BONDO UNIVERSITY COLLEGE

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE

FIRST YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN PURE MATHEMATICS

SMA 823: COMMUTATIVE ALGEBRA

INSTRUCTIONS:

- **1.** This paper consists of FIVE questions
- **2.** Attempt any THREE questions.
- **3.** Observe further instructions on the answer booklet.

QUESTION 1 [20 Marks]

- (a) Consider the polynomial ring $C[x_1, ..., x_n]$. What are the ideals of this ring? [5 mks]
- (b) Show that any maximal ideal is prime. [5 mks]
- (c) Show that a commutative ring with $1 \neq 0$ is a field iff it has only the ideal (1) and the maximal ideal (0). [5 mks]
- (d) Suppose a ring R is a module over itself and S is a subset of R. Find the ring structure of $S^{-1}R$. [5 mks]

QUESTION 2 [20 Marks]

- (a) Let R be any commutative ring and $J \subset R$ a prime ideal. Show that R_J is a local ring. [5 mks]
- (b) Let I be an ideal of a ring R. Define the radical of I and prove that the radical of I is an ideal if I is an ideal.
 [5 mks]
- (c) Let M and N be R- modules. Suppose $f : M \to N$ is an R- module homomorphism, show that f is injective iff for every maximal ideal $J \subset R$, $f_J : M_J \to N_J$ is injective. [10 mks]

QUESTION 3 [20 Marks]

(a) Let R be a commutative ring and SpecR be the collection of prime ideals in R. Define $U_f \subseteq \text{Spec}R$ as subset of SpecR consisting of primes not containing f. Show that U_f forms a basis for the Zariski topology.

[6 mks]

(b) Suppose $f: M \to N, g: N \to P$ and $M \to N \to P$ is exact. Let $S \subset R$ be multiplicatively closed. Proving all the results involved, show that $S^{-1}M \to S^{-1}N \to S^{-1}P$ is exact. [14 mks]

QUESTION 4 [20 Marks]

- (a) Let R be a commutative ring and M and N be R-modules. Define the tensor product of M and N. Hence or otherwise, show that:
 i) the tensor product is symmetric;
 ii) there is a canonical isomorphism M → ⊗_RR, for each M.
 iii) the tensor product is associative. [10 mks]
- (b) Let R be a commutative ring. Show that an irreducible submodule $N \subset M$ is coprimary. [10 mks]

QUESTION 5 [20 Marks]

- (a) Let R be a ring and $S \subset R$ be a multiplicatively closed subset. Show that if R is noetherian, then $S^{-1}R$ is noetherian. [5 mks]
- (b) Using an example, demonstrate that the formation of tensor products is in general, not exact. [5 mks]
- (c) i) Let (R, J) be a local artinian ring. Show that J is nilpotent [7 mks].
 ii) Show that if R is artinian, then there are only finitely many maximal ideals. [3 mks]