

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF AGRICULTURAL AND FOOD SCIENCES

SECOND YEAR SECOND SEMESTER UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN AGRIBUSINESSMANAGEMENT

2019/2020 ACADEMIC YEAR

REGULAR

COURSE CODE: BBM 3226

COURSE TITLE: OPERATIONS RESEARCH

EXAM VENUE: STREAM: BSc. Agribusiness Management

DATE: EXAM SESSION:

TIME: 2 HOURS

Instructions:

- 1. Answer ALL questions in section A and ANY other 2 Questions in section B.
- 2. Candidates are advised not to write on question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

SECTION A [30 MARKS] ANSWER ALL QUESTIONS

QUESTION ONE [6 MARKS]

Define the terms:

a. Decision variables [2 marks]

b. Corner Point Feasible (CPF) solutions [2 marks]

c. Mixed strategies in games theory [2 marks]

QUESTION TWO [6 MARKS]

a. Distinguish a game with a saddle point and one without a saddle point [2 marks]

b. Find the saddle point and value of the game with the following payoff matrix [4 marks]

QUESTION THREE [9 MARKS]

a. Evaluate the initial basic solution for the transportation problem

[5 marks]

b. Form the dual of the following LP problem

Maximum
$$z = 3x_1 + 2x_2$$

Subject to:
$$2x_1 + x_2 \le 6$$

$$3x_1 - x_2 = 8$$

$$x_1 + x_2 \le 2$$

$$x_1, x_2 \ge 0$$
 [4 marks]

QUESTION FOUR [9 MARKS]

a. Draw the constraints; $x_1 + 3x_2 \le 6$, $4x_1 + 3x_2 \le 12$, $4x_1 + x_2 \le 8$ on the same axes to show the feasible region [6 marks]

b. Identify values of the decision variables that would optimize the objective function maximize:

$$z = 3x_1 + 5x_2$$
 [3 marks]

SECTION B: [20 MARKS] ANSWER ANY TWO QUESTIONS

QUESTION FIVE [20 MARKS]

a. Consider the following payoff (profit) matrix

	Θ_1	Θ_2	θ3	Θ_4	θ5
a	15	10	0 8	-6	17
a_2	3	14	8	9	2
a_3 a_4	1	5	14	20	-3
a_4	7	19	10	2	0

No probabilities are known for occurrence of the nature states. Determine the decisions that can be made using each of the following criteria:

i. Laplace [2 marks] ii. Maximin [3 marks] iii. Hurwicz (assume α = 0.25) [3 marks]

b. For the LP problem: Maximize: $Z=2x_1-x_2+x_3$

Subject to: $3x_1 + x_2 + x_3 \le 6$ $x_1 - x_2 + 2x_3 \le 1$ $x_1 + x_2 - x_3 \le 2$ $x_1 \le 0, x_2 \le 0, x_3 \le 0$

i. Formulate a Simplex tableau to find the Initial Basic Solution
 ii. Determine values of the decision variables that give optimal solution
 iii. Find the optimal solution
 [2 marks]

QUESTION SIX [20 MARKS]

a. Distinguish between decisions under risk and decisions under uncertainty

Consider the following payoff (profit) matrix

[4 marks]

	Θ_1	Θ_2	Θ_3	Θ_4
a_1	10	20	-20	13
\mathbf{a}_2	12	14	0	15
a_3	7	2	18	9

The a priori probabilities of Θ_1 , Θ_1 , Θ_1 , Θ_1 are 0.2, 0.1, 0.3, 0.4 respectively. An experiment is conducted and its outcomes z_1 , z_2 are described by the following probabilities.

		Θ_2		Θ_4
\mathbf{z}_1	0.1	0.2	0.7 0.3	0.4
\mathbf{z}_2	0.9	0.8	0.3	0.6

b. Determine the best action when no data are used

c. Determine the best action when the experimental data are used

[8 marks]

3

QUESTION SEVEN [20 MARKS]

a. Define a two-person zero-sum game

[2 marks]

b. For the game

i. Show that the strategies (1/6, 0, 5/6) for player A and (49/54, 5/54, 0) for player B are optimal [6 marks]

ii. Find the value of the game

[3 marks]

c. Solve the following game problem graphically

[9 marks]

QUESTION EIGHT [20 MARKS]

A transportation problem is as shown below.

a. Find the Initial Basic Solution (BS) using the North-West Corner method [5 marks]

b. Solve the problem to show how Demand-Supply process in realized [8 marks]

c. For the game:

		В		
	4	-4	-5	6
A	-3	-4	-9	-2
	6	7	-8	-9
	7	3	-9	5

Find: i. the saddle point

[4 marks]

ii. the value of the game

[3 marks]