

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF AGRICULTURAL AND FOOD SCIENCES

THIRD YEAR SECOND SEMESTER UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE ANIMAL SCIENCE

2020/2021 ACADEMIC YEAR REGULAR

COURSE CODE: AAS 3326

COURSE TITLE: Principles of Molecular Genetics

EXAM VENUE: STREAM: BSc. Animal Science

DATE: EXAM SESSION:

TIME: 2 HOURS

Instructions:

- 1. Answer ALL questions in section A and ANY other 2 Questions in section B.
- 2. Candidates are advised not to write on question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

SECTION A [30 MARKS]

Answer ALL questions from this Section

1. Choose the phrase from the right column that best fits the term in the left column.

[5 MARKS]

a.	genetic code	1.	a mutation that cause a novel mutant allele to revert
b.	epigenetic phenomenon		back to wild type
c.	complementarity	2.	structures at ends of eukaryotic chromosomes
d.	transposon	3.	a method of discovering whether two mutations are
e.	point mutation		in the same or separate genes
f.	exon	4.	part of a gene that can contain protein coding
g.	gene editing		information
h.	telomeres	5.	G-C and A-T base pairing in DNA through
i.	promoter		hydrogen bonds
j.	complementation test	6.	DNA sequence required for initiation of
			transcription
		7.	a heritable alteration in gene expression not due to
			mutation in base pair sequence
		8.	a mutation that changes one or a few base pairs
		9.	sequence of nucleotides, coded in triplets (codons)
			along the mRNA, that determines the sequence of
			amino acids in proteins.
		10	. Technologies that allows the creation of knock-out
			and knock-in animals and plants
		11	. segments of DNA that move from place to place
			within the genome without an RNA intermediate,
			sometimes causing a change in gene function when
			they insert in a new chromosomal location.
1		I	

	SECTION B (40 MARKS) Answer ANY TWO questions in this section				
5.	Using examples, explain why gene regulation is important in eukaryotes.	[5 MARKS]			
	mutant 3 ACCGTAGTCGACTGGTTAACTTTG	[5 MARKS]			
	mutant 1 ACCGTAATCGACTGGTAAACTTTGCGCG mutant 2 ACCGTAGTCGACCGGTAAACTTTGCGCG				
	region?				
	(5' ends are at left), what is the sequence of the original gene (i.e. non-	mutated) in this			
4.	Using the mutagen EMS, a researcher created three independent mutant resistance to a viral disease. Given the sequences of the three mutants which	•			
3.	Describe the major chemical differences distinguishing RNA from DNA	[5 MARKS]			
	MARKS]				
	(e) purine vs pyrimidine	[2			
	MARKS]				
	(d) DNA vs cDNA	[2			
	MARKS]	L-			
	MARKS] (c) reverse genetics vs forward genetics	[2			
	(b) transcription vs translation	[2			
	MARKS]				
	(a) transcriptome vs genome	[2			
2.	Distinguish the following terminologies:				

6a. Describe the key steps in the semiconservative replication of DNA. [10 MARKS]

6b. Explain why molecular geneticists use model organisms to study development [10 MARKS]

7a. Describe the three stages of transcription: initiation, elongation, and termination	on
	[10 MARKS]
7b. Describe FOUR mechanisms by which cells can repair DNA with altered or d	amaged
nucleotides.	[10 MARKS]
8a. Explain how organisms ensure the informational fidelity of its DNA	[10 MARKS]
Oh Describe the leavestone of translation indicating have each demands on the ribe	go m o
8b. Describe the key steps of translation, indicating how each depends on the ribo	osome.
	[10 MARKS]