

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF HEALTH SCIENCES UNIVERSITY EXAMINATION FOR DEGREE OF MASTER PUBLIC HEALTH SPECIAL EXAMINATIONS NOV. 2020

COURSE CODE: HMP 5114

COURSE TITLE: Biostatistics

EXAM VENUE: STREAM:

DATE: EXAM SESSION:

TIME: 3.00 HOURS

Instructions:

- 1. Answer Question One (Compulsory) and any other 3 questions
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.
- 4. Please use the appended formulae and statistical tables

QUESTIONS

Q1: Design a research project of your choosing and use it to answer the following questions.

- a) Critically evaluate the differences in probability and non-probability sampling techniques.
- b) Construct an appropriate null hypothesis for your research project.
- c) Identify an appropriate statistical test for the hypothesis in part b) above.
- d) Briefly explain why the statistical test you have identified is appropriate for testing the hypothesis in part b) above is appropriate.

Q2: Use the data in the table below to determine whether there is association between race and preconception use of folic.

Race	YES	NO	
White	260	299	_
Black	15	41	
Other	7	14	

Q3. Generate and analyze the generated data to test the null hypothesis that there is no difference in mean dehydroepiandrosterone sulfate, range 70 to 250, between 20 postmenopausal women with asthma and 20 aged-matched postmenopausal women without asthma.

Q4: The following data represent alveolar cell count in 12 guinea pigs exposed to regular air (A), benzaldehyde (B), and acetaldehyde (C). Test the hypothesis that there is no difference in mean alveolar cell count across the three treatment groups.

A: 24.15, 24.60, 22.55, 25.10, 22.65, 26.85, 40.20, 63.20, 59.10, 79.60, 102.45, 64.60 B: 49.90, 50.60, 50.35, 44.10, 36.30, 39.15, 90.30, 72.95, 138.60, 80.05, 69.25, 31.70 C: 31.10, 18.30, 19.35, 15.40, 27.10, 21.90, 22.15, 22.75, 22.15, 37.85, 19.35, 66.70

Q5: Use the data below to test the hypothesis that age (years) does not predict bilirubin (mg/dl) levels in patients more than 40 years old.

Age: 78, 72, 81, 59, 64, 48, 46, 44, 42, 45, 78, 47, 50, 57, 42, 58, 52, 52, 58, 45 Bilirubin: 7.5, 12.9, 14.3, 8.0, 14.1, 10.9, 12.3, 7.0, 1.8, 0.8, 3.8, 3.5, 5.1, 16.5, 1.0, 5.2, 5.1, 3.5, 5.6, 1.9

Q6: Answer the following questions

- a) Explain what is meant by inferential statistics
- b) Make a clear distinction between Type I Error and Type II Error as used in Biostatistics.
- c) Explain what is meant by p value and alpha.
- d) Briefly describe the four levels of measurement.

Formulae
$$X^{2} = \sum \frac{(O - E)^{2}}{E}$$

$$t = \frac{\overline{X} - \mu}{SE}$$

$$t_{obtained} = \frac{\overline{D}}{SE_{D}}$$

$$F = \frac{MSB}{MSE}$$

$$r = \frac{\sum Y_{d}Z_{d}}{\sqrt{\sum Y_{d}^{2} \times \sum Z_{d}^{2}}}$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^{2}}$$

$$c = \bar{y} - b * \bar{x}$$

$$t = \frac{\overline{y}_A - \overline{y}_B}{se_{diff}}$$

$$se_{diff} = \sqrt{\frac{S_A^2 + S_B^2}{n_A + n_B}}$$

$$F = \frac{MSB}{MSE}$$

$$r = \frac{\sum Y_d Z_d}{\sqrt{\sum Y_d^2 \times \sum Z_d^2}}$$

$$U_1 = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - R_1$$

$$U_2 = n_1 n_2 + \frac{n_2 (n_2 + 1)}{2} - R_2$$

$$r_s = 1 - \left(\frac{6\sum d^2}{n(n^2 - 1)}\right)$$

$$b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

Table of the chi square distribution – Appendix J, p. $915\,$

				Level o	of Significa	$ance \alpha$			
df	0.200	0.100	0.075	0.050	0.025	0.010	0.005	0.001	0.0005
1	1.642	2.706	3.170	3.841	5.024	6.635	7.879	10.828	12.116
2	3.219	4.605	5.181	5.991	7.378	9.210	10.597	13.816	15.202
3	4.642	6.251	6.905	7.815	9.348	11.345	12.838	16.266	17.731
4	5.989	7.779	8.496	9.488	11.143	13.277	14.860	18.467	19.998
5	7.289	9.236	10.008	11.070	12.833	15.086	16.750	20.516	22.106
6	8.558	10.645	11.466	12.592	14.449	16.812	18.548	22.458	24.104
7	9.803	12.017	12.883	14.067	16.013	18.475	20.278	24.322	26.019
8	11.030	13.362	14.270	15.507	17.535	20.090	21.955	26.125	27.869
9	12.242	14.684	15.631	16.919	19.023	21.666	23.589	27.878	29.667
10	13.442	15.987	16.971	18.307	20.483	23.209	25.188	29.589	31.421
11	14.631	17.275	18.294	19.675	21.920	24.725	26.757	31.265	33.138
12	15.812	18.549	19.602	21.026	23.337	26.217	28.300	32.910	34.822
13	16.985	19.812	20.897	22.362	24.736	27.688	29.820	34.529	36.479
14	18.151	21.064	22.180	23.685	26.119	29.141	31.319	36.124	38.111
15	19.311	22.307	23.452	24.996	27.488	30.578	32.801	37.698	39.720
16	20.465	23.542	24.716	26.296	28.845	32.000	34.267	39.253	41.309
17	21.615	24.769	25.970	27.587	30.191	33.409	35.719	40.791	42.881
18	22.760	25.989	27.218	28.869	31.526	34.805	37.157	42.314	44.435
19	23.900	27.204	28.458	30.144	32.852	36.191	38.582	43.821	45.974
20	25.038	28.412	29.692	31.410	34.170	37.566	39.997	45.315	47.501
21	26.171	29.615	30.920	32.671	35.479	38.932	41.401	46.798	49.013
22	27.301	30.813	32.142	33.924	36.781	40.289	42.796	48.269	50.512
23	28.429	32.007	33.360	35.172	38.076	41.639	44.182	49.729	52.002

F	.90

				$F_{.95}$					
Denominator Degrees of Numerator Degrees of Freedom									
Freedom	1	2	3	4	5	6	7	8	9
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38
3	10.13	9:55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
10	4,96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28
26	4.23	3,37	2.98	2.74	2.59	2.47	2.39	2.32	2.27
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04
120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96
œ	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88

TABLE P Critical Values of the Spearman Test Statistic. Approximate Upper-Tail Critical Values r_s^* , Where $P(r>r_s^*) \leq \alpha$, n=4(1)30 Significance Level, α

n	.001	.005	.010	.025	.050	.100
4	Martin	_		10000	.8000	.8000
5	_		.9000	.9000	.8000	.7000
6		.9429	.8857	.8286	.7714	.6000
7	.9643	.8929	.8571	.7450	.6786	.5357
8	.9286	.8571	.8095	.7143	.6190	.5000
9	.9000	.8167	.7667	.6833	.5833	.4667
10	.8667	.7818	.7333	.6364	.5515	.4424
11	.8364	.7545	.7000	.6091	.5273	.4182
12	.8182	.7273	.6713	.5804	.4965	.3986
13	.7912	.6978	.6429	.5549	.4780	.3791
14	.7670	.6747	.6220	.5341	.4593	.3626
15	.7464	.6536	.6000	.5179	.4429	.3500
16	.7265	.6324	.5824	.5000	.4265	.3382
17	.7083	.6152	.5637	.4853	.4118	.3260
18	.6904	.5975	.5480	.4716	.3994	.3148
19	.6737	.5825	.5333	.4579	.3895	.3070
20	.6586	.5684	.5203	.4451	.3789	.2977
21	.6455	.5545	.5078	.4351	.3688	.2909
22	.6318	.5426	.4963	.4241	.3597	.2829
23	.6186	.5306	.4852	.4150	.3518	.2767
24	.6070	.5200	.4748	.4061	.3435	.2704
25	.5962	.5100	.4654	.3977	.3362	.2646
26	.5856	.5002	.4564	.3894	.3299	.2588
27	.5757	.4915	.4481	.3822	.3236	.2540
28	.5660	.4828	.4401	.3749	.3175	.2490
29	.5567	.4744	.4320	.3685	.3113	.2443
30	.5479	.4665	.4251	.3620	.3059	.2400

Note: The corresponding lower-tail critical value for r_s is $-r_s^*$.

	Table of Critical Values for T Two Tailed Significance								
DF	0.2	0.1	0.05	0.01	0.005	0.001	0.0005	0.0001	
2	1.89	2.92	4.30	9.92	14.09	31.60	44.70	100.14	
3	1.64	2.35	3.18	5.84	7.45	12.92	16.33	28.01	
4	1.53	2.13	2.78	4.60	5.60	8.61	10.31	15.53	
5	1.48	2.02	2.57	4.03	4.77	6.87	7.98	11.18	
6	1.44	1.94	2.45	3.71	4.32	5.96	6.79	9.08	
7	1.41	1.89	2.36	3.50	4.03	5.41	6.08	7.89	
8	1.40	1.86	2.31	3.36	3.83	5.04	5.62	7.12	
9	1.38	1.83	2.26	3.25	3.69	4.78	5.29	6.59	
10	1.37	1.81	2.23	3.17	3.58	4.59	5.05	6.21	
11	1.36	1.80	2.20	3.11	3.50	4.44	4.86	5.92	
12	1.36	1.78	2.18	3.05	3.43	4.32	4.72	5.70	
13	1.35	1.77	2.16	3.01	3.37	4.22	4.60	5.51	
14	1.35	1.76	2.14	2.98	3.33	4.14	4.50	5.36	
15	1.34	1.75	2.13	2.95	3.29	4.07	4.42	5.24	
16	1.34	1.75	2.12	2.92	3.25	4.01	4.35	5.13	
17	1.33	1.74	2.11	2.90	3.22	3.97	4.29	5.04	
18	1.33	1.73	2.10	2.88	3.20	3.92	4.23	4.97	
19	1.33	1.73	2.09	2.86	3.17	3.88	4.19	4.90	
20	1.33	1.72	2.09	2.85	3.15	3.85	4.15	4.84	
21	1.32	1.72	2.08	2.83	3.14	3.82	4.11	4.78	
22	1.32	1.72	2.07	2.82	3.12	3.79	4.08	4.74	
23	1.32	1.71	2.07	2.81	3.10	3.77	4.05	4.69	
24	1.32	1.71	2.06	2.80	3.09	3.75	4.02	4.65	
25	1.32	1.71	2.06	2.79	3.08	3.73	4.00	4.62	
26	1.31	1.71	2.06	2.78	3.07	3.71	3.97	4.59	
27	1.31	1.70	2.05	2.77	3.06	3.69	3.95	4.56	
28	1.31	1.70	2.05	2.76	3.05	3.67	3.93	4.53	
29	1.31	1.70	2.05	2.76	3.04	3.66	3.92	4.51	
30	1.31	1.70	2.04	2.75	3.03	3.65	3.90	4.48	
35	1.31	1.69	2.03	2.72	3.00	3.59	3.84	4.39	
40	1.30	1.68	2.02	2.70	2.97	3.55	3.79	4.32	
45	1.30	1.68	2.01	2.69	2.95	3.52	3.75	4.27	
50	1.30	1.68	2.01	2.68	2.94	3.50	3.72	4.23	