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Abstract

Many studies have been conducted on properties of bitopological spaces

and aspects of continuity over a long period of time and different results

have been obtained so far. However, pointwise characterization of various

aspects of continuity has not been done in bitopological spaces. More-

over, our work is aiming at establishing particular separation criteria for

bitopological and spaces where N > 2. This therefore calls for an in-

depth study of continuity and separability in bitopological spaces. The

objectives of the study were to: characterize notion of ij-continuity in

bitopological spaces; establish separation criteria for bitopological spaces

via ij-continuity; and determine extensions of continuity and separability

in N -topological spaces. The methodologies involved use of criterion for

continuity, criteria for inverse continuity, separation axioms and condi-

tions for normality. The results showed that various continuity notions

such as πλ, θη and πd exist in bitopological spaces. For separation cri-

teria, the results showed that if bitopological spaces are T0, T1, T2 and

T 5
2
then T0, T1, T2 and T 5

2
properties are both topological and hereditary.

For extension and separability in N -topological spaces results indicated

that properties can be naturally extended to N -topological spaces. The

results obtained are useful in studying topological deformations such as

stretching which is fundamental in understanding the shape and structure

of the universe and formulations of real functions and topological map-

pings. Our results also help in deep understanding of molecular biology

more particularly on DNA structure. Our results also play a great role in

understanding the applications of computer topology such as line, ring,

star and hybrid topologies.
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Chapter 1

INTRODUCTION

1.1 Mathematical Background

A bitopological space is a mathematical notion that was first introduced

by Kelly [39] in the study of quasi-metrics. A metric or distance function

can be defined as a distance between each pair of point elements of a set.

The authors Levine [48] and John [36] stated that any metric space has

some metric distance. A nonempty set with a metric structure is also

referred to as metric space under certain conditions which are satisfied

by axioms. Topological and bitopological spaces involve structures which

are endowed by topologies or structures.

A nonempty set X is said to be a bitopological space if and only if it

is equipped with two topologies say τ1 and τ2. Therefore, (X, τ1, τ2) is a

bitopological space. Researcher Martina [47] defined a bitopological space

to be a space that is endowed by two topologies which are quasimetrics.

From the work done by Kocinac [43] and Piyali [59] also stated that a

bitopological space is equipped with two topologies. The work that was

effected by Arhangel’skii [10] gave an account on quasimetrics as topo-
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logical structures induced on a set by a metric. A bitopological spaces

can exhibit some general characteristics for instance compactability. If a

space has an open cover with finite subcovers then that space is said to

be compact. The result of the work that was done by Sasikala [65] and

Steve [71] affirmed that the union of the topologies is a member of the

open cover in a bitopological space.

Every open cover has the finite subcovers which are the cardinality of

such sets. Secondly, we consider openness as a property that is exhibited

by bitopological spaces. An open bitopological space is from a set that

has no limits that is both lower and upper limits. Open sets contain all

the interior points Gurnn [27] and Allama [3]. A subspace is semi-closed

if the interior closure of that set is subset of itself.

Next, bitopological spaces are seen to have closedness property. Re-

searchers Henri [28] and Budney [16] stated that closedness is a basic

concept in mathematical related areas. Points are closed to each other if

they are next to each other. Given that a bitopological space (X, τ1, τ2) is

closed then; the empty set and the entire set X are closed sets. Moreover,

Van [78] gave that the intersection of any collection of closed sets is also

closed. Lastly, the union of any finite collection of closed sets is itself also

closed.

Another property exhibited by bitopological spaces is normality. Sup-

pose that a topological space is normal then its bitopological space is also

normal. Bitopological spaces also exhibit normality as a property since

it can be extended from the topological spaces to bitopological spaces as

seen from the work of Birman [15] and David [21]. Normality is when

the two disjoint closed sets are separated by an open set. According to
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Singal [69] it is indicted that a space can be perfectly normal if that space

admits enough continuous real valued functions. Bitopological spaces are

termed to be normal by extension from the topological spaces. The fact

that topological structures are induced with the properties of normality.

Consequently bitopological spaces will inherit same property by exten-

sion. However, the condition of two disjoint closed sets being separated by

open set must be met. Hence, any bitopological space that satisfy these

conditions must be normal. The scholars Tkachenko [76] and Just [37]

in the study of K-normality of dense topological subspaces stated that a

normal space is not necessarily normal in a bigger space. Furthermore,

separability is a property that is exhibited by bitopological spaces.

From the work of Nour [52] a separable bitopological space is defined

as a space with a set containing dense subset of finite cardinality for in-

stance when we have a sequence xn where n ranges from 1 to ∞. Any

infinite countable is a separable space. Separation axioms that have been

implied by different authors in their studies involve: Kolmogorov space,

Fretchet space, Hausdorff space, Urysohn space, Regular Hausdorff space,

Tychonoff space, Normal Hausdorff space, Completely Hausdorff space

and Perfectly Normal Hausdorff space.

These separation axioms are denoted as T0, T1, T2, T2 1
2
. Regarding

Ananga [5] it is stated that they are separation axioms since they define

the notion of topological spaces. These separation axioms may be used

as extra conditions to describe the structures of what spaces are. Some

topological structures may be considered as infra topologies and supra

topologies. These topologies continuously map elements from domain

to codomain of different sets. They deal with two universal sets simul-
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taneously hence they are very vital in mathematics analysis. A single

structure called binary structures has been constructed by Marcus [47]

and Nicolas [50] which give information about two universal sets and this

can as well be initiated to the concepts of binary topological spaces. For

the finite and countable cardinality in a bitopological space, a function

mapping any of these spaces are continuous. From the work that was

done by Karel [38] the result shows that a subset of a Hausdorff space is

countable dense.

A function mapping a separable space to another space is intern sep-

arable Kilcman [44]. In order to carry out a study of any topological

space, one would consider the restrictions that are involved and hence

imply the separation axioms to determine which topological or bitopo-

logical space to be under taken. Some of the separation axioms that

this study considers are: T0- Kolmogorov space, T1-Frechét space, T2-

Housdorff space, T2 1
2
-Urysohn space, T3-Regular Housdorff space, T3 1

2
-

Tychonoff space, T4-Normal Housdorff, T5-Completely normal Housdorff,

and T6-Perfectly normal Housdorff. T1- space or Frechét space is a bitopo-

logical space in which every two disjoints closed subsets are topologically

separated by neighborhoods. Some of the separation axioms imply each

other.

For instance, Kolmogorov space implies Fretchet space. Kolmogorov

is a space that has two disjoint sets that are topologically separated by

two open sets in that space. If one open set is a member of a set in that

space then it suffices that the other open set does not exists in that set.

The intersection of open sets in Frechét spaces is not an empty set, this

consequently applies to Kolmogorov spaces. Bitopological spaces show

4



continuity property when mapping is done from one bitopological space

to another. Some of the aspects of continuity of bitopological spaces where

research has been done include weak continuity, semi continuity, strong

continuity among others. Continuity refers to the mapping of elements

from one space to another without any break occurring. Continuity is the

smooth movement of a function without any stop that causes discontinu-

ity. Continuity is determined by functions.

From the work done by Caldas [18] shows that a continuous a function

maps one bitopological space to another space is continuous if and only

if it is continuous at each point. As stated in Albowi [4] a function g

that is mapping elements of one bitopological space to another bitopo-

logical space. Hence, g is a continuous function. Likewise a function f

mapping a bitopological space X to a bitopological Y is continuous if

f : (X, τ1) → (Y, τ1), David [20]. Similarly, f : (X, τ2) → (Y, τ2) then this

function is said to have pairwise property since it is mapping members

of same topologies from one space to another. Results from Fora [25]

states that a function is pairwise continuous if it maps open point from

one bitopological space to another independently.

Suppose both discrete and trivial topological structures are induced

to different bitopological spaces. Then any function mapping an open

subset from trivial bitopological space to another trivial space is also

continuous as indicted by Samer [64]. Most aspects of continuity can be

extended from one space to other spaces given that a function mapping

them is continuous. These are weak continuity, strong continuity, semi

continuity, and local continuity. This can be obtained by the use crite-

rion for continuity as a methodology. From the work that was done by
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Ananga [5] on the study of strong continuity and almost continuity it

is observed that weak invariant, strong invariant and other invariants of

continuity occur and arise in very many ways in the field of mathematics.

The notion of strong continuity was first undertaken by Levine [48]. For

topological spaces that exhibit the homeomorphic property, any function

mapping them is continuous. In addition, the inverse of this function is

also continuous. Methodology of continuity is applicable as well when un-

dertaking a study of continuity in different topological spaces. Criterion

for continuity as methodology can also be employed when we have three

bitopological spaces for instance (X, τ1, τ2), (Y, δ1, δ2) and (Z, η1, η2). Sup-

pose f : X → Y and g : Y → Z then f and g are continuous functions as

it is given by Aly-Nafie [8].

Thaikua [75] gave open definition of the word function as an object

that depends on another factor or factors. For instance, plants that grow

in the field depend on factors like climate, soil type and other environmen-

tal factors. The study conducted by Parvinder [56] also gave definition of

a function as a mathematical object that relates input also called domain

to an output that is also called codomain.

Some functions have both forward and reverse mapping of elements

between topological spaces. Reverse functions undo the forward mapping

of the elements. Suppose the function f is obtained by squaring the ele-

ments from the domain space, then the inverse of a function f is obtained

by determining the square root of elements from codomain. From the

work of Einsiedler [23] states that a bitopological space is said to be con-

tinuous if and only if one bitopological space can be mapped to another

bitopological space by a function f. When a function f maps elements

6



from a domain topological structure to another corresponding elements

in codomain then it is pairwise. For instance when a function indepen-

dently maps elements of topological structures in one space to another

space then, the function is said to be pairwise continuous as stated by

Archana [9]. In our work, we have tried to focus more on some particular

aspects of continuity that are exhibited by bitopological spaces. Studies

which were done by some authors such as Birman [15] and Abu-Donia

[6] showed that these aspects of continuity can as well be extended from

one space to other spaces. In topology and related areas of studies ex-

hibit these aspects of continuity which include: Weak continuity, Strong

continuity, Semi continuity, and Local continuity. From the Kohli [42] in

the study of strong continuity and almost continuity stated that several

weak, strong and other invariants of continuity occur and arise in very

many ways in the field of mathematics. The notion of strong continu-

ity was introduced by Levine [48]. Later the study of strong continuity

was studied by very other authors. For instance Noiri [51] initiated the

σ-continuity. Study on weak continuity was carried out by Van [78] and

Tahilini [73] stated that a function is weakly continuous if and if the in-

verse of every open set in codomain is also open in the domain space. To

understand this work better, we outline some basic concepts in the next

section.

1.2 Basic Concepts

This section outlines the basic concepts which are useful in understanding

this study.
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Definition 1.1. [39, Definition 1.2] A bitopological space (X, τ1, τ2) is

a space that is endowed with two independent topologies say τ1 and τ2

denoted as (X, τ1, τ2).

Definition 1.2. A function χ is said to be θη-continuous if the inverse of

open set in a bitopological space is θ-open set in a bitopological space X.

Definition 1.3. [42, Definition 2.1] Given that a function f is mapping

a topological space (X, τ) to topological space (Y, δ) then f is said to be;

strongly continuous if the inverse every open set in Y is open in (X, τ).

A function f is perfectly continuous if every open set in topological space

(Y, δ) is open in (X, τ).

Remark 1.4. [33, Remark 3.12] If f : (X, τ) → (Y, σ) is g-closed and

g : (Y, σ) → (Z, γ) is closed, then their composition need not to be a

g-closed map.

Definition 1.5. [63, Definition 2.6] A bitopological space (X, τ1, τ2) is

called T1 space if for all elements x and y are members of X where x ̸= y.

Then there exists an open set U ∈ τ1 and open set V ∈ τ2 such that x is

a member of U and y is a member of V.

Definition 1.6. A function χ : X → Y is ij-continuous if and only if

the inverse image j-open in a bitopological space (Y, δ1, δ2) is i-open in a

bitopological space (X, τ1, τ2).

Definition 1.7. [1, Definition 1.4] A bitopological space (X, τ1, τ2) is

called pairwise T0 if and only if for any two distinct points x, y ∈ X, there

exists a set U ∈ τ1 ∪ τ2 such that x ∈ U.

Remark 1.8. A topological space πB(X, τ) shows open subsets in a

topological space (X, τ).
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Example 1.9. [14, Example 3.10] There exists a separable countably

compact Tychonoff space X containing open countably compact disjoint

subsets U0 and U1 such that the intersection U0 ∩ U1 is weakly separable

but non separable.

Definition 1.10. [40, Definition 3.2] A mapping f : X → Y is called

ij − β-continuous (resp. ij-precontinuous, ij − α-continuous) if and only

if the inverse of each i-open set in Y is ij − β-open (resp. ij-preopen,

ij−α-open) in X. A function f is therefore said to be pairwise if and only

if it is ij −Q where Q = β continuous, precontinuous, or α-continuous.

Definition 1.11. [73, Definition 3.4] Let (X,Nτ) be an an N−TS. If for

each decreasing (respectively increasing) Nτ -closed subset W in X and

for each s does not belongs toW there exists an Nτ -neighbourhood G of s

and an Nτ -neighbourhood H of W such that G is increasing (respectively

decreasing). An Nτ − T1 space Nτ -regular space is said to be Nτ − T3.

Definition 1.12. [73, Definition 3.4] Given that (X,Nτ ) is N -topological

space then if Nτ1-open set and Nτ2 are disjoint points which are separated

by open neighborhoods. Hence Nτ − τ1 space is Nτ -regular space.

Definition 1.13. A subset W of X is said to be πλ-open in X if and only

if the W̄ ⊂ W . A function χ : X → Y is said to be πλ-continuous.

Definition 1.14. [75, Definition 2.5] (X, τ1, τ2, ...τN) is said to be N -

topological space is a space if it is equipped with N arbitrary number of

topologies.

9



1.3 Statement of the Problem

Some open questions on aspects of continuity in bitopological spaces have

been raised for over a long period of time. From the research that was

conducted by [2] on pairwise continuity in bitopological spaces. The main

question posted was that what happens if we consider topologies N > 2?.

In our study, we looked at some aspects of ij-continuity in bitopological

spaces and topological spaces with N > 2. On separability, quite a num-

ber of separation axioms have been studied by different authors such as

Ruppaya and Hossain [63], Nour [52], Piyali and Binod [59] among others.

However, unique and new criteria arise quiet often and this notion of

separability has never been exhausted particularly on topological spaces

where number of topologies are more than two. The fact that some con-

cepts of separation axioms in bitopological spaces satisfy topological and

heredity properties. Rupaya and Hossain [63] asked a question that Are

there particular separation axioms that act only on bitopological spaces.

In our study we have considered this question and tried to establish sep-

aration axioms for bitopological spaces via ij-continuity. We have also

tried to show the extension of semi-continuity, strong continuity and weak

continuity as aspects of continuity and separation axioms inN -topological

spaces by the use of notion of ij-continuity.

10



1.4 Objectives of the Study

1.4.1 Main objective

The main objective of this study was to characterize continuity and sep-

arability in bitopological spaces.

1.4.2 Specific objectives

The specific objectives of this study were:

(i). Characterize notion of ij-continuity in bitopological spaces.

(ii). Establish separation criteria for bitopological spaces via ij-continuity.

(iii). Determine extensions of continuity and separation axioms in N -

topological spaces.

1.5 Significance of the Study

The study of bitopological spaces is vital since it is a very powerful tool in

almost every field of contemporary mathematics such as general topology,

real analysis, metric spaces, function analysis among others. A bitopo-

logical space gives a complex nature of the examples to which the theory

applies. This can in turn assist in achieving great economy effort if one

proof can be applied to many contexts for instance, continuous functions

in bitopological spaces help in computing output in mathematics based

11



on the relation between various important variables in contemporary so-

ciety which is relevant in construction industries and factories.

Our results are applied in the areas of general topology and functional

analysis. The answer to the question on weather properties of bitopologi-

cal spaces and its aspects of continuity can be extended to N -topological

spaces aid in understanding the deformations of topological and bitopo-

logical spaces such as stretching which explain the shape and structure

of the universe and formulation of real functions. Our results also help

in deep understanding of molecular biology more particularly on DNA

structure.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter entails a review of related literature for some aspects of

continuity in topological and bitopological spaces. We also consider liter-

ature for separation axioms that have been described by different authors

in both topological and bitopological spaces.

2.2 Continuity in bitopological spaces

This part describes continuity as a property of bitopological spaces.

Proposition 2.1. [35, Proposition 2.3] A bitopological space (X, τ1, τ2)

is a space that is equipped with two topologies.

Proposition 2.1 clearly indicates the twin topology structure in a

bitopological space. Some scholars such as Jesper [35] and Marcus [46]

13



showed that when a non empty set is equipped with twin topological struc-

tures say τ1 and τ2 then that space becomes a bitopological space denoted

as (X, τ1, τ2). Work carried out by Fuad [26] on some properties exhibited

by these structures shows that a bitopological space has two structures.

For compactness the results show that the union of these structures have

their subcovers in these structures. Compactness property exhibited by

more than two topological structures has not been exhausted. In our

study we have shown that a non empty set X can as well be endowed by

N -topologies. Bitopological spaces are seen to be continuous as described

by Fora [25] and Ittanagi [30]. Continuity in bitopological spaces is when

a function maps space to another without any break as given by Nada

[49].

A function f that maps one bitopological space to another bitopo-

logical space can as well map each closed sets which are members of a

bitopological space then that function is also said to be continuous as

stated by Duszynski [22]. Bitopological spaces can be clopen this is seen

from research work that was done by Kumar [45] also explains that clopen

set is when the structures are both open and closed. A function that is

mapping closed set from domain space to a codomain space is said to be

a closed function. This shows clearly that bitopological spaces exhibit

closedness and open properties. Since bitopological spaces are equipped

and endowed by two independent topologies or topological structures as

a result of this two topologies exhibit many properties to the space such

as closedness, openness, normality, compactness, continuity among oth-

ers. Continuity of bitopological spaces exhibit some forms and aspects

of continuity which may include weak continuity, strong continuity, semi

14



continuity, global continuity, almost continuity among others. Some of

the literary work that have been done on these aspects of continuity by

different authors are given by the following algebraic obstructions.

Theorem 2.2. [4, Theorem 1.2] Given that f : (X, τ1, τ2) → (X
′
, δ1, δ2)

then a function f is continuous.

Theorem 2.2 shows that a function f maps one bitopological space to

another bitopological space. A function f maps every open set in domain

to its open image in codomain. The inverse image of every open set in

codomain can also be mapped by a function f to open set in domain.

From Kelly [39] it is stated that pairwise continuity is when a function f

maps definite structures from one space to another. Consequently, topo-

logical structure τ1 in one space is mapped to τ1 in space two.

Mapping that involve more than two structures in topological spaces

have not been worked on adequately. In our study, we have considered a

map from one bitopological space to another bitopological space which are

endowed by different topologies more than two. Bitopological spaces may

have covers which is a member of the union of the topological structures.

When there exists a finite subcover then this space has compactness prop-

erty as stated by Arunmanan [11] and James [34] in their studies.

Moreover, we have considered the compact property in bitopological

spaces when Ui such that i ∈ I must contain more than one member from

topological structures. For locally compact regular spaces there exists a

neighborhood. A study in compactification was also initiated by Simon,

[68]. Result showed that every locally compact regular space there exists

a neighborhood at each point of closed set. However, this has not been

shown on clopen topological spaces. The researchers Albowi [4] and Ivan

15



[31] conducted a study on compactness property. The result shows that

when a function mapping a bitopological space to another is continuous

then, it has compactness property. Suppose f : (X, τ1, τ2) → (Y, δ1, δ2)

then if f : (X, τ1) → (Y, δ1) and also f : (X, τ2) → (Y, δ2). A function f is

therefore continuous and is compact if the bitopological spaces are pair-

wise compact to each other. Kelly [39] conducted a research on pairwise

compactness. Results show that when a bitopological has an open cover

say U and if i is a member of U then open cover Ui exists in the union of

two topological structures. In our study we have considered compactness

in N -topological spaces. A bitopological space is pairwise Hausdorff if it

has two disjoint points which are topologically separated by open sets.

Each disjoint is a member of respective open set.

Normality is a property that is seen in spaces. A space is said to be

normal if disjoint closed sets can be separated by open neighborhoods and

the intersection of the open sets is empty.

Theorem 2.3. [39, Theorem 2.7] Given that (X, τ1, τ2) is a bitopological

space then it is a pairwise normal space.

Theorem 2.3 illustrates that the product of two independent topolo-

gies is not normal as given by Kelly, [39]. If we have (X, τ1, τ2) to be a be

the real line with metrics τ1(, ) and τ2(, ) defined on quasi-psuedometrics

τ1(, ), τ2(, ) and U(, ), V (, ). In our study we have considered that the

product of same topologies in independent spaces are not necessarily nor-

mal as affirmed by David [21].

A function f that maps one bitopological space to another is said to

be homeomorphic continuous if and only f is continuous or if the inverse
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of f is also continuous. Tala [74] conducted a study to show that given

two bitopological spaces then, a function is said to be continuous the open

inverse subset in the codomain space is also open in domain space. We

have shown the same aspect in tritopological space in our study.

Research that was carried out by Abdalla [1] indicates that a function

f can map one bitopological space to another bitopological space if it is

a bijective function. However, continuity is not differentiated whether in

closed, open or homeomorphic bitopological spaces. In our work, we have

presented these properties with topologies that equip non empty sets.

Closedness property of bitopological spaces is observed when both empty

set and that set itself are closed. Therefore, for these spaces to exhibit

closedness property the following axioms must be fulfilled as showed by

Sheik [66].

The aspect of normality and separation axioms such as T0 and T1

in topological spaces was also done by Einsiedler [23]. If T1-space of a

bitopological space X is said to be normal on another bitopological space

Y. Then it implies that Y is also a Tychonoff space. Therefore, A function

f is continuous at each point if and only if there is a member of space X

and is an open subset which is mapped to space Y. Likewise the inverse

of every open subset in codomain space is also open in X. In our study,

we have considered a T 5
2
-space.

From Piyali [58] it implies that any function that is mapping a bitopo-

logical space to another space is continuous if and only if the inverse of

the codomain is a member of the domain and also the inverse of the do-

main is in the codomain space. When both discrete and trivial topological

structures equip different spaces then functions f and h that are mapping
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each discrete topological space to another and trivial bitopological space

to another are also considered to be continuous.

A scholar Bhattacharya [17] conducted study on openness as a prop-

erty of bitopological spaces. Given that two topologies τ1 and τ2 are open

then their union is also open. In our study we have presented openness

property in N -topologies by showing that the union of N -topologies are

also open. Study from Nicolas [50] indicated that a function f mapping

a bitopological space to another is seen to be open if and only if their

pairwise mappings are also open. However this property has not been

shown with spaces with more than two topologies. In our study we have

considered this in N -topological spaces.

Homeomorphism is a property that is seen in bitopological spaces

when a mapping function f is bijective this was shown by Ravi [61] and

Adem [2]. We have considered in our study homeomorphism in three

successive bitopological spaces which are endowed by different topologies.

For separability in topological spaces there are countable dense subsets of

the sets that form bitopological spaces. The fact that a subspace is pair-

wise dense is shown from the work of Abdalla [1]. This is because closure

of the subset of one topological implies the closure of another topological

space as well as that of set X and can be continuously mapped to another

topological space. Our study has shown that bitopological spaces exhibit

countable dense subset which must be a member bitopological spaces.

Study on on connectedness and compactness was effected by Arun-

manan [11] and Pervin [57]. The results show that if a domain space is

locally connected then it suffices that the codomain has an element which

is normal. The existence of a subspace of cardinality of the intersection
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of open neighborhoods is not shown. For local connected spaces and their

dense subspaces are seen to be normal and hence for every open neigh-

borhood there exist open subsets which are members of that set. For a

surjective function f that maps a complete regular spaces to each other.

If the inverse of the codomain space is in the domain space is compact.

Hence any element in the codomain space is an almost regular spaces.

Birman [15] carried out a study on almost completely continuous surjec-

tion. Results show that a function maps a clopen sets to another a clopen

sets. In our study we have shown the mapping of closed sets to clopen

sets from one space to another.

Corollary 2.4. [53, Corollary 5.6] Suppose f is mapping a completely

continuous closed space. Then that function is surjective.

Corollary 2.4 indicates that a function mapping one bitopological

space to another is completely continuous closed if every subset in codomain

is regular. Researcher John [36] conducted a study on the composi-

tion of functions mapping three successive bitopological spaces (X, τ1, τ2),

(Y, δ1, δ2) and (Z, η1, η2). The composition of two functions mapping spaces

is continuous as well. In our study we have also considered the compo-

sition of three functions on continuity aspect. The composition of func-

tions g and f implies that f : (X, τ1, τ2) → (Y, δ1, δ2) and g : (Y, δ1, δ2) →

(Z, η1, η2). Then it suffices that g ◦ f : (X, τ1, τ2) → (Z, η1, η2) is also

continuous as indicated by Kim [41] and Coy [19].

A function f that is mapping one bitopological space to another

bitopological space is said to be continuous if the inverse of the codomain

contains a member that is closed in the codomain space. In our study

we have extended this concept to N -topological spaces. Suppose two
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functions are mapping one topological or bitopological space to another

independently then they are continuous. Then the composition of these

two functions mapping the first topological or bitopological to the third

bitopological space is also said to be continuous. As stated by Jafari [33]

and Swart [72] let X and Y be bitopological spaces, f is a function map-

ping X to Y . Then f is homeomorphic if it continuous, if f is a one to

one and onto which implies implies that the inverse of Y is in X. It is also

homeomorphic when its inverse is also continuous.

For the composition of the two functions to be completely continuous

then it implies that one of the functions must be almost continuous and

the other function must be able to map a regular open set to another

regular open set.

Theorem 2.5. [24, Theorem 2.6] Given that X and Y are bitopological

spaces. A function f is pairwise continuous if it maps (X, τ1) to (Y, δ1)

and (X, τ2) to (Y, δ2).

The study of properties such as pairwise Lindelöf in bitopological

spaces was first initiated by Fora [25]. Establishment of more studies on

concepts of pairwise continuity, pairwise open and pairwise homeomor-

phism was initiated more. Studies show that given different bitopological

spaces which are endowed by discrete topologies Kilcman [44]. Therefore,

a function f mapping one bitopological spaces to another bitopological

space is continuous. In cases where bitopological spaces are not pairwise

continuous or pairwise Lindelöf continuous a function f that maps one

bitopological space to another bitopological space has been shown not

to be continuous as indicated by Arhangel’skii [10]. Bitopological spaces

that are mapped by a function to each other are said to be pairwise
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semi-regular if and only if the functions mapping bitopological spaces are

almost pairwise open as shown in the next result as shown by Budney

[16].

Theorem 2.6. [51, Theorem 4.1] A pairwise semi-regular space is pair-

wise open if and only if it is almost pairwise open.

Lemma 2.7. [30, Lemma 7] Let (X, τ1, τ2E) be a soft bitopological space.

Bitopological spaces have also been observed to exhibit property of

soft sets. Soft set property in bitopological spaces has been investigated

by some authors such as Ittanagi [30] and Marcus [46] among others.

Bitopological spaces that exhibit soft sets property are also showing some

other properties and concepts. An account that if there are two soft

bitopological spaces and a function f that maps one soft bitopological

space to another then that function f is regarded to be continuous was

also given by Ittanagi [30].

From the research work did by Norman [53] elaborates that a func-

tion f in ordinary scenarios means a relation between input and output.

Our study has included continuity of spaces involving more topological

structures. Studies have been conducted on some aspects of continuity

such as weaker forms of continuity and semi-continuity. Likewise Bakier

[13] conducted studies on semi continuity as an aspect of continuity that

is exhibited by bitopological spaces where it is seen that a function f can

also be semi-continuous by mapping one bitopological space to another.

These are given in the results that follow.

Example 2.8. [13, Example 5.4] Given that f : (X, τ1, τ2) → (Y, δ1, δ2).
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f is semi-continuous if the inverse of open subset in space Y is semi-open

in X.

Most results obtained by Trishla [77] show that any function f that

is taking one bitopological space to another bitopological space must be

pairwise continuous and the inverse of the codomain of that function forms

a cardinality of the domain space. Resaerch work that was carried out by

Khedr [40] on the decompositions of i-continuity and pairwise continuity

in bitopological spaces. Their results of continuity in ij-sets and spaces

have been described in details. In our study we have characterize the

notion of ij-continuity in bitopological spaces considering aspects such

as between strong continuity and almost continuity are also aspects of

continuity in bitopological spaces.

2.3 Separation Axioms

Different authors carried out studies on continuity and some of its as-

pects in various spaces. From their studies respective results have been

obtained. Scholars who conducted these studies used different separation

techniques in order to achieve successful results. Suppose that a scholar

may need to test properties of any separation axiom then they have to

choose a space say either topological or bitopological space to effect the

same.

Moreover, separation axioms also infer the restrictions that mathe-

matics researchers always make regarding the kind of space that they

intend to consider. Similarly, studies also show that these axioms apply
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to topological or bitopological spaces since we can distinguish disjoint sets

and distinct points in different sets. The outcome of the study of Fora

[25] indicated that topological and bitopological spaces whose elements

can be distinguished are referred to as separable topological spaces.

A bitopological space (X, τ1, τ2) has got classes which include infra

topologies and supra topologies. Infra and supra topologies are classes

introduce some new properties in bitopological spaces as stated by Abu-

Donia [7]. Topological spaces exhibit properties T 1
2
, Tb, αTb, Td, αTd.

These properties can be extended to bitopological spaces. For soft bitopo-

logical spaces studies have been done and there are interesting character-

izations as indicated by Patil [54]. Some of the binary separation axioms

are binary T0, binary T1, binary T2 spaces. In this our study we have con-

sidered the properties of T2 1
2
-spaces in bitopological spaces. This result

also shows that binary soft property can be inherited.

Theorem 2.9. [55, Theorem 3.20] Suppose (X, τ) is a T2 then it has

hereditary property.

From the the studies conducted by Rajesh [60] results show that quasi

T 1
2

∗ space is also another type of separation axioms. However, T 1
2

∗ has not

been been effected via ij-continuity. In our work, we have shown separa-

tion criteria via the notion of ij-continuity. Authors such as Hussein [29]

and Rupaya [63] showed heredity and topological properties which seems

to be exhibited some separation axioms among in topological spaces. In

our work we have shown hereditary properties of these separation axioms

on bitopological spaces and where number of topologies is greater than

two. Some results of heredity property are given below.
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Theorem 2.10. [29, Theorem 3.1] A bitopological space which is T0 is

considered to have hereditary property.

Subspace properties are inherited as seen in Theorem 2.10 illustrates

that if a bitopological space (X, δ, τ) is T0 space we have open set U

whereby U ∈ δ ∪ τ hence it implies that m ∈ U. We have shown how

hereditary is induced by N -topological spaces to subspaces.

Theorem 2.11. [52, Theorem 3.5] Let (X, τ) be a topological space and

a T1-space.

Most of the research on separation axioms acting on aspect of homeo-

morphic as a property in bitopological spaces was conducted by Patil [54].

The result show that homeomorphic property is exhibited by bitopological

spaces. For a bitopological space the homeomorphic image of a particular

separation axiom is that particular axiom. The proof that was shown

by Rajesh [60] shows that T2-space has both hereditary and topological

properties. If (X, τ1, τ2) is a bitopological space then it follows that it

has two disjoint points which can be separated by the open sets. Each

disjoint point exists in each open set independently. This implies if one

point belongs to one open set, then it is not a member of the other open

set as stated by Swart [72].
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Chapter 3

RESEARCH

METHODOLOGY

3.1 Introduction

For this work to be completed successfully, a good background knowledge

of general topology, continuity of functions and functional analysis are

found to be more crucial and vital in our work. We have restated some

known results which were useful to our work. The research methodology

employed included; criterion for continuity, criteria for inverse continuity,

separation axioms or Tychonoff theorem and conditions for normality.

3.2 Criterion for continuity

Criterion for continuity is a methodology that has been used by various

authors to show the continuity property of functions in topological spaces.

Criterion for continuity is a technique which shows that a function map-
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ping one bitopological space to another bitopological is continuous. From

the research that was done by Birman [15] if a function f is taking an

element from one bitopological space to another bitopological space, then

f is said continuous if and only if its inverse is also continuous. Kelly [39]

When a function f mapping (X, τ1, τ2) → (Y, δ1, δ2) is said to be contin-

uous if f : (X, τ1) → (Y, δ1) and also when we have f : (X, τ2) → (Y, δ2)

therefore, a function f is said to be pairwise continuous. Zabidin [80] af-

firmed that a function is only pairwise continuous if it maps open subsets

from one bitopological space to another independently. This methodology

is used to show how members of topological structures can be mapped

from one space to another.

Suppose both discrete and trivial topological structures are induced to

different bitopological spaces. Then any function mapping an open subset

from trivial bitopological space to another trivial space is also continuous,

Samer [64]. Some researchers Birman [15] and Abu-Donia [6] have shown

that most aspects of continuity can be extended from one space to other

spaces given that a function mapping them is continuous. These include

weak continuity, strong continuity, semi continuity, and local continuity.

When this methodology is employed in any topological under study then

continuity as a property is clearly displayed.

From the study of strong continuity and almost continuity it is ob-

served that weak invariant, strong invariant and other invariants of con-

tinuity occur and arise in very many ways in the field of mathematics.

The notion of strong continuity was first undertaken by Levin [48]. For

topological spaces that exhibit the homeomorphic property, any function

mapping them is continuous. In addition, the inverse of this function is
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also continuous. Methodology of continuity is applicable as well when un-

dertaking a study of continuity in different topological spaces. Employing

this methodology, given three bitopological spaces and two functions say

X,Y and Z. If f : X → Y and g : Y → Z are continuous. By the use

of continuity as methodology the composition of these two functions will

also be continuous as indicated by Ivan [32]. In our work we have found

this technique of criterion for continuity to be very relevant since we used

it show that a function χ : (X, τ1, τ2 → (Y, τ
′
1, τ

′
2) is continuous if and only

if the inverse of the open set in a bitopological space (Y, τ
′
1, τ

′
2) is πλ-open

set in domain space (X, τ1, τ2).

3.3 Criteria for inverse continuity

Criteria for inverse continuity is a technique that can be used to show

that continuous bijection function also has its continuous inverse. This

follows that if it is both injective and surjective then any element from

the codomain space is an image of all elements in domain space. For

instance if D is an image element from codomain space which is precisely

for C. from domain space. Marcus [46] indicated that a function f is an

injective function and continuous on a space I. Since f : I → J , then this

function is said to be continuous if and only if its inverse is also continuous.

Suppose a function f is taking back an element y from a space J to I such

that f−1 is continuous, then it is referred to as to inverse function. Since

y ∈ J for simplicity we can therefore assume that y being a member of J

is not the end point of J. This implies that inverse function f−1 exists and

continuous on a corresponding interval J which is in the image range of
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f. When a function maps an open subset from the domain to codomain

it is known to be continuous. Likewise, when the same function takes

the image of the open subset from codomain back to domain space then

the inverse of f is also continuous as affirmed by Sidney [67]. Consider

a function f(x) = 5x + 3 which can also be expressed as y = 5x + 3

Therefore, obtaining this function we need to multiply our domain x by 5

and add 3 to our result. This gives 5x+ 3 as our co-domain. For inverse

we go the other way. We subtract 3 from y and then divide it by 5 this

gives (y−3)÷5. Hence the inverse of: 5x+3 is: (y−3)÷5. In our work, we

used this technique of criterion for inverse continuity to show that χ−1(x)

which is θ-open in a bitopological space (X, τ1, τ2) is also continuous since

it maps a πλ-set to a bitopological space (Y, τ
′
1, τ

′
2).

3.4 Separation axioms

Separation axiom is a technique that is used to topologically separate

disjoint points in a particular space. Separation axioms are restrictions

that researchers always make on particular topological and bitopological

spaces they are intend to conduct a study on. The notion of separa-

tion axioms has been effected by authors such as Rupaya [63] and Ravi

[61] have defined a separable bitopological space as a space with a set

containing dense subset of finite cardinality for instance when we have

a sequence xn where n ranges from 1 to ∞. Any infinite countable is

a separable space as indicated by Watson [79] and Arya, [12]. Separa-

tion axioms that have been implied by different authors in their stud-

ies involve: T0-Kolmogorov space, T1-Fretchet space, T2-Hausdorff space,
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T2 1
2
-Urysohn space, T3-Regular Hausdorff space, T3

1
2
-Tychonoff space, T4-

Normal Hausdorff space, T5-Completely Hausdorff space and T6-Perfectly

Normal Hausdorff space.

Results from the work of Ross [62] indicates that most separation

axioms have both topological property where they can induce other spaces

with topological structures. For instance if X is a bitopological space,

suppose Y is a subset ofX and a T2-space. A bitopological space (Y, τ1, τ2)

will induce topologies τ1 and τ2 to subspace (X, τ1, τ2) which will in turn

inherit all characteristics of space X. This is shown as follows.

Theorem 3.1. [63, Theorem 3.4] If (K, τ1, τ2) is T0 is a space then it

exhibits topological property.

From the study conducted by Sunganya [70] it shows that a T2-space

has both homeomorphic and topological properties. For the homeomor-

phic property a function f is continuous, if a function f is mapping one

bitopological space to another for instance f : (K, τ1, τ2) → (R, δ1, δ2).

Since a function f has homeomorphic property then it suffices that a

bitopological space K contains k1 and k2 as points. However, k1 is not

equals to k2. By the use of the technique of separation axioms f is seen

to be onto and so f(a1) = x1 likewise f(a2) = x2. This follows that f(a1)

is not equals to f(a2) and also a1 is not equal to a2. We have used these

rules of separation axioms in our results to enable us to topologically sep-

arate points by the use of open neighborhoods whereby their intersection

is empty. In our work we have establish some of these separation axioms

in bitopological spaces and spaces with more number of topologies that

are greater than two. This has been done via ij-continuity.
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3.5 Conditions for normality

Conditions for normality is a methodology that is used to show whether

topological spaces are normal or not. A normal space is one which has two

disjoint closed sets that are topologically separated by the open neighbor-

hoods. Given that X is a bitopological space, suppose m and n are closed

disjoint sets. If U and V are open neighborhoods which topologically sep-

arate the two closed disjoint points in the space (X, τ1, τ2) as stated by

Ananga [5]. Normal topological and bitopological spaces are spaces that

satisfies T4 axioms. Normality conditions are useful in characterizations

in various topological spaces.

From Caldas [18] result shows that (X, τ1, τ2) is a normal bitopological

space. Then suppose we have disjoint closed points say a and b. There-

fore, it suffices that there exists open sets U and V which topologically

separate the disjoint closed points in a space. By assumption Just [37]

highlighted that conditions for normality as a technique a is a member of

U and not a member of open neighborhood V. Likewise b is a cardinality

of V and not a member of open set U.

Since U contains closed subset a and V contains b then this space

(X, τ1, τ2) is said to be normal. Moreover, the intersection of closure

point of V and open neighborhood U is an empty set. On the other hand

if a and closed set b is not containing x which is an element of space

(X, τ1, τ2) this is seen from the work of David [21]. Then U will contain

complements elements of b. It follows that since U is open and there ex-

ists a neighborhood V of x such that the closure of V is a subset of U.

So it implies that open set V has the complement of the closure of V as

the cardinality as give by Steve [71]. Therefore, the intersection of the

30



open sets U and V is not empty. Hence in regards to this X is said to

be a regular space. In our work we have used conditions for normality as

a methodology to show the separation of disjoint points in bitopological

spaces and other N -topological spaces for only results that have only open

sets say U and V whereby the intersection is not empty.
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Chapter 4

RESULTS AND

DISCUSSION

4.1 Introduction

This chapter is the core of this work where we present the results of

this study. We consider the notion of ij-continuity, separation axioms

and their extensions to N -topological spaces. For simplicity, we denote

(X, τ1, τ2) as X and (Y, τ
′
1, τ

′
2) as Y. Since the intersection of τ1 and τ2 is a

topology on X, we are taking U1 as open set in τ1 and U2 as open set in τ2.

Similarly, the intersection of τ
′
1 and τ

′
2 on Y is a topology, consequently

V1 is an open set in τ
′
1 and also V2 is open in τ

′
2. Therefore, U1 ∩ U2 = U

which is πλ-open in (X, τ1, τ2) and also V1 ∩ V2 = V which is open in

(Y, τ
′
1, τ

′
2).
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4.2 Notions of ij-Continuity

In this section, we give an in depth characterization of ij-continuity in

bitopological spaces.

Proposition 4.1. Let χ : (X, τ1, τ2) → (Y, τ
′
1, τ

′
2) be an open function.

A subset W of X is πλ-open if and only if it is semi-closed and an

intersection of πλ-open sets in X. Moreover, χ is πλ-continuous.

Proof. To prove the first part, let W of X be πλ-open. We prove that

it is semi-closed and also an intersection of open sets in X. Let U be an

open set in X and V be open set in Y containing χ(x) for some x ∈ X.

By continuum hypothesis, there exists a πλ-open set U of X which is con-

taining x such that χ(U) ⊆ V. Since U is a πλ-open set then x ∈ U and x

belongs to U of X, then there exists a subset W of X that is semi-closed.

By criterion for continuity, λ is closed then closure interior of W is a

subset of W, that is int(W ) ⊆ W, this is because W is a πλ-open and it

has an element which is semi-closed and since W is a semi-closed subset

of X it follows that it is πλ-open set and hence x ∈ W ⊆ U. Therefore,

we have χ(W ) ⊆ V. Now, U and V are open sets in X and Y respec-

tively which implies that W = U ∩ V is semi-closed set and πλ-open in

X. Therefore, V is an open set in Y containing y and U is a πλ-open

set in X containing x such that χ(U) ⊆ V. Hence χ is πλ-continuous at

every point x ∈ X. The converse of this proposition is not true in general.

Suppose we let X = {a, b, c} and τ = {ϕ,X, {b}} therefore, it follows that

τ
′
1 = {ϕ,X, {a}, {b}, {a, b}}. Then we have the open sets πB(X, τ1, τ2) =

{X, π, {b}, {b, c}, {a, b}}. Hence it follows that we have πλB(X, τ1, τ2) =
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{ϕ,X, {a, b}, {a, c}}. Similarly, we also have the open sets in a bitopo-

logical space Y as πB(Y, τ
′
1, τ

′
2) = {ϕ,X, {a}, {b}, {a, b}, {a, c}, {b, c}}.

Then it follows that πλB(Y, τ
′
1, τ

′
2) = {ϕ,X, {a, c}, {b, c}}. If the func-

tion χ : (X, τ1, τ2) → (Y, τ
′
1, τ

′
2) is defined by χ(a) = χ(b) and χ(c) = c,

then χ is semi-continuous but not πλ-continuous.

A function χ is also πλ-continuous if the inverse of a subset in a

nonempty set is πλ-open. This is illustrated in the next result.

Proposition 4.2. A function χ : X → Y is πλ-continuous if and only if

for every open subset H of Y and χ−1(H) is πλ-open in X.

Proof. Let χ be a πλ-continuous function and B be any set in Y. To show

that χ−1(B) is also an open set in X, it is enough that χ−1(B) = ∅ in

X hence this follows χ−1(B) if B is open in X then it suffices that it is

a πλ-open set in X. However, if χ−1(B) ̸= ∅ then for every x ∈ χ−1(B),

we have χ(x) ∈ B. Since χ is πλ-continuous, this is because the inverse

of B is πλ-open in space X therefore, there exists a πλ-open set Hx in X

such that x ∈ Hx and χ(Hx) ⊆ B. By criteria for inverse continuity, it

implies that x ∈ Hx ⊆ χ−1(B). So this implies that χ−1(B) is πλ-open in

X. Conversely, if x ∈ X and we let V to be an open set in Y containing

χ(x), then x ∈ χ−1(V ) by criterion of continuity it implies that χ−1(V )

is πλ-open in X containing x. Therefore, χ(χ−1(V )) ⊆ V. Hence χ is

πλ-continuous.

Next we show that every πλ-continuous function is semi-continuous.

However, a semi-continuous function is not necessarily πλ-continuous.
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Lemma 4.3. Every πλ-continuous function χ : X → Y is semi-continuous

but the converse is not true in general.

Proof. Suppose we have a πλ-open set H of X having x as one of its

element and so it implies that χ(H) ⊆ V. From Proposition 4.2, we see

that H is a πλ-open set and x ∈ H. It therefore implies that there exists a

πλ-closed set F of X such that x ∈ F ⊆ V. By criterion for continuity, it

follows that χ is a πλ-continuous function and so it follows that χ is semi-

continuous. However, the converse is not true in general. This can be

illustrate as follows: If we have two bitopological spaces as (X, τ1, τ2) and

(Y, τ
′
1, τ

′
2), then a function χ : (X, τ1, τ2) → (X, τ

′
1, τ

′
2) is continuous. Since

the intersection of topologies is topology, therefore given the cardinalities

as X = {a, b, c}, τ = {∅, X, {b}} and τ
′
1 are τ

′
1 = {∅, X, {a}, {b}, {a, b}}

then πB(X, τ) = {∅, X, {b}, {b, c}, {a, b}}. Therefore, by criterion for

continuity, πλB(X, τ) = {∅, X, {a, b}, {a, c}}.

Similarly, πB(X, τ1) = {∅, X, {a}, {b}, {a, b}, {a, c}, {b, c}}.

So πλB(X, τ) = {∅, X, {a, c}, {b, c}}. Since members of X = {a, b, c}

therefore if we have χ : (X, τ) → (Y, τ
′
1) be defined by χ(a) = χ(b) = b,

If χ(a) = χ(b) = b, then it applies that χ(c) = c. Therefore, χ is semi-

continuous but not πλ-continuous this is because {a, c} is an open set in

πB(X, τ1, τ2) but it is not an open set in (Y, τ
′
1, τ

′
2).

Theorem 4.4. Every θη-continuous function χ : X → Y is πλ-continuous

however, the converse need not be true.

Proof. We first show that a function χ is θη-continuous. Let x be a

member of X and if we have an open set G in X then it follows that

G ⊆ X whereby G is θη-open in X. Given that V is an open set in Y,
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then if a function χ maps θη-open set G from domain space (X, τ1, τ2) to

codomain space (Y, τ
′
1, τ

′
2) such that χ(G) ⊆ Y. If χ−1(G) ⊆ X then it

suffices that χ−1(G) is θη-open in X. Therefore, χ is θη-continuous. Let

θη-continuous function χ : X → Y be πλ-continuous. Let χ : X → Y

be πλ-continuous at a point x ∈ X, if for each V of Y containing χ(x)

there exists πλ-open G in X that is containing x such that χ(G) ⊆ V .

By hypothesis, if G is a πλ-open set then it implies that there exists a

πλ-closed set F of X such that x ∈ F ⊆ V. By Lemma 4.3, if there is

an open set V in X which contains x such that χ(G) = V, by criterion

for continuity a function χ is πλ-continuous at every point x of X then

it is πλ-continuous and θη-continuous. However, the converse need not to

be true in general. For instance, if the cardinalities of X = {a, b, c} and

τ = {∅, X, {a}, {a, b}}. Then we have πB(X) = {∅, {a}, {a, b}, {a, c}}. It

suffices that πλB(X) = {∅, X, {a, c}} and θηB(X) = {∅, X} if a function

χ : X → Y is defined by χ(a) = χ(c) = a and also χ(b) = b hence χ is

a πλ-continuous function since {a} ∈ τ and {a, c} ∈ πλB(X) but {a, c}

does not exists in θπB(X).

The following consequence follows immediately.

Corollary 4.5. Every πd-continuous and δπd-continuous functions χ :

(X, τ1, τ2) → (Y, τ
′
1, τ

′
2) is πλ-continuous however, the converse need not

be true.

Proof. Suppose a function χ : X → Y is πλ-continuous. Then let an

element x to be a cardinality of X, hence x ∈ X and V is any open

set in Y that contains χ(x). By the continuum hypothesis, there exists

πλ-open set U of X containing x such that χ(U) ⊆ (V ). Since U is
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said to be πλ-open therefore set x ∈ U , there exists a d-closed set F

of X such that x ∈ F ⊆ U . Therefore, χ(F ) ⊆ V and since χ is πλ-

continuous, it suffices that it is also πd-continuous. Therefore, if χ is

πd-continuous then it is also δπd-continuous. Since we have χ to be πλ-

continuous then let U be any open set in X containing such that χ(U)

is in Y and V be any open set in Y containing χ(U). Suppose that G is

a πλ-open set in X then this implies that χ(G) = U. By Theorem 4.4,

since χ(G) = U then a function χ is πλ-continuous at every point x of

X, then a function χ : X → Y is also πd-continuous and δπd-continuous

function. To see the converse, letX = {a, b, c} and τ = {∅, X, {a}, {a, b}}.

Then it follows that πB(X) = {∅, X, {a}, {a, b}, {a, c}} and GB(X) =

{∅, {b}, {c}, {b, c}, {a, c}, {a, b}}. Hence πλ(X) = {∅, {a, c}, {a, b}, X} and

also πdB(X) = δπd(X) = {∅, X}. Therefore, if a function χ : X →

Y can be defined by χ(a) = χ(c) = a and χ(b) = b, then χ is πλ-

continuous, as {a} ∈ τ and {a, c} ∈ πλ(X) but neither πd-continuous

nor δπd-continuous {a, c} does not exists in πdB(X) = δπdB(X). This

completes the proof.

We use proposition 4.6 to illustrate that functions which are perfectly

continuous are also πλ-continuous.

Proposition 4.6. Let a function χ : X → Y be perfectly continuous.

Then χ is πλ-continuous.

Proof. Let A be any open set in Y. Then χ−1(A) is clopen in X. Hence

it implies that χ−1(A) ∈ πλB(X), then from Proposition 4.2, a function

χ is πλ-continuous since we have A to be an open set in Y. Then we can

show that χ−1(A) is a πλ-open set in X, it therefore implies that χ−1(A)
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is a πλ-open set in X, and if χ−1(A) * ∅, then for each x ∈ χ−1(A), we

have χ(x) ∈ A. Since χ is πλ-continuous then it implies that there exists

a πλ-open set Bx in X such that x ∈ Bx and χ(Bx) ⊆ A. This implies

that x ∈ Bx ⊆ χ−1(A). This therefore shows that χ−1(A) is πλ-open in X.

Similarly, if we let x ∈ X and A be an open set in Y containing χ(x). Then

it follows that x ∈ χ−1(A). By the continuum hypothesis, χ−1(A) is πλ-

open in X containing x, hence it suffices that χ(χ−1(A)) ⊆ A. Therefore,

χ is πλ-continuous. By the fact that χ is πλ-continuous then it suffices

that it is also perfectly continuous since we have an open set A in Y and

χ−1(V ) is clopen in X.

In our subsequent result we illustrate how globally indiscrete mappings

exhibit characteristics of semi-continuous functions.

Lemma 4.7. Let χ : X → Y be globally indiscrete. Then a function χ is

πλ-continuous if and only if it is semi-continuous.

Proof. Let χ be semi-continuous and X be globally indiscrete. Let U

be an open subset in X and V be open set in Y, then it suffices that

χ−1(V ) is also semi-open in X. Since X is globally indiscrete, similarly it

for globally discrete we have U as an open set in X and V be an open set

in Y containing χ(x) for some x ∈ X. By the continuum hypothesis, there

exists a πλ-open set U of X which is containing x such that χ(U) ⊆ V.

Since U is a πλ-open set, then we can say that x ∈ U. Since x belongs

to U of X then there exists a subset W of X that is semi-closed. By

criterion for continuity, the interior closure of W is a subset of W, that

is int(W ) ⊆ W. Since W is a semi-closed subset of X it implies that it

is πλ-open set and hence x ∈ W ⊆ U, since any πλ-open set may contain
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a set that is semi-closed or semi-open such that the interior closure of

that set is a subset of itself. Therefore, we have χ(W ) ⊆ V. Now, since

U and V are open sets in X and Y respectively then it follows that

W = U ∩ V is a semi-closed set and πλ-open in X. Therefore, V is πλ-

open set in Y containing y and U is a πλ-open set in X containing x

such that χ(U) ⊆ V. Therefore, χ is πλ-continuous at every point x ∈ X.

Conversely, let χ be πλ-continuous. Therefore, there exists a πλ-open set

U of X containing x such that χ(U) ⊆ V. Since U is a πλ-open set and

x ∈ U, then there exists a g-closed set F of X such that x ∈ F ⊆ U.

Therefore, we have χ(F ) ⊆ V. Since χ is πλ-continuous, then by Lemma

4.3, χ is semi-continuous. Therefore, since χ is πλ-continuous then it is

also semi-continuous.

For a function that maps a Housdorff space to a bitopological space is

is both semi-continuous and πλ-continuous. We state the result as follows.

Theorem 4.8. Let X be a Hausdorff space and Y be any bitopological

space. Then χ : X → Y is semi-continuous and πλ-continuous.

Proof. Suppose we have two functions say χ and ω let χ : X1 → Y and

if ω : X2 → Y then χ, ω : X → Y are πλ-continuous functions. Since Y

is a Hausdorff space, therefore there is set E = {x1, x2} ∈ X. Suppose

E does not exists in {x1, x2} then it follows that χ(x1) ̸= ω(x2). Since Y

is a Hausdorff space then there exist open sets V1 and V2 of Y such that

χ(x) ⊆ V1 and ω(x) ⊆ V2. Then it implies that V1 ∩ V2 ̸= ∅. Since χ and

ω are πλ-continuous functions then there exist πλ-open sets U1 and U2 in

Y containing y such that χ(U1) ⊆ V1 and ω(U2) ⊆ V2. By criterion for

continuity, the intersection of U1 and U2 is a proper subset of W that is
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W = (U1) ∩ (U2). Then it is πλ-open in Y since M ∈ Y then U ∩M = ∅.

Hence it follows that x ∈ πλ(H), this implies that H is πλ-closed in

X. Since V is any open set in Y then χ−1(V ) is clopen in X, and so

χ−1(V ) ∈ πλ(X). Therefore, a function χ is πλ-continuous. Since V and

U are open sets in Y and X respectively then we have x ∈ χ−1(V ) with

x being closed hence x ∈ {x} ⊆ χ−1(V ). Therefore, χ−1(U) is semi-open

in X. By criterion for inverse continuity, χ−1(V ) is a πλ-open set in X.

Hence χ is a semi-continuous function.

In the next theorem 4.9 we illustrate that a function χ is ij-continuous

if and only if there exists an open subset. This is indicated in the result

that follows.

Theorem 4.9. Let χ : X → Y be πλ-continuous. Then χ is ij-continuous

if X0 is an open subset of X. Moreover, χ is an ij − πλ-continuous if

χ |X0 : X0 → Y is πλ-continuous.

Proof. Let χ : X → Y be πλ-continuous then it implies that it is contin-

uous since x ∈ X. Suppose that we have open set V of Y which contains

χ(x) therefore, from Theorem 4.8 we can state that there exists a πλ-open

set U. If X0 ⊆ U then X0 also exists in X and contains x. Then it follows

that χ(X0) ⊆ V. Hence χ(x) is πλ-continuous and it is πλ-open in Y. Since

V is an open set in Y then χ−1(V ) is πλ-open in X, So χ−1(V ) is also

πλ-open in X. Given that χ−1(V ) is in X therefore it implies that for ev-

ery x ∈ χ−1(V ) we have χ(x) ∈ V. Then by criterion for continuity, there

exists a πλ-open set X0 in X such that x ∈ X0 and χ(X0) ⊆ V. Therefore,

x ∈ X0 ⊆ χ−1(V ). Then it shows that V ∈ i − X0(Y ) and χ−1(V ) are

members of ijπX0X, hence i ∈ X0 and so i is a πλ-open set in X. This χ
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is ij-continuous since X0 is an open subset of X and the inverse of open

set j in Y is i-open in X. Moreover, since sets X and Y have open sets

U and V respectively and that V of Y contains χ(x). This follows that a

πλ-open set X0 in X also contains x. Then since X0 is a subset of X and

χ(x) is a proper subset V of Y, then it implies that χ(U) is also a subset

of V. Since a function χ : X → Y it shows that X0 then χ |X0 : X0 → Y.

This follows that for all V in Y there exists j −X0(Y ) such that χ−1(V )

exists in ij − πUX0(X). Since j − X0 is open in Y and χ−1(V ) is an

element of ij − πBX0(X) then x ∈ χ−1(V ) where χ(x) ∈ V. Therefore, χ

is πλ-continuous hence it is also ij − πλ-continuous since χ |X0 : X0 → Y

is πλ-continuous.

Theorem 4.10. Let χ : X → Y is ij − πλ-continuous if for each open

set X0 of X we have η ∈ X. Such that χ |X0 : X0 → Y is πd-continuous.

Proof. Let V be any open set in Y and X0 be any open set in X, then

there exists η which is an element of X. Since η ∈ X and X0 is open

in X then it suffices that η ∈ X0 which is πλ it follows that X0 ⊆ X.

From Theorem 4.9, χ : X → Y is πλ-continuous hence there exists η ∈ X

and open set V of Y such that it contains χ(η). Therefore, it implies

that there is a πλ-open set X0 in X containing η such that χ(X0) ⊆ V.

Hence χ is πλ-continuous if and only if it is continuous at every point η

of X. Since there is an open set V of Y such that V ∈ j − X0(Y ) and

χ−1(V ) ∈ ij − πηX0(X), then it suffices that χ : X → Y is ij − πλ-

continuous. Since V is an open set in Y then χ−1(V ) is an element of

X, then by criteria for inverse continuity it implies that χ−1(V ) = ∅.

Suppose that χ−1(V ) ∈ X and every η ∈ χ−1(V ) then it shows that

χ(x) ∈ V. Then it implies that Xη exists in X where η ∈ X, hence
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η ∈ Xη ⊆ χ−1(V ). Therefore, χ−1(V ) is πλ-open in X and so it implies

that it is πλ-continuous since χ |X0 : X0 → Y with X0 having induced

properties from χ. Since χ |X0 : X0 → Y then it is also πd-continuous.

This leads to the following consequence.

Corollary 4.11. Every ij − πλ-continuous function is ij-continuous but

the converse is not true in general.

Proof. Since inverse open j in Y is i-open in X then χ is said to be πλ-

continuous if and only if it is continuous if χ(x) ⊆ Y Suppose there is

any open set V of Y which contains χ(x) then χ is πλ-continuous. This

implies that χ−1(V ) is πλ-open in X and so if χ−1(V ) is an empty set then

χ−1(V ) is also a πλ-open set in X. Hence suppose that χ−1(V ) * ∅ then

it implies that each x ∈ χ−1(V ), therefore χ(x) ∈ V. From Theorem 4.9,

χ is πλ-continuous and also there exists a πλ-open set U in X such that

x ∈ U and hence χ(U) ⊆ V, by extensions x ∈ U ⊆ χ−1(V ). It implies

that we have V in j − V (Y ). Then χ is said to be ij − πλ-continuous

since χ−1(j) is i-open in X. For ij-continuous we have V ∈ i − V (Y )

and χ−1(V ) ∈ πV (X). By criterion for continuity, it implies that every

ij − πλ-continuous function is also ij-continuous. However, not every ij-

continuous is ij − πλ-continuous. Let V be an open set in Y and U open

set in X. Then χ−1(V ) is πλ-open in X. For open set U of X we have

χ(U) ⊆ V, therefore it follows that x ∈ U ⊆ χ−1(V ). Let X = {a, b, c}

and τ = {∅, X, {a}, {a, b}}. Then πB(X) = {∅, X, {a}, {a, b}, {a, c}}.

Similarly, πB(X) = {∅, {b}, {c}, {b, c}, {a, c}, {a, b}} and so πλ(X) =

{∅, {a, c}, {a, b}, X}. Therefore, πdB(X) = δπd(X) = {∅, X}. Suppose

that a function χ : X → X is defined by χ(a) = χ(c) = a then it shows
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that χ is πλ-continuous. Since {a} ∈ τ and {a, c} ∈ πλ(X), it implies

that neither πd-continuous nor δπd-continuous is πλ-continuous. So {a, c}

does not exists in πdB(X) = δπdB(X) therefore, since χ is πd-continuous

then it implies that it is also πλ-continuous. For ij-continuity with open

set V of Y we have V ∈ i−V (Y ) this implies that χ−1(V ) ∈ ij−πV (X).

Hence for ij−πλ-continuous there exists an open set V ∈ jBV (Y ) hence

χ−1(V ) ∈ ij − UBπV (X). Therefore, every ij − πλ-continuous function

is ij-continuous but its converse is not true in general.

Suppose independent functions mapping one bitopological space to

another are ij−πλ-continuous then their composition is πλ-continuous as

it is shown in the result that follows.

Proposition 4.12. Let χ1 : X → Y be ij−πλ-continuous and χ2 : Y → Z

be ij − πd-continuous. Then χ2 ◦ χ1 is πλ-continuous.

Proof. Let χ1 : X → Y and χ2 : Y → Z. Let C be open subset of X,

then C is πλ-open if and only if it is a semi-closed set. Hence, we can let

U be πλ-open set in X then it follows that χ maps C to Y. Similarly, let

V be open set in Y containing χ(x) this implies that x is an element of

πλ-open set U ⊆ X, such that χ1(U) ⊆ V. Since U is πλ-open then we

can say that x ∈ U. There is a subset C that is semi-closed and hence

the interior closure of C is a subset of C for instance int(clC) ⊆ C. Then

it implies that C is a subset of semi-closed set of X and πλ-open. Hence

x ∈ C ⊆ U and χ(C) ⊆ V. Therefore, it shows that for all V that exist in

j − C(Y ) there is χ−1(V ) ∈ ijπC(X). Therefore, χ1 : X → Y is said to

be ij − πλ-continuous. Similarly, χ2 : Y → Z is also πλ-continuous. Let

E be an open set in Z and V be open in Y and there exists η ∈ Y then
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it implies that X is a subset of V. Since χ2 : Y → Z is πλ-continuous and

η ∈ Y for each open set V of Y such that it contains χ2(x) then it implies

that there is a πλ-open set D in X containing η such that χ2(η) ⊆ V and

hence χ2 is πλ-continuous if and only if χ2 is continuous at each point η

of X. Since there is an open set V of Y where V ∈ j − V (Y ) and also

χ−1
2 (V ) ∈ ij−πηV (X) then χ : X → Y is ij−πλ-continuous. This shows

that χ2 : Y → Z is also ij − πd-continuous. Since χ1 : X → Y is ij − πλ-

continuous then χ2 : Y → Z is ij − πd-continuous. Hence a function

χ : X → Z is also ij − πd-continuous. Since χ1 and χ2 are πλ-continuous

since they map i-open is mapped to J-open set in X therefore, it follows

it suffices that χ2 ◦ χ1 is also πλ-continuous.

Proposition 4.13. Let χ1 : X → Y be πλ-continuous and χ2 : Y → Z

be πd-continuous. Then χ2 ◦ χ1 is ij − πd continuous.

Proof. Functions χ1 and χ2 are said to be ij − πd-continuous if and only

they are πλ-continuous. From Theorem 4.1 we can let B of X be πλ-

open. We start by proving that it is semi-closed and also an intersection

of open sets in X. Let U be an open set in X and V be open set in Y

containing χ(x) for some x ∈ X. By continuum hypothesis, there exists a

πλ-open set U of X which is containing x such that χ(U) ⊆ V. Since U

is a πλ-open set then x ∈ U and x belongs to U of X, then there exists a

subset W of X that is semi-closed. By criterion for continuity, λ is closed

then closure interior of B is a subset of , that is (B) ⊆ B, this is because

B is a πλ-open and it has an element which is semi-closed and since W

is a semi-closed subset of X it follows that it is πλ-open set and hence

x ∈ B ⊆ U. Therefore, we have χ(W ) ⊆ V. Now, U and V are open sets

in X and Y respectively which implies that W = U ∩V is semi-closed set
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and πλ-open in X. Therefore, V is an open set in Y containing y and U is

a πλ-open set in X containing x such that χ(U) ⊆ V. Hence χ1 and χ2 are

πλ-continuous at every point x ∈ X. Let χ1 : X → Y be πλ-continuous

and χ2 : Y → Z be πd-continuous. If χ1 is a πλ-continuous function then

it implies that there exists any open set B in Y. Then it therefore implies

that χ−1
1 (B) is a πλ-open set in X. Then that χ−1

1 (B) is πλ-open in X.

However, if χ−1
1 (B) ̸= ∅ then x ∈ χ−1

1 (B) we have χ1(x) ∈ B. Therefore,

since χ is πλ-continuous, it implies that there exists a πλ-open set Hx in

X such that x ∈ Hx and χ1(Hx) ⊆ B hence x ∈ Hx ⊆ χ−1
1 (B). Therefore,

χ−1
1 (B) is πλ-open in X. Conversely, suppose that x ∈ X and V be any

open set in Y containing χ(x) then x ∈ χ−1(V ), by criterion of continuity

χ−1
1 (V ) is πλ-open in X containing x. Therefore, χ1(χ

−1(V )) ⊆ V so this

implies that χ1 is a πλ-continuous function. So χ2 : Y → Z where all

x ∈ χ−1(B) is closed and therefore x ∈ {x} ⊆ χ−1(B). Then it implies

that χ1(B) ∈ πdC(X) and hence χ is a πd-continuous function. Suppose

that χ1 : X → Y is πλ-continuous then χ2 : Y → Z is also πd-continuous.

Therefore, χ2 ◦ χ1 is ij − πd continuous.

Theorem 4.14. Let χ : X → Y be ij−πd-continuous. Then χ is ij−Ω-

continuous and the converse need not to be true in general.

Proof. A function χ said to be ij−Ω-continuous if and only if it is ij−πd-

continuous. From Theorem 4.10 we have shown that functions χ1 and χ2

are ij − πd-continuous. For instance, suppose we have V as an open

set in Y and X0 be any open set in X, then there exists d which is an

element of X. Since d ∈ X and X0 is open in X then it suffices that

d ∈ X0 which is πλ it follows that X0 ⊆ X. A function χ : X → Y is

πλ-continuous hence there exists d ∈ X which is i-clopen in X and open
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set V of Y such that it contains χ(d). Therefore, it implies that there is

a πλ-open set X0 in X containing d such that χ(X0) ⊆ V. Hence χ is

πλ-continuous if and only if it is continuous. Since there is an open set

V of Y such that V ∈ j − X0(Y ) and χ−1(V ) ∈ ij − πdX0(X), then it

suffices that χ : X → Y is ij − πd-continuous. Since, χ : X → Y then it

is ij − πd-continuous if and only if χ is πλ-continuous. From Proposition

4.1, χ is πλ-continuous if there is any open set V in Y that is containing

χ(x) and hence χ is continuous at every point x ∈ X. Then this follows

that there exists a πλ-open set U of X containing x such that χ(U) ⊆ V.

From the result in Theorem 4.9 we proved that a πλ-continuous function

is also semi-continuous if its open inverse in the codomain space is also

semi-open in domain space. Then if we have open sets U and V then, if

πλ-open set U of X containing x then it follows that χ(x) ⊆ Y. Therefore,

by use of criterion for continuity, χ is semi-continuous. Conversely, not

every ij − Ω-continuous is ij − πd-continuous. Given that (X, τ1, τ2) and

(Y, τ
′
1, τ

′
2) are two bitopological spaces therefore suppose we the cardinal-

ities as X = {d, e, f}, τ1 = {∅, X, {e}} and τ
′
1 = {∅, X, {d}, {e}, {d, e}}.

This implies that πB(X, τ!, τ2) = {∅, X, {e}, {e, f}, {d, e}} by criterion for

continuity πλB(X, τ) = {∅, X, {d, e}, {d, e}}.

Therefore, πB(Y, τ
′
1, τ

′
2) = {∅, X, {d}, {e}, {d, e}, {d, f}, {d, e}}.

Hence πλB(Y, τ
′
1, τ

′
2) = {∅, X, {d, f}, {e, f}}.

A function χ : (X, τ1, τ2) → (Y, τ
′
1, τ

′
2) can be defined by χ(a) = χ(e) = e.

If χ(d) = χ(e) = e then it implies that χ(f) = f hence χ is semi-

continuous and ij − πd-continuous but not πλ-continuous. Therefore,

χ−1(V ) ∈ ij − ΩB(X) then χ is ij − Ω-continuous.

When a function χ1 : X → Y is i-continuous then if we have another
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function χ2 which is j-continuous then the composition χ1 ◦χ2 is ij − θs-

continuous. We state the results as follows.

Theorem 4.15. Given that a function χ : (X, τ1, τ2) → (Y, τ
′
1, τ

′
2) then χ

is ij − θη-continuous if ij − πλ-continuous.

Proof. If a function χ is mapping θη-open set from (X, τ1, τ2) to (Y, τ
′
1, τ

′
2)

and if it has an open θ-open set then χ is θη-continuous. Suppose that we

let P to be a member of X which is πλ-open U, and V are open sets in X

and Y respectively. We therefore have to start by showing that P is semi-

closed and the intersection of open sets U and V is in space (X, τ1, τ2).

Hence, since U is πλ-open set in X and V open set in Y containing χ(x)

for some x ∈ X. Consequently it follows that x is also πλ-open since it

is a member of X. By the use of the criterion for continuity we have

χ(U) ⊆ V. Since U is a πλ-open set then x ∈ U and x belongs to U

of X, then there exists a subset P of X which is semi-closed there exist

semi-closed set πλ which is contained in X, by employing the criterion for

continuity, πλ is also a closed set then closure interior of P is a subset

of P such that int(P ) ⊆ P, this is attributed since P is a πλ-open and

also has an element which is semi-closed and since P is a semi-closed

subset of X it follows that it is πλ-open set and hence x ∈ P ⊆ U. The

fact that P is i − πλ-open in X and has πλ-closed set then it is also θη-

open in X which follows closely that χ(P ) ⊆ V. So i ∈ U and j ∈ V

are open sets in X and Y respectively which implies that P = U ∩ V is

semi-closed set and πλ-open in X. Therefore, V is an open set in Y con-

taining y and U is a πλ-open set in X containing x such that χ(U) ⊆ V.

Hence χ is θη-continuous. Since j − V has its open inverse i − U in X

then χ is ij − θη-continuous. x ∈ X. Similarly we have the cardinalities
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as X = {m,n, o} and τ = {ϕ,X, {n}} therefore, it follows that τ
′
1 =

{ϕ,X, {m}, {n}, {m,n}}. Then we have the open sets πB(X, τ1, τ2) =

{X, π, {n}, {n, o}, {m,n}}. Hence it follows that we have πλB(X, τ1, τ2) =

{ϕ,X, {m,n}, {m, o}}. Similarly, we also have the open sets in a bitopo-

logical space Y as πB(Y, τ
′
1, τ

′
2) = {ϕ,X, {m}, {n}, {m,n}, {m, o}, {n, o}}.

Then it follows that πλB(Y, τ
′
1, τ

′
2) = {ϕ,X, {m, o}, {n, o}}. If the func-

tion χ : (X, τ1, τ2) → (Y, τ
′
1, τ

′
2) is defined by χ(m) = χ(n) and χ(o) = o,

then χ is ij − θη-continuous So since χ is ij − θη-continuous function it

implies that it is also πλ-continuous. Suppose that χ : X → Y then χ is

also πλ-continuous function if and only if χ(x) is in V, then there exists a

πλ-open set V of Y that is containing χ(x). Similarly, there exists a πλ-

open set U in X containing x such that χ(U) ⊆ V. This implies that χ is

ij−θη-continuous. Therefore, χ is ij−πλ-continuous since for all V which

is open in Y exists in j − V (Y ) and also χ−1(V ) ∈ ij − UπV (X). Then

χ is also ij − θη-continuous function since θη-continuous function.

Lastly, we consider pairwise continuity in soft bitopological spaces

induced by different functions χ1 and χ2. We state the results as follows.

Theorem 4.16. Let X, Y and Z be soft bitopological spaces. If χ1 : X →

Y and χ2 : Y → Z are p-soft continuous functions then χ2 ◦ χ1 is p-soft

continuous.

Proof. Let χ1 and χ2 be two functions that are mapping soft bitopological

spaces. (X, τ1, τ2, E), (Y, τ
′
1, τ

′
2, E) and (Z, τ

′′
1 , τ

′′
2 , E). Let U and V be πλ-

open sets. Suppose that χ1 : (X, τ1, τ2, E) → (Y, τ
′
1, τ

′
2, E) and if there is

πλ-open setW in X then χ(W ) is in Y . Since χ(W ) is in Y then it suffices

that it W is (Y, τ
′
1, τ

′
2, E), similarly if χ2 : (Y, τ

′
1, τ

′
2, E) → (Z, τ

′′
1 , τ

′′
2 , E).
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This implies that W is πλ-open in X, Y and Z hence χ1 ◦ χ2 is also

continuous. Let (m, c) be soft points such that (m, c) ∈ E then if functions

χ1 : X → Y and χ2 : Y → Z then implies that χ1 and χ2 are pairwise-

soft continuous functions. Since (m, c) ∈ τ1 therefore this follows that χ2 :

(Y, τ
′
1, τ

′
2, E) → (Z, τ

′′
1 , τ

′′
2 , E) is pairwise-soft continuous then it implies

that χ−1(m,n) ∈ τ
′′
1 . Therefore, χ1 : (X, τ1, τ2, E) → (Y, τ

′
1, τ

′
2, E) is also

pairwise-soft continuous function. This follows that χ−1(m, c) = χ1 ◦

χ−1
2 (m, c). Then it implies that we have χ1 ◦χ−1

2 (m, c) ∈ τ12. By criterion

for continuity, χ1 ◦ χ2 : (X, τ1, τ2, E) → (Z, τ
′′
1 , τ

′′
2 , E). is pairwise-soft

continuous.

In this objective we characterized the notion of ij-continuity in bitopo-

logical spaces as πλ-continuous as shown in our result, Proposition 4.1.

We also classify this notion of ij-continuity as θη-continuous as it is in-

dicated in Theorem 4.15. Furthermore, we characterized the notion of

ij-continuity as ij − πd-continuous as in Lemma 4.3. Moreover, We also

characterized the notion of ij-continuity as ij−Ω-continuous, this is given

in our result Theorem 4.14. These notions were characterized in Weak

continuity, Semi-continuity and Strong continuity as aspects of continuity

that we studied.

4.3 Separation Criteria for via ij-Continuity

Let T0, T1 and T2 be separation axioms we show that they exhibit heredity

and topological properties. For simplicity, we denote (X, τ1, τ2) with X

and (Y, τ
′
1, τ

′
2) with Y.
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Proposition 4.17. Let (X, τ1, τ2) be a T0 space then the property of T0

is both hereditary and topological.

Proof. We start by showing that T0 has hereditary property. Let (X, τ1, τ2)

be a T0 space and suppose that D ⊆ X then it suffices that a bitopological

subspace (D, τD1, τD2) is also a T0 space. Since (D, τD1, τD2) has induced

properties from (X, τ1, τ2) therefore it shows that a, b ∈ D with a ̸= b,

this implies that a, b ∈ X, a ̸= b as in Definition 1.10. Since (X, τ1, τ2) is a

T0 space. Then there exists U ∈ τ1 ∪ τ2 then a ∈ U, and a does not exists

in U or b does not exists in U but b ∈ U. Hence U ∈ τ1 ∪ τ2 this follows

that U ∈ τ1 or U ∈ τ2. Therefore, U ∩D ∈ τD1 or U ∩D ∈ τD2 similarly

U ∩ D ∈ τD1 ∩ τD2. Since a, b ∈ D then a ∈ U ∩ D, b does not exists in

U ∩B and a does not exists in U ∩D, and b ∈ U ∩D. Then (D, τD1, τD2)

is also a T0 space. We can also show that T0 has topological property.

Using the notion of ij-continuity let b1, b2 ∈ X with b1 ̸= b2, Taking a

function χ to be onto function then there is a1, a2 ∈ X with χ(a1) = χ(b1)

and χ(a2) = b2. Since χ is an injective function with b1 ̸= b2 therefore

it implies that χ(a1) ̸= χ(a2) hence a1 ̸= a2. Since (X, τ1, τ2) is T0 space

and a1, a2 ∈ X where a1 ̸= a2 then it implies that there exists U ∈ τ1 ∪ τ2

such that a1 ∈ U and a1 does not exists in U or a1 does not exists in U,

a2 ∈ U or a1 ∈ U, a2 does not exists in U. Then U ∈ τ1 ∪ τ2 follows that

χ(U) ∈ χ(τ1∪ τ2) since χ is open and continuous. using separation axiom

as a methodology, it implies that χ(U) ∈ χ(τ1) ∪ χ(τ2) ∈ τ
′
1 ∪ τ

′
2. Also

a1 ∈ U which implies that χ(a1) ∈ χ(U) or b1 ∈ χ(U) and a2 does not

exists in U which imply that χ(a2) does not exists in χ(U) or b2 does not

exists χ(U). For any b1, b2 ∈ Y with b1 ̸= b2, χ(U) ∈ τ
′
1 ∪ τ

′
2 is obtained

such that b1 ∈ χ(U), b2 does not exists in χ(U). Therefore, (Y, τ
′
1, τ

′
2) is a
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T0 space. Every homeomorphic image of T0 space then it shows that it is

having topological property.

Proposition 4.18. Let (X, τ1, τ2) be a T1 space then the property of T1

is both topological and hereditary properties.

Proof. If T1 has hereditary property then it follows that a bitopological

space (X, τ1, τ2) is also T1 space. Let D ⊆ X and hence (D, τD1, τD2)

is also T1 space. Let a, b ∈ D and with a ̸= b it therefore implies that

a, b ∈ X and a ̸= b. Since (X, τ1, τ2) is a T1 space then U ∈ τ1 ∪ τ2. Then

a ∈ U and b is not a member of U. Similarly a does not exists in U but

b ∈ U. From Proposition 4.17, we have U ∈ τ1 ∪ τ2. Then U ∈ τ1 or

U ∈ τ2, U ∩ D ∈ τD1 and so U ∩ D ∈ τD2 also U ∩ D ∈ τD1 ∩ τD2. The

fact that a, b ∈ D hence a ∈ U ∩D, b does not exists in U ∩D or a not a

member in U ∩ D, b ∈ U ∩ D. Therefore, (D, τD1, τD2) shows properties

of a T1 space hence it is a T1 space. On the other side, we show that T1

space also has a topological property. Let χ : (X, τ1, τ2) → (Y, τ
′
1, τ

′
2) be

a homeomorphic mapping and (X, τ1, τ2) be T0 space therefore (Y, τ3, τ4)

is also a T1 space since a T0 implies a T1 space. Let b1, b2 ∈ Y where

b1 ̸= b2. Since χ is surjective function it then implies that there exists

a1, a2 ∈ X with χ(a1) = χ(b1) and also χ(a2) = b2. Hence χ is also

one to one function with b1 ̸= b2 this implies that χ(a1) ̸= χ(a2) hence

a1 ̸= a2. Since (X, τ1, τ2) is a T1 space and a1, a2 ∈ X, with a1 ̸= a2.

Then there exists U ∈ τ1 ∪ τ2 such that a1 ∈ U and a1 or a1 does not

exists in U, a2 ∈ U. Since a1 ∈ U, a2 does not exists in U then U ∈ τ1∪ τ2.

Therefore, χ(U) ∈ χ(τ1∪τ2). Using Tychonoff Theorem as a methodology,

χ is open and continuous then χ(U) ∈ χ(τ1) ∪ χ(τ2) ∈ τ
′
3 ∪ τ

′
4. Similarly,

a1 ∈ U and so χ(a1) ∈ χ(U) also b1 ∈ χ(U) and a2 does not exists

51



in U then it follows that χ(a2) does not exists in χ(U), and also b2 is

not an element of χ(U). By Definition 1.7 b1, b2 ∈ Y with b1 ̸= b2 and

χ(U) ∈ τ
′
1∪τ

′
2 is obtained such that b1 ∈ χ(U), b2 does not exists in χ(U).

Hence (Y, τ
′
1, τ

′
2) is also a T1 space. Hence χ is continuous if and only if

the maps χ : (X, τ1) → (Y, τ
′
1) and χ : (X, τ2) → (Y, τ

′
2) are continuous.

Every T1 space implies T0 space by hypothesis of heredity. Therefore, a

T1 space has a topological property.

Proposition 4.19. Let (X, τ1, τ2) be a T2 space then the property of T2

is both topological and hereditary.

Proof. Let (X, τ1, τ2) and (Y, τ ,1, τ
′
2) be bitopological spaces. If (X, τ1, τ2)

is a T2 space then it exhibits topological properties. Let χ : (X, τ1, τ2) →

(Y, τ
′
1, τ

′
2) be a homeomorphism and (X, τ1, τ2) is also a T2 space. Then

we show that (Y, τ
′
3, τ

′
4) is also T2 space. Hence b1, b2 ∈ Y with y1 ̸= y2.

Suppose that χ is a surjective function then all elements in Y are images

of elements in X. Hence there exists a1, a2 ∈ X with χ(a1) = b1 and

χ(a2) = b2. Similarly since χ is an injective function then b1 ̸= b2. This

implies that χ(a1) ̸= χ(a2), and a1 ̸= a2. Therefore, a1, a2 ∈ X with

a1 ̸= a2. Consequently, since (X, τ1, τ2) is a T2 space then U ∈ τ1 and

V ∈ τ2. Therefore, a1 ∈ U, a2 ∈ V then it suffices that U∩V ̸= ∅. Suppose

that χ is open then χ(U) ∈ τ
′
1 and also χ(V ) ∈ τ

′
2 then χ(U)∩ χ(V ) ̸= ∅.

Given that c ∈ X then c ∈ χ(U) ∩ χ(V ). Therefore, c ∈ χ(U) and

c ∈ χ(V ) then p1 ∈ U and p2 ∈ V such that c = χ(p1) and c ∈ χ(p2) with

χ(p1) = χ(p2) and p1 = p2 since χ is an injective function then p1 ∈ U and

p1 ∈ V. Hence p1 ∈ U ∩ V ̸= ∅ by contradiction. Suppose that U ∩ V = ∅

which implies that χ(U) ∩ χ(V ) = ∅. Therefore, b1, b2 ∈ Y with b1 ̸= b2

hence χ(U) = τ
′
1. Hence (Y, τ

′
1, τ

′
2) is a T2 space. Every homeomorphism
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image of a T2 is a T2 space, therefore it implies that T2 is a topological

property. Let (X, τ1, τ2) be a T2 space then it has hereditary property.

Let (X, τ1, τ2) also be T2 space. Since D ⊆ X, we prove that (D, τD1, τD2)

is also T2 space. Suppose that a, b ∈ D and a ̸= b then a, b ∈ X. From

Definition 1.2, it follows that there exists U ∈ τ1∪ τ2 such that a ∈ U, b is

not a member of U and also a does not exists in U but b ∈ U. Therefore,

U ∈ τ1 ∪ τ2, it implies that U ∈ τ1 or U ∈ τ2 where U ∩ D ∈ τD1

or U ∩ D ∈ τD2. By Tychonoff theorem, U ∩ D ∈ τD1 ∩ τD2. Similarly

a, b ∈ D then a ∈ U ∩D, b does not exists in U ∩D or a is not an element

of U ∩ D, b ∈ U ∩ D. Hence it implies that topological property is also

exhibited by a bitopological subspace (D, τD1, τD2).

Proposition 4.20. Suppose that (X, τ1, τ2) is a T 5
2
space then the prop-

erty of T 5
2
is both topological and hereditary.

Proof. From our result in Proposition 4.19 we have shown that T1 space

implies T2 space. This therefore follows that a T 5
2
space both T1 and T2.

We commence by showing hereditary property in T 5
2
space. Given that

(X, τ1, τ2) is a bitopological space which is also a T 5
2
space, we can let

K ⊆ X such that (K, τK1, τK2) is a subspace which is also a T 5
2
space.

It suffices that K is a subspace of X. Taking m and n to be elements

of K then m,n ∈ K but m ̸= n. Since (X, τ1, τ2) is a T 5
2
space then

the intersection of A and B is said to be empty, A ∩ B = ∅. Therefore,

since A ∈ τ1 and B ∈ τ2. By continuum hypothesis it follows that A ∈ τ1,

B ∈ τ2 then it follows that A∩K ∈ τK1 and B∩K ∈ τK2. Hence m,n ∈ K

then m ∈ A∩K, n ∈ B∩K. Hence it clear that (K, τK1, τK2) is T 5
2
space.

If (X, τ1, τ2) is a T 5
2
space then it has a topological property. Therefore, χ :

(X, τ1, τ2) → (Y, τ
′
1, τ

′
2). Suppose a function χ is a homeomorphic function
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then it follows that (Y, τ
′
1, τ

′
2) is also a T 5

2
space. Therefore, n1, n2 ∈ Y

with n1 ̸= n2. Let m1,m2 ∈ X with χ(m1) = χ(n1) and χ(m2) = n2.

Suppose χ is injective with n1 ̸= n2 consequently, χ(m1) ̸= χ(m2) and

m1 ̸= m2. Hence (X, τ1, τ2) is T 5
2
space then m1,m2 ∈ X, with m1 ̸= m2

and there exists A ∈ τ1∪τ2 such that m1 ∈ A, while m2 does not exists in

A or m1 does not exists in A, and a2 ∈ A. Similarly, m1 ∈ A, m2 does not

exists in U therefore, we have that A ∈ τ1∪τ2 such that χ(A) ∈ χ(τ1∪τ2).

By conditions for separation axioms, χ(A) ∈ χ(τ1) ∪ χ(τ2) ∈ τ
′
1 ∪ τ 22 ,

m1 ∈ A such that χ(m1) ∈ χ(A) hence n1 ∈ χ(A) and m2 does not exists

in A and χ(m2) is not an element of χ(A), this implies that n2 does not

exists χ(A) for any n1, n2 ∈ Y with n1 ̸= n2, χ(A) ∈ τ
′
1 ∪ τ

′
2 is obtained

such that n1 ∈ χ(A), n2 does not exists in χ(A). Therefore, (Y, τ
′
1, τ

′
2) is

also T 5
2
space with topological property.

Lemma 4.21. Suppose (X, τ1, τ2) is a normal bitopological space then the

property of T4 is hereditary.

Proof. Since we are taking (X, τ1, τ2) as a normal bitopological space then

it is enough that there exist two disjoint closed sets say x and y where

x ̸= y. Also there are two disjoint open sets say U and V such that x ⊂ U

and y ⊂ V. By Definition 1.7 it shows that x ∈ U, whereas y does not exists

in U similarly x is not a member of V but y ∈ V. Normal bitopological

space implies T2 space. Therefore, it suffices that x, y ∈ X with x ̸= y.

This follows that U ∈ τ1∪τ2 such that x ∈ U, whereas y does not exists in

U, using conditions for normality. On the other hand x is not a cardinality

of V but y ∈ V, hence normal spaces have topological property. Next, we

show that normality and hereditary properties are the same. The result

from Proposition 4.18, indicates that χ : (X, τ1, τ2) → (Y, τ
′
1, τ

′
2) and χ is
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homeomorphic since it is a bijective function. Let A ⊆ X. Consequently,

if (X, τ1, τ2) is a normal space then A is also normal. Considering disjoint

open sets U and V we have U ∈ τ1 and V ∈ τ2 such that x ∈ U, y ∈ V and

U ∩ V = ∅. Hence (A, τA1, τA2) is normal. Therefore, U ∈ τ1 and V ∈ τ2

so U ∩ A ∈ τA1 and V ∩ A ∈ τA2. This closely follows that x ∈ V ∩ A,

y ∈ V ∩ A. Hence this follows that (U ∩ A) ∩ (V ∩ A) ∩ A = ∅ ∩ A = ∅.

Hence (A, τA1, τA2) is a normal subspace and so induces topologies from

(X, τ1, τ2).

Next, we consider results of ij−πλ−Tλ axioms on bitopological spaces

if and only if they are ij − πλ-symmetric.

Proposition 4.22. Suppose (X, τ1, τ2) is ij − πλ − Tλ then it is ij − πλ-

symmetric.

Proof. Since we have two bitopological spaces (X, τ1, τ2) and (Y, τ
′
1, τ

′
2)

therefore we have i − πλ-open in X and j − πλ-open in Y. Therefore it

suffices that we have symmetric points πλ({y}) and πλ({x}). Therefore,

since (X, τ1, τ2) it also has ij−πλ−Tλ. Given that we have two open sets

U ⊆ X and V ⊆ Y if x ∈ X and y ∈ Y then it suffices that πλ({y}) ∈ V

and πλ({x}) ∈ U. This shows that y ∈ V and x ∈ U. Therefore, disjoint

closed subsets x, and y are contained in ij − πλ-open set. Since x ̸= y

then y ∈ ij−Clπλ({x}). Let U be ij− πλ-open in X then it suffices that

x ∈ U, and ij−Clπλ({y}). y does not exist in ij−Clπλ({x}). Therefore,

ij−Clπλ({x}) ⊆ U. Since both U and if V is πλ open in Y which contain

ij − Clπλ({y}). Consequently this follows that y does not exists in U or

y ∈ ij − Clπλ({x}) and x is not a cardinality of ij − Clπλ({x}). Hence
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(X, τ1, τ2) is ij− πλ −T0 since it has topological property as indicated by

Proposition 4.17. So (X, τ1, τ2) is ij − πλ − Tλ.

Proposition 4.23. Let (X, τ1, τ2) be ij − πλ − Tλ symmetric then it is

both ij − πλ − T0 and ij − πλ − T1.

Proof. Let x ∈ X and y ∈ Y, therefore we take U and V to be πλ-open sets

in X and Y respectively. Taking (X, τ1, τ2) to be ij − πλ − Tλ symmetric

then we have πλ({x}) and πλ({y}) with πλ({x}) ̸= πλ({y}). We assume

that a bitopological space (X, τ1, τ2) is ij−πλ−T0 since it is ij−πλ−Tλ

symmetric. Since x, y ∈ X with x ̸= y and also U and ij − πλ({y}) be

any two disjoint open sets. It suffices that two disjoint points x and y are

elements of open sets either U or ij − πλ({y}). Therefore, if x and y are

contained in ij − πλ-open set, then we have y ∈ U and x ∈ U. The fact

that U is a member of ij−πλ-open set then it follows x ∈ U and y is not a

member of U. By Tychonoff theorem, ij−πλ({x}) ⊆ U. Therefore, since y

does not exists U and ij−πλ({x}) hence by assumption x does not exists

in ij − πλ({x}). Since ij − πλ({x}) ⊆ U then (X, τ1, τ2) is ij − πλ − T0.

Now, it implies that (X, τ1, τ2) is ij−πλ−Tλ symmetric. Therefore, every

ij−πλ−Tλ symmetric imply ij−πλ−T1. Since (X, τ1, τ2) is ij−πλ−T0

we suppose that x ∈ K ⊂ X{y} for ij − πλ-open set K. Therefore, x is

not a member of ij − Clπλ({y}) and y does not exists in ij − Clπ({x}).

Therefore, X \ ij −Clπ({x}) is an ij − πλ-open set containing y but not

x. Hence (X, τ1, τ2) is ij − πλ − T1.

Lemma 4.24. If a space is ij − πλ − T0 then ij − Clπλ({x}) ̸= ij −

Clπλ({y}) hence ij − Clπλ({x}) ∩ ij − Clπλ({y}) is empty.
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Proof. Suppose that (X, τ1, τ2) is ij − πλ − T0 then we have two distinct

points x and y. Hence it suffices that ij − Clπλ({y}) ̸= ij − Clπλ({x}).

Therefore, this follows that x ∈ ij−Clπλ({x}) whereby x is not a member

of ij − Clπλ({y}) this implies that y ∈ ij − Clπλ({y}) and y does not

exists in ij − Clπλ({x}). Since x is not a member of ij − Clπλ({y})

therefore there exists V ∈ ij − BλO(X, x) such that y does not exists

in V. However, x ∈ ij − Clπλ({x}) hence x ∈ V. Therefore, this follows

that x is not a member of ij − Clπλ({y}). Then it implies that x ∈

X \ ij − Clπλ({y}) ∈ ij − BλO(X). Since (X, τ1, τ2) is ij − πλ − T0

then ij − Clπλ({x}) ⊂ X \ ij − Clπλ({y}). By Proposition 4.23, we

have ij − Clπλ({x}) ∩ ij − πClλ({y}) = ∅. This therefore implies that

ij − Clπλ({x}) ⊂ V. Since y not to be an element of V then it follows

that y ∈ X \ V hence y ̸= x and x does not exists in ij − Clπλ({y}).

This shows that ij − Clπλ({y}) ̸= ij − Clπλ({x}). By assumption ij −

Clπλ({y})∩ ij−Clπλ({x}) = ∅ hence y does not exists in ij−Clπλ({x})

and so ij − Clπλ({x}) ⊆ V. Therefore, (X, τ1, τ2) is ij − πλ − T0.

Next, we illustrate in the following result that normal ij − πλ − T2

bitopological space (X, τ1, τ2) is the same as Hausdorff space.

Theorem 4.25. Given that (X, τ1, τ2) is a T2 then it is ij − πλ − T2.

Proof. Let (X, τ1, τ2) be a normal bitopological space. By the conditions

for normality, there are disjoint points x and y with x ̸= y. Suppose we are

taking U and V to be πλ-open sets from bitopological spaces (X, τ1, τ2)

and (Y, τ
′
1, τ

′
2) respectively. So we have x ⊂ U and y ⊂ V. By definition

1.10 since two disjoint closed sets x, y ∈ X then it implies that x ∈ U

and y ∈ V. By hypothesis, normal bitopological spaces are also T2 spaces.
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Since we have disjoint sets x and y which are members of X and x is not

equal to y. It follows that U ∈ τ1 ∪ τ2 such that x ∈ U and y ∈ V. By

Lemma 4.21, suppose that (X, τ1, τ2) is normal then (A, τA1, τA2) is also

normal. This is because A ⊆ X. There are open disjoint sets U and V

where U ∈ τ1 and V ∈ τ2 such that x ∈ U, y ∈ V. Hence it suffices that

U ∩V = ∅. Consequently, by conditions for normality we have U ∈ τ1 and

V ∈ τ2 then U∩A ∈ τA1 hence V ∩A ∈ τA2. Then it implies that x ∈ U∩A,

y ∈ V ∩A. Then (U ∩A)∩ (V ∩A)∩A = ∅∩A = ∅. Since (A, τA1, τA2) is

a bitopological subspace so it also exhibits topological property. If T2 is

a Hausdorff space then it implies that there are two distinct closed sets.

Since there are distinct closed sets there exists also distinct open sets U

and V. By hypothesis, x ∈ U, y is not a cardinality of V but y ∈ V. Hence

(X, τ1, τ2) is ij − πλ − T2. Therefore, (X, τ1, τ2) is a Hausdorff space and

every normal ij − πλ − T2 space is also Hausdorff space.

Corollary 4.26. Let (X, τ1, τ2) be ij − πλ − T2 then the property of ij −

πλ − T2 is topological.

Proof. For a bitopological space that is ij − πλ − T2 exhibit homeormor-

phic property. For instance, a function χ : (X, τ1, τ2) → (Y, τ
′
1, τ

′
2) is

homeomorphic if and only if it can mapping χ : (X, τ1 → (Y, τ ,1) and also

χ : (X, τ2) → (Y, τ
′
2). Therefore, there exists disjoint open sets y1, y2 ∈ Y

with y1 ̸= y2. By hypothesis, χ is a bijective function then it follows that

x1, x2 ∈ X with χ(x1) = y1 and χ(x2) = y2. However, if χ is an injective

function with y1 ̸= y2. Then this implies that χ(x1) ̸= χ(x2), this shows

clearly that x1 ̸= x2 hence both distinct points x1 and x2 are members of

X with x1 ̸= x2. Since (X, τ1, τ2) is a T2 space then it implies that there

exists U ∈ τ1 and V ∈ τ2 such that x1 ∈ U, x2 ∈ V. By assumption we
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can say that U ∩ V ̸= ∅. Hence χ(U) ∈ τ3 and χ(V ) ∈ τ4 due to the fact

that χ is an open function. By Tychonoff theorem, χ(U) ∩ χ(V ) ̸= ∅. It

follows closely that c ∈ X, hence c ∈ χ(U) ∩ χ(V ). It implies that c is

an element of χ(U) and χ(V ). So there exists distinct elements p1 and

p2 such that p1 ∈ U and p2 ∈ V. By any chance p1 = p2 then p1 ∈ U

and p1 ∈ V. Hence it follows that p1 ∈ U ∩ V ̸= ∅ and by contradiction

if U ∩ V = ∅ then χ(U) ∩ χ(V ) = ∅. Given that y1, y2 ∈ Y with y1 ̸= y2

then χ(U) = τ3 hence y1 ∈ χ(U), y2 ∈ χ(V ). Similarly it follows that

χ(U) ∩ χ(V ) ̸= ∅. Therefore, (Y, τ ′
1, τ

′
2) is a T2 space. Hence (X, τ1, τ2)

and (Y, τ
′
1, τ

′
2) are ij − πλ − T2 spaces and topological.

Corollary 4.27. Let (X, τ1) be T 5
2
space and (X, τ2) be any topological

space then (X, τ1, τ2) is a ij − πλ − T 5
2
.

Proof. The result from Proposition 4.2 indicates that T1 space implies T2

space. Therefore, suppose (X, τ1, τ2) be a T 5
2
space. Let R ⊆ X hence

it follows that (R, τR1, τR2) is also a T 5
2
space. From Proposition 4.20,

i-open set in X and j-open set in Y. If we take x and y to be disjoint

points such that x ∈ R with x ̸= y. Since (X, τ1, τ2) is a T 5
2
space. If

A ∈ τ1 and B ∈ τ2 whereby we have that x ∈ U, y ∈ V. Hence it qualifies

that A ∩ V = ∅. By separation axioms technique, we have U ∩ R ∈ τR1

and V ∩ R ∈ τR2 therefore it suffices that x, y ∈ M hence x ∈ U ∩ R.

So y ∈ V ∩ R. Therefore, (R, τR1, τR2) is ij − πλ − T 5
2
. Since (X, τ1, τ2)

is an ij − πλ − T 5
2
space. More over it has topological property. Let

χ : (X, τ1, τ2) → (Y, τ
′
1, τ

′
2) and χ is homeomorphic. Since (X, τ1, τ2) is

ij − πλ − T 5
2
then it implies that (Y, τ

′
1, τ

′
2) is also an ij − πλ − T 5

2
space.

Therefore, y1, y2 ∈ Y with n1 ̸= y2. Since χ is a surjective function then it

implies that x1, x2 ∈ X such that χ(x1) = χ(y1) and χ(y2) = x2. Similarly,
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if χ is an injective function with y1 ̸= y2 it follows that χ(x1) ̸= χ(x2) and

x1 ̸= x2. Therefore, since (X, τ1, τ2) is ij − πλ − T 5
2
space then it implies

that x1, x2 ∈ X, with x1 ̸= x2 and so ∃A ∈ τ1 ∪ τ2 hence x1 ∈ U, x1 does

not exists in A or x1 are not elements of U, x2 ∈ A also x1 ∈ U , x2 does

not exists in A hence U ∈ τ1 ∪ τ2. Then χ(U) ∈ χ(τ1 ∪ τ2) since χ is an

open function it therefore implies that χ(U) ∈ χ(τ1) ∪ χ(τ2) ∈ τ
′
1 ∪ τ

′
2.

Since x1 ∈ A then it implies that χ(x1) ∈ χ(U) so y1 ∈ χ(U) and x2 is not

an element in U which implies that χ(x2) does not χ(U) and y2 does not

exists χ(U). For any y1, y2 ∈ Y with y1 ̸= y2, χ(U) ∈ τ
′
1 ∪ τ

′
2 is obtained

such that y1 ∈ χ(U) and y2 is not a member of χ(U). Hence (Y, τ
′
1, τ

′
2) is

a ij − πλ − T 5
2
space. Therefore, ij − πλ − T 5

2
space is both topological

and hereditary.

Theorem 4.28. Let (X, τ1, τ2) be pairwise πλ−T0 if it has τ1−η or τ2−η

as distinct points of X.

Proof. Since (X, τ1, τ2) is a T0 space we can let τ1 − ηcl{x} ̸= τ1 − ηcl{y}

to be distinct points of X. If we takex, y as distinct points in X then

x ̸= y. Therefore, from Corollary 4.26 we can deduce that τ1 − ηcl{x} ̸=

τ1−ηcl{y} and hence by no doubt of generality τ2−ηcl{x} ̸= τ2−ηcl{y}.

Incase we have another element of X say p then it also implies that p ∈

τ1−ηcl{y}. So it suffice to confirm that p does not belongs to τ1−ηcl{x}.

Therefore, a contradiction arises immediately. So it suffices that τ1 − η

and τ2 − η are distinct closed points of X. Suppose we are considering

a function χ : (X, τ1, τ2) → (Y, τ
′
1, τ

′
2) then if τ1 − η, τ2 − η ∈ X with

τ1 − η ̸= τ2 − η. Suppose that χ is a surjective function then all elements

in Y are images of elements in X. Hence it suffices that χ(τ1−η) = τ1−η

and χ(τ2 − eta) = τ2 − η. Similarly since if χ is an injective function
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then τ1 − η ̸= τ2 − η. This implies that χ(τ1 − η) ̸= χ(τ2 − η), and

τ1 − η ̸= τ2 − η.

We illustrate pairwise property of bitopological spaces in the result

that follow.

Theorem 4.29. A bitopological space is pairwise πλT0 if either of the two

topologies is πλT0.

Proof. Let (X, τ1, τ2) be a bitopological space. Then (X, τ1, τ2) is said to

be pairwise πλT0 if either (X, τ1) or (X, τ2) is πλT0. For pairwise there

exists distinct closed points x and y whereby x, y ∈ X. Therefore, it

suffices that there exist two disjoint open sets A and B. From Theorem

4.28, it is true that open set A is a τ1− η-open set. So A contains x as its

element but not y. Therefore, y ∈ τ1 − ηcl{y} ⊂ X − U this follows that

x is not a member of τ1 − ηcl{y}. Hence we can then have τ1 − ηcl{x} ≠

τ1−ηcl{y}τ1−η and τ2−η are closed distinct points. However, this does

not need to be true in general. This can be indicated by this obstruction

if X = {m,n, p}, τ1 = {X, ∅, {m}, {n, p}} and τ2 = {X, ∅, {p}, {m,n}}.

From this it shows that a bitopological space (X, τ1, τ2) is pairwise λT0

when neither (X, τ1) nor is (X, τ2) is λT0.

Theorem 4.30. Suppose (X, τ1, τ2) is normal bitopological space then it

is ij − πλT0.

Proof. Given that we have a bitopological space then it is said to be

normal if and only if there two disjoint points which can be separated by

open neighborhoods say P and Q such that their intersection is empty.

Therefore, suppose that m and n are disjoint closed sets then m ̸= n.
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taking P and Q as open sets in X then it suffices that m ⊂ P and also

n ⊂ Q and since m and n are members of X, it follows that m ∈ P but n

does not exists in P, while n ∈ Q but m is not a member of Q. By the use

of conditions for normality, we can say that P ∈ τ1 ∪ τ2 such that m ∈ P

and also n ∈ Q. From Theorem 4.29, (X, τ1, τ2) is λT0 therefore it is also

ij−λT0-normal. Thus, by Example 1.9, there are two open sets P which

is also τ1 − η-open and Q which is τ2 − η-open. Therefore, it follows that

n ∈ τ1 − ηcl{n} ⊂ X − P, hence m is not a member of τ1 − ηcl{n}. By

Tychonoff theorem we can say that τ1−ηcl{m} ̸= τ1−ηcl{n}. Given that

there are two distinct points m and n which are members of X. Therefore,

neither τ1−ηcl{m} ̸= τ1−ηcl{n} nor τ2−ηcl{m} ≠ τ2−ηcl{n}. Suppose

that we have c as any point of X such that c ∈ τ1 − ηcl{n}. If give that

n ∈ τ1 − ηcl{m} therefore τ1 − ηcl{n} ⊂ τ1 − ηcl{m}. Hence it implies

that c ∈ τ1 − ηcl{n} ⊂ τ1 − ηcl{m}. By contradiction, since c is not

a cardinality of τ1 − ηcl{m} then it shows that n is not a member of

τ1 − ηcl{m} thus P = X − τ1 − ηcl{m} is a τ1 − η-open set that contains

n but not x. Hence it implies that τ2 − ηcl{a} ̸= τ2 − ηcl{n}. Therefore,

(X, τ1, τ2) is ij − λT0 and it implies that is a normal space.

The following is the immediate consequence.

Corollary 4.31. Every ij − πλ − T2 is ij − πλ − T1 and ij − πλ − T0.

Proof. Let (X, τ1, τ2) be ij − πλ − T2, then by assumption (X, τ1, τ2) is

pairwise πλT0. Suppose that G is any open set which is also Ti − πλ-open

set. Therefore, x ∈ G such that each point y ∈ X. Then Tj − πCl{y}.

It implies that there exists Ti − πλ open set Uy and any Tj − πλ-open set

Vy such that every point x ∈ Uy and also y ∈ Vy. Therefore, it suffices
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that Uy ∩ Vy = ∅. Similarly, if A =
∪
{Vy : y ∈ X −G} then X −G ⊂ A

and x does not exists in A. Therefore, Tj − πλ openness of A implies that

Tj − πCl{x} ⊂ X − A ⊂ G. Therefore, we can it is true that X is πλT0

and (X, τ1, τ2) is ij − πλ − T0. By the continuum hypothesis, (X, τ1, τ2) is

ij − πλ − T0, this is because there exists closed disjoint sets say x and y.

This follows that x ̸= y and x ∈ ij − πClλ({y}). Therefore, it is assumed

that y is not a member of ij − πClπλ({x}) and so ij − πClπλ
({x}) ⊆ U.

Thus this implies that (X, τ1, τ2) is ij−πλ−T0. Hence without of generality

(X, τ1, τ2) is ij − πλ − T0 then it is ij − πλ − T2. Therefore, ij − πλ − T2

imply ij − πλ − T1 which also imply ij − πλ − T0.

From the results that we obtained in this second objective, we estab-

lished that separation axioms such as T0-Kolmogorov space, T1-Fretchét

space, T2-Housdorff space, T 5
2
-Urysohn space and T4-Normal Hausdorff

space can be used in bitopological spaces through the notion of ij-continuity.

Finally, in the next section we consider third objective in our study.

We determine extensions of continuity and separation axioms inN -topological

spaces.

4.4 Extensions of Continuity and Separa-

tion Axioms in N-Topological Spaces

For this objective we consider (X,Nτ ) as N -topological spaces with N -

topology on X with no separation axioms are assumed unless specifically
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stated. We are taking Nτ -open to be open sets in N -topological spaces

and Nτ -closed to be closed sets in N -topological spaces.

In Proposition 4.32 we give some axioms that N -topological spaces

meet.

Proposition 4.32. Let X be a non empty set and τ1, τ2,...,τN be arbi-

trary topologies defined on X. Then the collection Nτ = {S ⊆ X : S =

(
∪N

i=1Ai)
∪∩N

i=1 Bi
)Ai, Bi ∈ τi}, is N-topology if it satisfy the following ax-

ioms:

(i) X,ϕ ∈ Nτ .

(ii). If N = 1 then Nτ = τ1 = τ.

(iii). Intersection of two 2τ also implies a 2τ. Similarly, the intersection

of two 3τ is also a 3τ.

Proof. For axiom (i) and (ii) are trivial topology.

To prove axiom (ii). Let Nτ1 and Nτ2 be two N -topologies which are

defined on X. Therefore, it implies that X and ∅ are both in Nτ1
∩

Nτ2.

Let {Ci}i∈I ∈ Nτ1
∩

Nτ2 and
∪

i∈I Ci ∈ Nτ1 it follows that
∪

i∈I CiNτ2.

Thus by the definition 1.12 it follows that Nτ1 ∩Nτ2 is a member of 2τ.

Suppose we let {Ci}Ni=1 ∈ Nτ1
∩
Nτ2 then

∩N
i=1 ∈ Nτ1, this implies that∩N

i=1 ∈ Nτ2. Therefore, Nτ1 ∩Nτ2 is an N -topology.

The following remark 4.33 follows immediately.

Remark 4.33. The union of two 2τ need not to be 2τ. Likewise the union

of two 3τ need not to be in 3τ.
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In our next result we show some of the properties exhibited by N -

topological spaces. We therefore illustrate that a function χ is continu-

ous in N -topological spaces Nτ -open inverse in Y is Nτ -open in X. We

also consider two different continuous functions that are mapping one

N -topological space to another. Then it implies that the composition of

these functions mapping N -topological space to another is also continu-

ous. We give the result that follows.

Proposition 4.34. Let χ : (X, τ1, τ2, ..., τN) → (Y, τ1, τ2, ..., τN) be a con-

tinuous function if the inverse of Nτ -open subset in Y is also Nτ -open in

X. Then χ is πλ-continuous.

Proof. Let A be Nτ -open set in Y. Then χ−1(A) is clopen in X. Hence

it implies that χ−1(A) ∈ πλB(X), then by Proposition 4.2, a function

χ is πλ-continuous since A is Nτ -open set in Y. Then we can show that

χ−1(A) is a πλ-open set in X, suppose that χ−1(A) ̸= ∅ then it therefore

implies that χ−1(A) is a πλ-open set in X, and if χ−1(A) ⊆ X, then for

each x ∈ χ−1(A), we have χ(x) ∈ A. Since χ is πλ-continuous then it

implies that there exists a πλ-open set Bx in X such that x ∈ Bx and

χ(Bx) ⊆ A. This implies that x ∈ Bx ⊆ χ−1(A). This therefore shows

that χ−1(A) is πλ-open in X. On the other hand if we let x ∈ X and A

Nτ -open set in Y containing χ(x). Then it follows that x ∈ χ−1(A). By

hypothesis, χ−1(A) is πλ-open in X containing x, hence it suffices that

χ(χ−1(A)) ⊆ A. Therefore, χ is πλ-continuous.

Proposition 4.35. The property of soft-π − T0 is hereditary in tritopo-

logical spaces.

Proof. Let Y be a soft-subspace of soft-π−T0-space (X,Nτ1, Nτ2, Nτ3, E).

65



There are distinct soft-points eA and eB with eA ̸= eB ∈ Y. Since Y ⊆ X

then it implies that eA, eB ∈ X and so (X,Nτ1, Nτ2, Nτ3, E) is a soft-

π−T0-space. By separation axioms, there exists soft- π-open sets (F1, E),

(F2, E) such that eA ∈ (F1, E) or eB does not exists in (F1, E) and

eB ∈ (F2, E), eA does not belongs to (F2, E). Hence it follows that

(F1, E) ∩ Y = (F1Y , E) is a soft-π-open set in Y and eA ∈ (F1Y , E),

eB is not a member of (F1Y , E). On the other hand, we can show that eA

does not exists in (F2, E), eB ∈ (F2, E) then eA does not exists (F2Y , E)

and eB ∈ (F2Y , E). Hence Y is a soft-π − T0.

Lemma 4.36. Given that (X,Nτ1, Nτ2, ..., τN) is a normal N-topological

space then the property of T4 is both topological and hereditary.

Proof. Suppose that (X,Nτ1, Nτ2, ..., τN) is a normal space it therefore

implies that there exist two disjoint closed sets say a and b where a ̸= b.

Also there are two disjoint open sets say U and V such that a, b ∈ X.

Then this suffices that a ∈ U, whereas b does not exists in U similarly a

is not a member of V but b ∈ V. Normal bitopological space implies

T2 space. Therefore, it suffices that a, b ∈ X with a ̸= b. This fol-

lows that there exists U ∈ τ1 ∪ τ2 such that a ∈ U, whereas b does

not exists in U. On the other hand a is not a cardinality of V but

b ∈ V, hence normal spaces have topological property. We show that

normality and hereditary properties are the same. By Proposition 4.18,

χ : (X,Nτ1, Nτ2, ..., τN) → (Y,Nτ
′
1, Nτ

′
2, ..., τN

′
) and χ is homeomor-

phic since it is a bijective function. Let M ⊆ X. Therefore, this fol-

lows that if (X,Nτ1, Nτ2, ..., τN) is a normal space then M is also nor-

mal, by employing the conditions for normality, a subspace of X is also

normal. considering disjoint open sets U and V we have U ∈ Nτ1 and
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V ∈ Nτ2 such that a ∈ U, b ∈ V and U ∩ V = ∅. Hence (M,NτM1
, NτM2

)

is normal. Therefore, U ∈ Nτ1 and V ∈ Nτ2 so U ∩ M ∈ NτM1
and

V ∩M ∈ NτM2
. This closely follows that a ∈ U ∩M likewise b ∈ V ∩M.

Hence (M,NτM1, NτM2, ..., NτMN) has both normality and topological

properties induced from (X,Nτ1, Nτ2, ..., τN).

Theorem 4.37. The property of soft-πλ-closed is hereditary in N -normal

topological space.

Proof. We have two disjoint points (F1, E) and (F2, E) which are soft-πλ-

closed subsets of (Y,Nτ
′
1, Nτ

′
2, ..., τN

′
). Then there exists soft-π-closed

subsets (H,E) and (V,E) in (X, τ1, τ2, τ3, E) such that (F1, E) = Y ∩

(H,E) and (F2, E) = Y ∩(V,E), since y is soft-π-closed in (X, τ1, τ2, τ3, E).

Since (F1, E) and (F2, E) are soft-πλ-closed in (X, τ1, τ2, τ3, E). When

we employ the conditions for normality (X, τ1, τ2, τ3, E) is soft-πλ-normal

then it implies that there exists soft-π-open set (F3, E), (F4, E)

in (X, τ1, τ2, τ3, E) such that (F1, E) ⊆ (F2, E), (F3, E) ⊆ (F4, E) and

(F3, E)∩(F4, E) = ϕ. However, (F1, E) ⊆ y∩(F3, E), (F2, E) ⊆ y∩(F4, E)

where y ∩ (F3, E), y ∩ (F4, E) are soft-disjoint soft-πλ-open subsets in Y.

Therefore, (Y,Nτ1, Nτ2, Nτ3, E) is a soft-πλ-normal soft-subspace.

In this third objective, the results show that continuity and separation

axioms via the notion of ij-continuity can be naturally extended to N -

topological spaces.
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Chapter 5

CONCLUSION AND

RECOMMENDATIONS

5.1 Introduction

We draw conclusion based on our objectives and the results obtained

in this chapter. We also give recommendations that can help in tack-

ling further research in this area of study on continuity of functions on

bitopological spaces.

5.2 Conclusion

We summarize our work by highlighting the results obtained in our study

as per the problem stated in Section 1.3 of this work. Our objectives were

to characterize notion of ij-continuity in bitopological spaces, establish

the separation method for bitopological spaces through ij-continuity and

determine extensions of continuity and separation axioms inN -topological
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space as stated in Section 1.4. In chapter 1, we gave mathematical back-

ground, basic definitions and concepts which we found very essential to

our study. In chapter 2, we have done literature review on continuity

of functions on both topological and bitopological spaces which were re-

lated to our topic of study. For instance, studies on Strong Continuity

in Topological Spaces by Nourman [53], Mappings and Pairwise Continu-

ity On Pairwise Lindelöf Bitopological Spaces by Adem and Zabidin [2]

and Separation Axioms for Bitopological Spaces by Arya and Nour [12]

among others. In chapter 3, we have outlined the methodologies used in

obtaining our results.

In chapter 4, we have given out the results of our study. For objective

one, we have characterized various notions of continuity in bitopological

spaces, we showed that suppose that if χ : (X, τ1, τ2) → (Y, τ
′
1, τ

′
2) be an

open function then a subset W of X is said to be πλ-open if and only if

it is semi-closed and an intersection of πλ-open sets in X. Moreover, χ

is therefore said to be πλ-continuous. We also showed that if a function

χ : X → Y is ij−πλ-continuous and if for each open set X0 of X we have

η ∈ X, such that χ |X0 : X0 → Y is said to be πd-continuous. On composi-

tion of functions we have shown that if we have the functions χ1 : X → Y

be πλ-continuous and χ2 : Y → Z be πd-continuous. Therefore, χ2 ◦ χ1 is

ij − πd continuous.

For objective two on establishing separation technique for bitopological

spaces we have shown that they exhibit both topological and heredity

properties. Next, we have shown that T0 space implies T1 which also im-

plies T2 space and the converse is true. We have indicated in our results

that suppose bitopological spaces (X, τ1, τ2) and (Y, τ
′
1, τ

′
2) are T0, T1, and
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T2, spaces then the properties of T0, T1, and T2, are both hereditary and

topological. We have therefore established that T0-Kolmogorov space,

T1-Fretchét space, T2-Housdorff space, T 5
2
-Urysohn space and T4-Normal

Housdorff space can be used in bitopological spaces through the notion of

ij-continuity as separation criteria for bitopological spaces via the notion

of ij-continuity. For the third objective on determining extensions of sep-

aration axioms in N -topological spaces we have shown that continuity in

bitopological spaces can be naturally extended up to N -topological space

as shown in Proposition 4.35, Lemma 4.36 and Theorem 4.37. Finally, we

have also shown continuity in N -topological spaces as shown in Propo-

sition 4.32 and Proposition 4.34. Therefore, these results indicate that

continuity in N -topological spaces and separation axioms that are used to

separate N -topological spaces can be naturally extended to N -topological

spaces.

5.3 Recommendations

Continuity of bitopological spaces and other N -topological spaces is a

very interesting area of study in mathematics and has not been fully

exhausted so far. In our case we considered only semi-continuity, weak

continuity and strong continuity of bitopological spaces. We therefore

recommend that further research can be directed to other aspects of con-

tinuity such as local continuity, fuzzy continuity and global continuity

in bitopological spaces and N -topological spaces. Secondly, in our study

through ij-continuity we have established separation criteria for bitopo-

logical spaces. Therefore, our recommendation is that further research can
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be done to establish separation criteria in a fuzzy bitopological spaces.

Lastly, we showed extensions of continuity and separation axioms in dis-

crete N -topological spaces. We therefore recommend that more research

should be carried out to show extensions of of continuity and separation

axioms in local, fuzzy and global N -topological spaces.
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