -0.0510805 -0.0453672 -0.124068

1.0 -0.223213 -0.213464 -0.368547

1.1 -0.41005 -0.39608 -0.623647

1.2 -0.636896 -0.618078 -0.920918

1.3 -0.944288 -0.919641 -1.30808

1.4 -1.38515 -1.35378 -1.84002

1.5 -2.01301 -1.97438 -2.56766

1.6 -2.86625 -2.82017 -3.52548

1.7 -3.96306 -3.90946 -4.72861

1.8 -5.3088 -5.24766 -6.18106

1.9 -6.90443 -6.83574 -7.88344

2.0 -8.75005 -8.67381 -9.83582
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t x when θ = 0.475 x when θ = 1
2 x when θ = 0.12

2.1 -10.8457 -10.7619 -12.0382

2.2 -13.1913 -13.1 -14.4906

2.3 -15.7869 -15.688 -17.193

2.4 -18.6325 -18.5261 -20.1453

2.5 -21.7281 -21.6142 -23.3477

2.6 -25.0738 -24.9523 -26.8001

2.7 -28.6694 -28.5403 -30.5025

2.8 -32.515 -32.3784 -34.4549

2.9 -36.6106 -36.4665 -38.6572

3.0 -40.9562 -40.8046 -43.1096

-40

-30

-20

-10

0

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

x

t

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦

♦

Key

♦ results when θ = 1
2 .

...... results when θ = 0.475.

− results when θ = 0.12.

5 Stability of The Numerical Algorithm Employed

From the results of the two-step (three-time level) scheme tabulated above and their corresponding

graphical representation, it is clearly evident that for zero damping or no damping dynamic equation, the

Theta method is asymptotically stable when the parameters chosen for instance θ = 0.475 are within

the neighbourhood of maximum accuracy parameter i.e. θ = 1
2 . Otherwise, moving away from the

maximum stability parameter, the method is no longer asymptotically stable.

6 Conclusion

In the Wilson-theta method, we use displacement only together with a two-step (three-time-level)

scheme and a C++ computer programming which is fast and accurate in producing results. The equation

has been solved using Newton-Raphson iteration method. The results are tabulated and also presented
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graphically through a graphical package known as GNUplot.

For the stability of the numerical schemes, a small step size is needed, with maximum accuracy

achieved when the theta parameter, θ is 1
2 . The results of this study indicate that Wilson-theta algorithm

exhibit stable case for the solution of the softening spring, equation (4) when parameters chosen are

very close to the maximum accuracy parameters, otherwise unstable when parameters chosen are not

close to the maximum accuracy parameter.
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