

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL SCIENCES

UNIVERSITY SPECIAL EXAMINATION FOR DEGREE OF BED/BSC

COURSE CODE: SMA 208

COURSE TITLE: INTRODUCTION TO ANALYSIS

EXAM VENUE:

STREAM: (BED/BSC)

EXAM SESSION:

DATE:

TIME: 2.00HRS Instructions:

- 1. Answer Question one (COMPULSORY) any other TWO questions only
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room

QUESTION ONE [30 MARKS] (COMPULSORY)

(a) Determine $ P(P(P(P(\mathcal{O}(\mathcal{O}))))) $.	(5 marks)
(b). Discuss order-completeness of the complement set of irrationals.	(5 marks)
(c). Analyze the significance of introduction to analysis.	(5 marks)
(d). Explain assymptotic discontinuity of a function.	(5 marks)
(e) Give the associativity criterion for an ordered field of real numbers.	(5 marks)
(f). State and prove Bolzano-Weierstrass theorem for the set of real numbers.	(5 marks)

QUESTION TWO [20 MARKS]

(a). Describe the terms: Sub-cover, Compactness and Sphere.	(3 marks)
(b). Prove that a compact set B is closed.	(17 marks)

QUESTION THREE [20 MARKS]

(a). Explain maximal and minimal attainability of a continuous function <i>f</i> .	(2 marks)
(b). Prove that if $f: [a, b] \rightarrow \mathbf{R}$ is continuous then f is bounded and there exists	
points c_1 and c_2 in $[a, b]$ such that f attains its maximum at c_1 and its minimum	<i>c</i> _{2.} (18 marks)
QUESTION FOUR [20 MARKS]	
(a). Define a cluster point of a set S which is a subset of real numbers.	(2 marks)
(b). Prove that the interior of an open set S is open.	(8 marks)
(c). State and prove the existence of a smallest number property.	(10 marks)
QUESTION FIVE [20 MARKS]	
(a). Analyze closedness of the closure of a set <i>B</i> .	(12 marks)
(b). Prove that the closure of a set S contains B.	(2 marks)
(c). Prove that if the closure of a set <i>B</i> contains the closure of a set <i>A</i>	
then A is contained in B.	(6 marks)