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QUESTION ONE [30 MARKS] (COMPULSORY) 

(a) Determine |P(P(P(P(P(Ø)))))|.                                                                                      (5 marks) 

(b). Discuss order-completeness of the complement set of irrationals.                              (5 marks)                                                              

(c). Analyze the significance of introduction to analysis.                                                  (5 marks)                          

(d). Explain  assymptotic discontinuity of a function.                                                        (5 marks) 

(e) Give the associativity criterion for an ordered field of real numbers.                          (5 marks) 

(f). State and prove Bolzano-Weierstrass theorem for the set of real numbers.                 (5 marks)                                                  

 

 

QUESTION TWO [20 MARKS] 

(a). Describe the terms: Sub-cover, Compactness and Sphere.                                          (3 marks)                                                                                                                             

(b). Prove that a compact set B is closed.                                                                         (17 marks)                                                                                       

 

 



 

 

QUESTION THREE [20 MARKS] 

(a). Explain maximal and minimal attainability of a continuous function f.                      (2 marks) 

(b). Prove that if f: [a, b]       R is continuous then f is bounded and there exists  

       points c1 and c2 in [a, b] such that f attains its maximum at c1 and its minimum c2. (18 marks)                            

 

QUESTION FOUR [20 MARKS] 

(a). Define a cluster point of a set S which is a subset of real numbers.                           (2 marks)                                 

(b). Prove that the interior of an open set S is open.                                                         (8 marks) 

(c). State and prove the existence of a smallest number property.                                (10 marks) 

                                                                                                                        

QUESTION FIVE [20 MARKS] 

 (a). Analyze closedness of the closure of a set  B.                                                         (12 marks)                                                           

 (b). Prove that the closure of a set S contains B.                                                              (2 marks)                                                                                                      

 (c). Prove that if the closure of a set B contains the closure of a set A 

        then A is contained in B.                                                                                           (6 marks) 

                                                                                                                                            

                                                                                                                                            

 


