

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL 3RD YEAR 1ST SEMESTER 2022/2023 ACADEMIC YEAR MAIN REGULAR

COURSE CODE:WAB 2309

COURSE TITLE: THEORY OF ESTIMATION

EXAM VENUE: LAB 17

DATE: 15/12/2022

EXAM SESSION: 15.00-17.00PM

STREAM: (BSc. Actuarial)

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (20 MARKS)

- a) Explain clearly the following terms as used in theory of estimation.
 - i. Sufficiency
 - ii. Weak Consistency
 - iii. Completeness
 - iv. Uniformly Minimum Variance Unbiased Estimator.
 - v. Most Efficient Estimator
 - vi. Unbiasedness

[6 Marks]

- b) Let $X_1, X_2, X_3, ..., X_n$ be a random sample of size n from the Poisson population with parameter λ . Show that $T_n = \frac{\bar{x}}{1+\frac{1}{n}}$ is consistent for λ . [6 Marks]
- c) Let $X_1, X_2, ..., X_n$ be a random sample of size n from the exponential distribution with pdf $f(x; \theta) = \frac{1}{\theta} e^{-x/\theta}$. Show that \overline{X} is unbiased for θ . [6 Marks]
- d) Given two estimators of population mean (μ) as $T_1 = \frac{(X_1 + 2X_2 + X_3)}{4}$ and $T_2 = \frac{(X_1 + X_2 + X_3)}{3}$ where X_1, X_2 and X_3 are from $N(\mu, \sigma^2)$ distribution. Prove that T_2 is more efficient than T_1 . [6 Marks]
- e) Let $X_1, X_2, ..., X_n$ be iid Uniform [a, b] random variables with a known. Find an unbiased estimator for b. [6 Marks]

QUESTION TWO (20 MARKS)

- a) Let $X_1, X_2, ..., X_n$ be iid random variables from the $N(\mu, \sigma^2)$ distribution. Find the maximum likelihood estimators of μ and σ^2 [11 Marks]
- b) Let $X_1, X_2, ..., X_n$ be iid random variables from a uniform distribution on the interval $(\theta 1, \theta + 1)$.
 - i. Find the method of moments estimator of θ .
 - ii. Is the obtained estimator unbiased for θ ? [9 Marks]

QUESTION THREE (20 MARKS)

- a) Use the Lehmann Scheffe method of construction of minimal sufficient statistics to find the minimal sufficient statistic for $\theta = (\mu, \sigma^2)$ given $X_1, X_2, ..., X_n$ are iid random variables from (μ, σ^2) . [9 Marks]
- b) Let $X_1, X_2, ..., X_n$ be a random sample of size n from $N(\mu, \sigma^2)$. Find Fisher's information $I(\mu)$ necessary for estimation of the Population mean(μ) hence the associated Cramer-Rao lower bound. [11.Marks]

QUESTION FOUR (20 MARKS)

Let $X_1, X_2, ..., X_n$ be a random sample from a population having probability density function;

$$f(x) = \begin{cases} \frac{2}{\theta^2} (\theta - x) , 0 < x < \theta \\ 0, \quad Otherwise \end{cases}$$

Let $T = \frac{3}{2}\bar{x}$ be an estimator of θ . Find the Root Mean Squared Error of the estimator T [20 Marks]

QUESTION FIVE (20 MARKS)

- a) Let $X_1, X_2, ..., X_n$ be iid Poisson random variables with $f(x, \theta) = \frac{e^{-\theta} \theta^x}{x!} x = 0,12, ...$ Show that the maximum likelihood estimator for θ is \overline{X} . [8 Marks]
- b) Let $X_1, X_2, ..., X_n$ be a random sample of n observations from a population having p.d.f $f(x) = \begin{cases} \frac{2x}{\theta^2} & 0 \le x \le \theta \\ 0, & otherwise \end{cases}$ Check if $T = \frac{3\bar{x}}{2}$ is consistent for θ [12 Marks]