JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF AGRICULTURAL AND FOOD SCIENCES
SECOND YEAR SECOND SEMESTER UNIVERSITY EXAMINATION
FOR THE DEGREE OF BACHELOR OF SCIENCE IN
AGRIBUSINESSMANAGEMENT

2019/2020 ACADEMIC YEAR

REGULAR

COURSE CODE: BBM 3226
COURSE TITLE: OPERATIONS RESEARCH
EXAM VENUE:
STREAM: BSc. Agribusiness Management
DATE: EXAM SESSION:

TIME: 2 HOURS

Instructions:

1. Answer ALL questions in section A and ANY other 2 Questions in section B.
2. Candidates are advised not to write on question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

SECTION A [30 MARKS]
 ANSWER ALL QUESTIONS

QUESTION ONE [6 MARKS]
Define the terms:
a. Decision variables [2 marks]
b. Corner Point Feasible (CPF) solutions [2 marks]
c. Mixed strategies in games theory

QUESTION TWO [6 MARKS]
a. Distinguish a game with a saddle point and one without a saddle point
[2 marks]
b. Find the saddle point and value of the game with the following payoff matrix

A \begin{tabular}{|crrr}
\multicolumn{4}{c}{ B }

10	20	-20	13
12	14	0	15
7	2	18	9

\end{tabular}

QUESTION THREE [9 MARKS]
a. Evaluate the initial basic solution for the transportation problem

16	19	12	14
22	13	19	16
14	28	8	12
10	15	17	42

[5 marks]
b. Form the dual of the following LP problem

Maximum $\mathrm{z}=3 \mathrm{x}_{1}+2 \mathrm{x}_{2}$
Subject to: $2 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 6$

$$
\begin{gathered}
3 x_{1}-x_{2}=8 \\
x_{1}+x_{2} \leq 2 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

QUESTION FOUR [9 MARKS]
a. Draw the constraints; $\mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 6,4 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 12,4 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 8$ on the same axes to show the feasible region
b. Identify values of the decision variables that would optimize the objective function maximize: $\mathrm{z}=3 \mathrm{x}_{1}+5 \mathrm{x}_{2}$

SECTION B: [20 MARKS]
ANSWER ANY TWO QUESTIONS
QUESTION FIVE [20 MARKS]
a. Consider the following payoff (profit) matrix

	Θ_{1}	Θ_{2}	Θ_{3}	Θ_{4}	Θ_{5}
a	15	10	0	-6	17
a_{2}	3	14	8	9	2
a_{3}	1	5	14	20	-3
a_{4}	7	19	10	2	0

No probabilities are known for occurrence of the nature states. Determine the decisions that can be made using each of the following criteria:

i. Laplace	[2 marks]
ii. Maximin	[3 marks]
iii. Hurwicz (assume $\alpha=0.25$)	[3 marks]

b. For the LP problem: Maximize: $\mathrm{Z}=2 \mathrm{x}_{1}-\mathrm{x}_{2}+\mathrm{x}_{3}$

Subject to: $3 x_{1}+x_{2}+x_{3} \leq 6$

$$
\begin{aligned}
& \mathrm{x}_{1}-\mathrm{x}_{2}+2 \mathrm{x}_{3} \leq 1 \\
& \mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3} \leq 2 \\
& \mathrm{x}_{1} \leq 0, \mathrm{x}_{2} \leq 0, \mathrm{x}_{3} \leq 0
\end{aligned}
$$

i. Formulate a Simplex tableau to find the Initial Basic Solution
ii. Determine values of the decision variables that give optimal solution
iii. Find the optimal solution

QUESTION SIX [20 MARKS]
a. Distinguish between decisions under risk and decisions under uncertainty [4 marks]

Consider the following payoff (profit) matrix

	Θ_{1}	Θ_{2}	Θ_{3}	Θ_{4}
a_{1}	10	20	-20	13
a_{2}	12	14	0	15
a_{3}	7	2	18	9

The a priori probabilities of $\Theta_{1}, \Theta_{1}, \Theta_{1}, \Theta_{1}$ are $0.2,0.1,0.3,0.4$ respectively. An experiment is conducted and its outcomes $\mathrm{z}_{1}, \mathrm{z}_{2}$ are described by the following probabilities.

	Θ_{1}	Θ_{2}	Θ_{3}	Θ_{4}
z_{1}	0.1	0.2	0.7	0.4
z_{2}	0.9	0.8	0.3	0.6

b. Determine the best action when no data are used
c. Determine the best action when the experimental data are used

QUESTION SEVEN [20 MARKS]
a. Define a two-person zero-sum game
b. For the game

	1	1	2	3
	1	5	50	50
2	1	1	0.1	
	3	10	1	10

i. Show that the strategies $(1 / 6,0,5 / 6)$ for player A and $(49 / 54,5 / 54,0)$ for player B are optimal [6 marks]
ii. Find the value of the game
c. Solve the following game problem graphically

B A 1 2 5 6 -7 9 -4 -3 2 1.			

QUESTION EIGHT [20 MARKS]

A transportation problem is as shown below.

Source		R	S	Supply
	Q	8	5	4
	Demand	6	3	2
		3		

a. Find the Initial Basic Solution (BS) using the North-West Corner method [5 marks]
b. Solve the problem to show how Demand-Supply process in realized
c. For the game:

	B			
	4	-4	-5	6
	-3	-4	-9	-2
	6	7	-8	-9
	7	3	-9	5

Find: i. the saddle point
ii. the value of the game

