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INSTRUCTIONS: 

 
1. This examination paper contains FIVE questions.  

2. Answer any THREE questions. 
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Question1 [20 marks] 

Given system of linear equations 

           3 5  x y z  

           2 6 9  x y z  

          4 6  x y z  

(i) Express the system in a matrix form AX b  where A  is a square matrix and  , ,
t

X x y z  

   (ii) Derive the associated Jacobi’s and Gauss Seidel’s iterative schemes. 

   (iii) State the conditions under which the Jacobi’s iterative scheme will converge to the unique solution    

          of the system . 

    (iv)Apply eight times Gauss Seidel’s iterative scheme on the given system above. 

On the same tabulate display the results; , , , , : 0, 1,2,3,....,9 n n n nn x y z n where    

 1 , , ,   
t

n n n n n n nX X X x y z  with initial vector  0 0,0,0
t

X  

Comment appropriately on the nature of convergence.    [20 marks] 

 

 

 

Question2 [20 marks] 

Suppose B  is an n by n  real symmetric matrix of linear operator defined on finite n dimensional 

vector space  n
V over field F  with n linearly independent eigenvectors, 'iv s . Let k  be an 

eigenvalue of B  closest to a real number p . 

(a) If 0v is an arbitrary non zero vector in  n
V  with a component in the direction of vector kv  , 

show that ,        0lim
m m

k k k
m

p B pI v v 



   . State any assumptions made. [15 marks] 

(b) Describe fully the computational procedure for this algorithm; 1,2,3, 4m . 

    State for what value of m  does the algorithm stop.             [5 marks] 

 

Question 3[20 marks] 

  Given the matrix 

10 7 4 1

7 11 1 2

4 1 5 3

1 2 3 4

A

 
 
 
 
 
 

 

   (a)Determine and describe briefly the procedure for power method.   [6 marks] 

 

(b)Apply  six times the power  method,  to approximate the dominant eigenvalue 1 , of A .  

 Obtain 1v , the corresponding eigenvector. Tabulate the results; 1, , , , : 1,2,3,....,6   nn nn x n  

Take the initial vector,  0 1,1,1,1
t

v         [14marks] 
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Question 4[20 marks] 

Consider the system of nonlinear equations 
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(a) Derive the improved Newton’s iterative scheme 
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  , for the system.   [5marks] 

 

 

(b) Apply six times the improved Newton’s iterative scheme to obtain the approximate solution of the   

    system. On the same table display the results;    , , , , , ,n n n n n nn x y f x y g x y   . 

   Take the initial root as    0 0, 1, 3.5x y                   [15 marks ] 

 

Question.5 [20 marks] 

(a) Determine the Padé rational approximation to   xf x e of degree 5 with n=3,and m=2  

of the form  3,2r x .           

On the same table, display the values of :     3,2 3,2, , , : ,0.2,0.4,0.6,0.8,1.0   x xx e r x e r x x  

Comment appropriately on the nature of the accuracy of  the rational function  3,2r x .[10marks] 

(b) Using the Newton's Divided  Difference Table  below , construct an interpolating  polynomial  4p x  

      to approximate  1.3f . If   lnf x x ,compute the relative error.      [10 marks] 

 

 

 

 

                                               Newton's Divided  Difference Table  

         , , , , , , , , ,

1 0.00000

.81094

1.5 .40547 .25912

.61660 0.09416

1.75 .55962 .16496 .05980

.53412 .08818

2 .69315 .20023

.66427

1.1 0.095531

ix f f f f f



 



                                                                                     

 


