BONDO UNIVERSITY COLLEGE

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE

FIRST YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN PURE MATHEMATICS

SMA 811: GROUP THEORY

INSTRUCTIONS:

- **1.** This paper consists of FIVE questions
- **2.** Attempt any THREE questions.
- **3.** Observe further instructions on the answer booklet.

QUESTION 1 [20 Marks]

- (b) Verify that the dihedral group is of order 2n, for $n \ge 3$. [5 mks]
- (c) Show that there is a canonical injective homomorphism $\alpha : G \to \text{Sym}(G)$. [5 mks]
- (d) With the aid of an example, show that there exists a subgroup H of a group G and an element g ∈ G such that gHg⁻¹ ⊂ H but gHg⁻¹ ≠ H.
 [5 mks]

QUESTION 2 [20 Marks]

(a) i) Let a and b be elements of a group G. If a has order m and b has order n, what can we say about the order of ab? [8 mks]
ii) Consider the elements a = (0 -1 1 0) and a = (0 1 -1 -1) in GL₂(Z). Show that a⁴ = 1 and b³ = 1, but that ab has infinite order, and hence that the group < a, b > is infinite.

[3 mks]

- (b) Let G be a group and X be a subset of G. Show that for any $g \in G$, and $x \in X$, $\operatorname{Stab}(gx) = g$. $\operatorname{Stab}(x) \cdot g^{-1}$. [3 mks]
- (c) Show that every group of order 2p, p an odd prime, is cyclic or dihedral. [6 mks]

QUESTION 3 [20 Marks]

- (a) Let $\mathbf{F}_p = \mathbf{Z}/p\mathbf{Z}$, the field with p elements, and let $G = \operatorname{GL}_n(\mathbf{F}_p)$. Find a Sylow p-subgroup of G. [4 mks]
- (b) Let p and q be prime integers such that p < q. Describe the groups of order pq. [8 mks]
- (c) i) With the aid of an example, describe a metabelian group [3 mks]

ii) Show that a subgroup of a nilpotent group is nilpotent. [5 mks]

QUESTION 4 [20 Marks]

(a) Consider the subgroups B = { \$\begin{pmatrix} * & * \\ 0 & * \$\end{pmatrix}\$}\$ and U = { \$\begin{pmatrix} 1 & * \\ 0 & 1 \$\end{pmatrix}\$}\$ of GL₂(F), for some field F. Show that U is a normal subgroup of B and that B is solvable. [4 mks]
(b) State and prove the Jordan-Holder Theorem. [7 mks]
(c) Classify all groups of order 30. [9 mks]

QUESTION 5 [20 Marks]

(a) With the aid of at least two examples, give an account of matrix representation of a finite group G over a field **F**.

[6 mks]

- (b) Show that the dimension of the center of $\mathbf{F}[G]$ as an \mathbf{F} vector space is the number of conjugacy classes in G. [7 mks]
- (c) Show that two $\mathbf{F}[G]$ modules are isomorphic iff their characters are equal. Is this result true if \mathbf{F} is allowed to have characteristic $p \neq 0$? Explain. [7 mks]