JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITYDRAFT EXAMINATION FOR BSc/BEd IN MATHEMATICS
SUPPLEMENTARY/SPECIAL
$2^{\text {nd }}$ YEAR $^{\text {st }}{ }^{\text {st }}$ SEMESTER 2019/2020ACADEMIC YEAR

MAIN CAMPUS

COURSE CODE: SMA201
COURSE TITLE: LINEAR ALGEBRA II
EXAM VENUE: AUDITORIUM
STREAM: BSc Y2S1

TIME: 2 HOURS
EXAM SESSION:

Instructions:

Answer question1 and any other two questions

1. Show all the necessary working
2. Candidates are advised not to write on the question paper
3. Candidates must hand in their answer booklets to the invigilator while in the examination room

QUESTION ONE [30 MARKS] COMPULSORY

a) Define the following terms in relation to linear spaces
i) Span
ii) Dimension
b) Show that the eigenvalues of the matrix $A=\left[\begin{array}{ccc}51 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & -31\end{array}\right]$ are ;51, 11, -31
c) Let $T: \boldsymbol{R}^{3} \rightarrow \boldsymbol{R}^{3}$ be a linear operator defined by
$T\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}-x_{2}-x_{3}, x_{1}-x_{3},-x_{1}+x_{2}+2 x_{3}\right)$. Find the matrix B associated with T with respect to the standard ordered basis
d) Let $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$.

Find all the eigenvalues of A and the corresponding eigenvectors

QUESTION TWO (20 MARKS)

a) Let $A=\left[\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}11 & 6 \\ -2 & 14\end{array}\right]$. Show that $(A B)^{-1}=B^{-1} A^{-1}$
b) Consider the following bases $B=\{(1,0),(0,1)\}$ and $B^{\prime}=\{(1,2),(2,3)\}$ for \boldsymbol{R}^{2}. If $T: \boldsymbol{R}^{2} \rightarrow R^{2}$ is a linear transposition defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}+7 x_{2}, 3 x_{1}-4 x_{2}\right)$.
i) Find A, the matrix of representation of T with respect to B
ii) Find M, the matrix of representation of T with respect to B^{\prime}

QUESTION THREE (20 MARKS)

Let $T: \boldsymbol{R}^{3} \rightarrow \boldsymbol{R}^{3} \quad$ be a linear operator from a vector space $\quad \boldsymbol{R}^{3}$ to itself defined by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}2 x_{1}-x_{2}-4 x_{3} \\ x_{1}-x_{3} \\ -x_{1}+x_{2}+2 x_{3}\end{array}\right]$
i) Obtain M the matrix of the linear operator T
ii) Find the characteristic polynomial of the operator T
iii) Find the eigenvalues of T and their corresponding eigenvectors

QUESTION FOUR (20 MARKS)

a) Verify that the set $S=\{(x, 3 x): x \in \boldsymbol{R}\}$ is a subspace of \boldsymbol{R}^{2}
b) i) State Cayley Hamilton theorem
ii) Give matrix $A=\left[\begin{array}{cc}2 & 1 \\ 5 & -3\end{array}\right]$, show that both A, \boldsymbol{A}^{-1} satisfy Cayley Hamilton theorem .
c) i) Define the term kernel
ii) If $T: U \rightarrow V$ is a linear mapping, show that the kernel of T is a subspace of U (3mks)
d) Find the matrix of linear mapping $T: P_{3} \rightarrow P_{1}$ given by $T(f)=f^{\prime \prime}+f^{\prime \prime \prime}$

QUESTION FIVE (20 MARKS)

a) Define the term orthogonality of vectors in a vector space W
b) Let $P=\left(\begin{array}{ccc}1 & -2 & 2 \\ 2 & 2 & 1 \\ -2 & 1 & 2\end{array}\right)$ be a real square matrix.

Prove that P is orthogonal hence and find \hat{P} the orthonormalized form of P and \hat{P}^{-1} .[10marks]
c) If V is a linear space of all functions of the form $f(t)=c_{1} \cos t+c_{2} \sin t$, where c_{1} and c_{2} are arbitrary constants, Find the matrix of linear transformation $T(f)=f^{\prime \prime \prime}+a f^{\prime \prime}+b f^{\prime}$ with respect to the basis $\cos t, \sin t$ where a and b are arbitrary constants

