• Login
  • Help Guide
View Item 
  •   JOOUST IR Home
  • Journal Articles
  • School of Biological, Physical, Mathematics & Actuarial Sciences
  • View Item
  •   JOOUST IR Home
  • Journal Articles
  • School of Biological, Physical, Mathematics & Actuarial Sciences
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spin Reorientation, Normal and Inverse Magnetocaloric Effects in Heavy Rare-Earth Iron Garnets

Thumbnail
Publication Date
2020-08-01
Author
Li, Canglong
Qiu, Yang
Barasa, Godfrey Okumu
Yuan, Songliu
Type
Article
Metadata
Show full item record
Abstract/Overview

Experiments for heavy rare-earth iron garnets Ho3Fe5O12 and Er3Fe5O12 show a compensation effect characterized by a near zero magnetization at 134 K and 80 K, respectively. The magnetic entropy change calculated according to the Maxwell's relation is shown to be positive and negative, indicating both normal and inverse magnetocaloric effects exist in the sample. The critical temperature (134 K for Ho3Fe5O12, 80 K for Er3Fe5O12) of the two types of magnetocaloric effect occurs at almost the same temperature as the compensation point. However, the compensation effect is attributed to the multiple exchange interactions among the octahedral sites Fe3+, the tetrahedral sites Fe3+ and the dodecahedral sites R3+, while the reversal of the magnetocaloric effect is originated from the spin reorientation. The maximum magnetic entropy change of the normal magnetocaloric effect is 4.72 J kg−1 K−1 for Ho3Fe5O12 at 34 K and 4.94 J kg−1 K−1 for Er3Fe5O12 at 24 K, respectively. Moreover, all the positive slopes of basic Arrott plots suggest only the second-order phase transition existing in Ho3Fe5O12 and Er3Fe5O12.

Subject/Keywords
Spin reorientation; Magnetocaloric effect; Garnets; Exchange interaction
Publisher
Elsevier
Permalink
http://ir.jooust.ac.ke:8080/xmlui/handle/123456789/9453
Collections
  • School of Biological, Physical, Mathematics & Actuarial Sciences [254]

Browse

All of JOOUST IRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Contact Us

Copyright © 2023-4 Jaramogi Oginga Odinga University of Science and Technology (JOOUST)
P.O. Box 210 - 40601
Bondo – Kenya

Useful Links

  • Report a problem with the content
  • Accessibility Policy
  • Deaccession/Takedown Policy

TwitterFacebookYouTubeInstagram

  • University Policies
  • Access to Information
  • JOOUST Quality Statement