

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL 3RD YEAR ^{1ST} SEMESTER 2022/2023

REGULAR (MAIN)

COURSE CODE: WAB 2306

COURSE TITLE: FINANCIAL ECONOMICS 1

EXAM VENUE:

STREAM: (BSc Actuarial Science)

DATE: 9/12/2022

EXAM SESSION: 9.00-11.00AM

TIME: 2.00 HOURS

Instructions:

- **1.** Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION 1

a. Define the following terms

i.	Portfolio	(2MARKS)
ii.	Non satiation	(2MARKS)
iii.	Risk averse investor	(2MARKS)
iv.	Utility	(2MARKS)

- b. Each year, Mr. Wills is offered the opportunity to invest KSH10, 000 in a risk fund. If successful, at the end of the year he will be given back KSH20, 000. If unsuccessful, he will be given back only KSH5, 000. There is a 50% chance of either outcome. Calculate the expected rate of return per annum on the investment. (2MARKS)
- c. List five assumptions underlying mean-variance portfolio theory. (5MARKS)
- d. Investor A has an initial wealth of \$100, which is currently invested in a non-interestbearing account, and a utility function of the form:

$$U(w) = log(w)$$

Where w is the investor's wealth at any time.

Investment Z offers a return of -22% or +28% with equal probability.

I. What is Investor A's expected utility if nothing is invested in Investment Z?

(2MARKS)

II. What is Investor A's expected utility if they're entirely invested in Investment Z?

(2MARKS)

- e. What proportion αof wealth should be invested in Investment Z to maximize expected utility? What is Investor A's expected utility if they invest this proportion in Investment Z?
 (2MARKS)
- f. An insurance company will be required to make a payout of £500 on a particular risk event, which is likely to occur with a probability of 0.4. The utility for any level of wealth, w, is given by:

$$U(w) = 4,000 + 0.5w$$

The insurer's initial level of wealth is £6000. Calculate the minimum premium the insurer will require in order to take on the risk.

	(5MARKS)
--	----------

g. Define first-order and second-order stochastic dominance. (4MARKS)

QUESTION 2

a. Investment returns (% *pa*), *X* , on a particular asset are modelled using a probability distribution with density function:

 $f(x) = 0.00085(110 - (x - 10)^2)$ where $-5 \le x \le 15$

Calculate the

i.	mean return	(4MARKS)
ii.	Variance of return.	(4MARKS)
iii.	downside semi-variance of return	(4MARKS)

- iv. Value at Risk (VaR) over one year with a 95% confidence limit for a portfolio
- consisting of KSH10, 000,000 invested in the asset.(4MARKS)v.shortfall probability where the benchmark return is 0% pa(4MARKS)

QUESTION 3

a. Define the following measures of investment risk:

I.	variance of return	(2MARKS)
II.	downside semi-variance of return	(2MARKS)
III.	shortfall probability	(2MARKS)
IV.	Value at Risk.	(2MARKS)

Investment returns (% pa), X , on a particular asset are modelled using the probability distribution:

X	Probability
-7	0.04
5.0	0.90
8.9	0.06

Calculate the mean return and variance of return. (4MARKS)

- c. The returns from an investment in Jubilee holding insurance are assumed to conform to the fixed rate model with the distribution of rates as specified below:
 - 0.06 With probability 0.2
 - 0.08 With probability 0.7
 - 0.10 With probability 0.1
 - I.Calculate the expected accumulated value at the end of 5 years of an initial
investment of KSH75, 000.(2MARKS)
 - II. Calculate the accumulated value at the mean rate of return. (3MARKS)
 - III. Calculate the variance of the accumulated value of the investment (3MARKS)

QUESTION 3

- a. List three capital investment appraisal methods used to test viability of a financial project. [3 marks]
- b. An investor has the utility function $U(w) = -exp\left(-\frac{w}{100}\right)$ Determine whether the investor exhibits increasing, constant or decreasing absolute and relative risk aversion. [5 marks]
- c. £200 is invested for 12 years. In any year the yield on the investment will be 3% with probability 0.25, 5% with probability 0.6 and 6% with probability 0.15, and is independent of the yield in any other year.
 - I. Calculate the mean accumulation at the end of 12 years. (3MARKS)

Ш. Calculate the standard deviation of the accumulation at the end of 12 years.

(3MARKS)

d. A stochastic model of investment returns assumes that the annual rates of return in different Years are independent and identically distributed normal random variables with mean 8% and Standard deviation 2%. Calculate the mean and standard deviation of the accumulated value, at time 2, of an initial Investment of £10,000.

(6MARKS)

QUESTION 4

- a. An insurer with initial wealth of KSH2, 000,000 and a utility of $U(x) = \log(x)$ is designing a policy to cover damages of KSH500, 000 that occur with probability 0.5. Calculate the minimum premium that the insurer can charge for the policy. (6MARKS)
- b. Suppose Investor A has a *power* utility function with $\gamma = 0.9$, whilst Investor B has a power utility function with $\gamma = 0.75$.
 - Which investor is more risk-averse ? i.
 - ii. Suppose that Investor B has an initial wealth of 100 and is offered the opportunity to buy Investment X for 100, which offers an equal chance of a payout of 110 or 92. Will the Investor B choose to buy Investment X?
- c. Consider the two risky assets, A and B, with cumulative probability distribution functions:

$$F_A(w) = w$$

 $F_B(w) = w\frac{1}{2}$

In both cases, $0 \le w \le 1$.

- i. Show that A is preferred to B on the basis of first-order stochastic dominance. (4MARKS)
- ii. Verify explicitly that A also dominates B on the basis of second-order stochastic dominance. (4MARKS)

QUESTION 5

- a. State five assumptions of black Scholes model.
- b. A building society issues a one-year bond that entitles the holder to the return on a weighted-average share index (ABC kenya limited) up to a maximum level of 30% growth over the year. The bond has a guaranteed minimum level of return so that investors will receive at least x% of their initial investment back. Investors cannot

(3MARKS)

(3MARKS)

(5MARKS)

redeem their bonds prior to the end of the year. The volatility of the ABC Kenya limited index is 30% *pa* and the continuously compounded risk-free rate of return is 4% *pa*. Assuming no dividends, use the Black-Scholes pricing formulae to determine the value of *x* (to the nearest 1%) that the building society should choose to make neither a profit nor a loss. (15MARKS)