JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF HEALTH SCIENCES

UNIVERSITY EXAMINATION FOR DEGREE OF MASTER PUBLIC HEALTH
$1^{\text {ST }}$ YEAR 2 $^{\text {ND }}$ SEMESTER 2022/2023 ACADEMIC YEAR
KISUMU CAMPUS

COURSE CODE: HES 5123
COURSE TITLE: ADVANCED BIOSTATISTICS

EXAM VENUE:
DATE:
TIME:

STREAM: (MPH)
EXAM SESSION:
3.00 HOURS

Instructions:

1. Answer Question ONE (compulsory) and any other THREE questions.
2. Candidates MUST not to write anything on the question paper.
3. Candidates MUST hand in their answer booklets to the invigilator while in the examination room.

SECTION A

Answer question one(Compulsary)

1. Question one ($\mathbf{1 0} \mathbf{~ m a r k s}$).
a) Show that $\operatorname{se}(\hat{\pi})=\frac{1}{\sqrt{-l^{\prime \prime}(\hat{\pi})}}$ where $\operatorname{se}(\hat{\pi})$ is the standard error of the estimated population prevalence and $l^{\prime \prime}(\hat{\pi})$ is the second derivative of the log-likelihood function of the estimated population prevalence. (3 marks)
b) Show invariance of Maximum likelihood Estimator If $\theta=f(\pi)$, then $\widehat{\theta}=f(\hat{\pi}) \cdot(2$ marks)
c) Derive the Wool's formulae for log odds $\operatorname{se}[\log (\widehat{\Omega})]=\sqrt{\frac{1}{x}+\frac{1}{n-x}}$ for X being the number of individuals with disease, $s e[\log (\widehat{\Omega})]$ is the standard error of the log-odds and n is the sample size. (3 marks)
d) Hence similarly for (c) above show that $\operatorname{se}[\log (\hat{\mathrm{\pi}})]=\sqrt{\frac{1-\hat{\mathrm{T}}}{n \hat{\mathrm{\pi}}}} .(2$ marks $)$

SECTION B

Answer any three Questions

2. Question two ($\mathbf{2 0}$ marks).

In a randomized trial patients infected by helicobacter pylori were randomly allocated to treatment by drug combination A or treatment by drug combination B. At the end of the study, the non-cure rates are to be compared between the two groups, using the risk difference or the risk ratio as effect measure.

RESIST resistant against one of the drugs in the combination

$$
0=\text { no, } 1=\text { yes }
$$

CURE
cured : $1=$ not cured, $0=$ cured
TREAT treatment: $0=\operatorname{drug}$ combination $A, 1=\operatorname{drug}$ combination B
Treatment * Cured * Resistant against one of the drugs in the combination Crosstabulation

Resistant against one of the drugs in the combination			Cured		Total
			cured	not cured	
no	Treatment	drug combination A	111	3	114
		drug combination B	99	6	105
	Total		210	9	219
yes	Treatment	drug combination A	90	9	99
		drug combination B	75	12	87
	Total		165	21	186

Some SAS output

Table of TREAT by CURE
TREAT(Treatment) CURE (Cured)
Frequency , cured , not cure, Total
Row Pct

, , d ,		
fffffffffffffffffff^ffffffff^ffffffff^		
drug combination	201, 12	213
fffffffffffffffff ${ }^{\prime}$ ffffffff ${ }^{\text {¢ }}$ fffffffff		
drug combination	174 , 18	192
	90.63 , 9.38	
fffffffffffffffffff^fffffffff^ffffffff^		
Total	375 30	405

Statistics for Table of TREAT by CURE
Column 2 Risk Estimates

Number of Observations Read	405
Number of Observations Used	405
Number of Events	30
Number of Trials	405

Response Profile		
Ordered		Total
Value	CURE	Frequency
		30
1	not cured	375

PROC GENMOD is modeling the probability that CURE='not cured'.

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value
Log Likelihood	-105.9089	
Full Log Likelihood	-105.9089	
AIC (smaller is better)	215.8177	
AICC (smaller is better)	215.8476	
BIC (smaller is better)	223.8255	

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates									
Parameter	DF	Estimate	Standard Error	Wald 95\% Confidence	5\% Limits	Likeliho 95\% Con Lim	Ratio dence s	Wald Chi-Square	Pr > ChiSq
Intercept	1	0.0563	0.0158	0.0254	0.0873	0.0306	0.0927	12.72	0.0004
TREAT	1	0.0374	0.0263	-0.0142	0.0890	-0.0137	0.0914	2.02	0.1550
Scale	0	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000		
NOTE: The scale parameter was held fixed.									

PROC GENMOD is modeling the probability that CURE='not cured'.

Parameter Information

Parameter	Effect
Prm1	Intercept
Prm2	TREAT

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Log Likelihood	-105.9089		
Full Log Likelihood	-105.9089		
AIC (smaller is better)		215.8177	
AICC (smaller is better)	215.8476		
BIC (smaller is better)	223.8255		

Algorithm converged.
Analysis Of Maximum Likelihood Parameter Estimates

		Likelihood Ratio							
Parameter	DF	Estimate	Standard Error	Wald 95% Confidence Limits	Wald Confidence Limits	Chi-Square	Pr > ChiSq		
Intercept	1	-2.8764	0.2804	-3.4260	-2.3268	-3.4876	-2.3786	105.21	$<.0001$
TREAT	1	0.5093	0.3591	-0.1947	1.2132	-0.1844	1.2416	2.01	0.1562
Scale	0	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000		

NOTE: The scale parameter was held fixed.
Contrast Estimate Results

Label	Mean Estimate	Mean Confidence	Limits	L'Beta Estimate	Standard Error	Alpha	$\begin{array}{r} \text { L'B } \\ \text { Confiden } \end{array}$	Limits
TreatmentB	1.6641	0.8231	3.3641	0.5093	0.3591	0.05	-0.1947	1.2132
Exp(TreatmentB)				1.6641	0.5976	0.05	0.8231	3.3641

Contrast Estimate Results

Label	Chi- Square	Pr $>$ ChiSq
TreatmentB	2.01	0.1562
Exp(TreatmentB)		

Relative risk model
The FREQ Procedure
Table 1 of TREAT by CURE Controlling for RESIST=no
TREAT (Treatment) CURE(Cured)

Frequency		
Row Pct	, cured , not cure,	Total
$f f f f f f f f f f f f f f f f f$, , d ${ }^{\text {d }}$,	
drug combination	, 111,3	
A	97.37 , 2.63	
ffffffffffffffffff^fffffffff^ffffffff^		
drug combination	99 , 6	10
B	$94.29,5.71$	
ffffffffffffffffff^fffffffff^ffffffff^		
Total	210	219

Statistics for Table 1 of TREAT by CURE
Controlling for RESIST=no
Column 1 Risk Estimates

	Risk	ASE	(Asymptotic) 95% Confidence Limits	(Exact) 95% Confidence Limits		
fff						
Row 1	0.9737	0.0150	0.9443	1.0000	0.9250	0.9945
Row 2	0.9429	0.0227	0.8985	0.9873	0.8798	0.9787
Total	0.9589	0.0134	0.9326	0.9852	0.9234	0.9810
Difference	0.0308	0.0272	-0.0224	0.0841		

Column 2 Risk Estimates

			(Asympt) 95%	(Exact) 95\%	
	Risk	ASE	Confidence Limits		Confide	Limits
fff						
Row 1	0.0263	0.0150	0.0000	0.0557	0.0055	0.0750
Row 2	0.0571	0.0227	0.0127	0.1015	0.0213	0.1202
Total	0.0411	0.0134	0.0148	0.0674	0.0190	0.0766
Difference	-0.0308	0.0272	-0.0841	0.0224		
Difference is (Row 1 - Row 2) Relative risk model						
The FREQ Procedure						

Statistics for Table 1 of TREAT by CURE Controlling for RESIST=no

Estimates of the Relative Risk (Row1/Row2)

Type of Study	Value	95\% Confidence Limits	
fff			
Case-Control (Odds Ratio)	2.2424	0.5463	9.2045
Cohort (Coll Risk)	1.0327	0.9765	1.0921

Cohort (Col2 Risk)	0.4605	0.1182	1.7949
	Sample Size $=219$		

Table 2 of TREAT by CURE Controlling for RESIST=yes TREAT (Treatment) CURE(Cured)

Frequency			
Row Pct	, cured	, not cure,	Total
ffffffffffffffffff^fffffffff^ffffffff^			
drug combination	90	9	99
	90.91	9.09	
ffffffffffffffffff^fffffffff^ffffffff^			
drug combination	75	12	87
	86.21	13.79	
ffffffffffffffffff^fffffffff ffffffff^			
Total	165	21	186

Statistics for Table 2 of TREAT by CURE Controlling for RESIST=yes
Column 1 Risk Estimates

			(Asymp	c) 95%	(Exa	95\%
	Risk	ASE	Confidence Limits		Confidence Limits	
fff						
Row 1	0.9091	0.0289	0.8525	0.9657	0.8344	0.9576
Row 2	0.8621	0.0370	0.7896	0.9345	0.7715	0.9266
Total	0.8871	0.0232	0.8416	0.9326	0.8326	0.9287
Difference	0.0470	0.0469	-0.0449	0.1390		
Difference is (Row 1 - Row 2)						

Relative risk model
The FREQ Procedure
Statistics for Table 2 of TREAT by CURE Controlling for RESIST=yes
Column 2 Risk Estimates

| | | | (Asymptotic) 95% | (Exact) 95% |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Risk | ASE | Confidence Limits | Confidence Limits | |

Estimates of the Relative Risk (Row1/Row2)

Type of Study	Value	95\% Confidence Limits	
fff			
Case-Control (Odds Ratio)	1.6000	0.6396	4.0028
Cohort (Coll Risk)	1.0545	0.9498	1.1708
Cohort (Col2 Risk)	0.6591	0.2918	1.4888

Answer the following questions

a. Compute the risk difference and a relative risk. (2 marks)
b. Compare the risk of not getting cured with either treatment A or B. Find the risk difference/risk ratio and its confidence interval for the non-cure rate. (hint transformation cure=1). (2 marks)
c. Compute the Wald's $95 \% \mathrm{Cl}$. (2 marks)
d. What is the interpretation of the estimated regression coefficients? (2 marks)
e. Some of the patients are resistant to one of the drugs in the drug combination, others are not resistant. Adjust the estimates of the risk difference for resistance. (2 marks)
f. Compute the risk differences in both strata. (4 marks)
g. Calculate the weighted mean of the two risk difference using the weight factor for each stratum: One over the squared standard error. (4 marks)
h. Is there evidence of heterogeneity for both RD and RR? (Hint: use interaction term that tests that RD or RR in two strata is equal) (2 marks)

3. Question three (20 marks).

1. Presence of a certain element of the set of teeth in babies, depending on age
$Y=1 / 0$ if element present/absent
$X=$ age at examination (weeks)

Using binary logistic regression in SPSS gives the following:

$$
\mathbf{Y}
$$

					Cumulative Percent
Valid	0	38	76.0	76.0	76.0
	1	12	24.0	24.0	100.0
	Total	50	100.0	100.0	

Block 0

Variables in the Equation

		B	S.E.	Wald	Df	Sig.	Exp(B)
Step 0	Constant	-1.153	.331	12.117		1	.000

Iteration History(a,b,c,d)

Iteration		$\begin{gathered} -2 \mathrm{Log} \\ \text { likelihood } \end{gathered}$	Coefficients		
		Constant	X		
Step 1	1		36.215	-3.827	. 095
	2	29.677	-6.483	. 162	
	3	27.743	-8.796	. 220	
	4	27.474	-10.043	. 251	
	5	27.467	-10.287	. 257	

6	27.467	-10.295	.257
7	27.467	-10.295	.257

a Method: Forward Stepwise (Wald)
b Constant is included in the model.
c Initial -2 Log Likelihood: 55.108
d Estimation terminated at iteration number 7 because parameter estimates changed by less than .001 .

Variables in the Equation

		B	S.E.	Wald	df	Sig.	Exp(B)	95.0\% C.I.for EXP(B)		
		Lower						Upper		
Step	X		. 257	. 078	10.727	1	. 001	1.293	1.109	1.508
1(a)	Constant	-10.295	3.066	11.275	1	. 001	. 000			

a Variable(s) entered on step 1: X.
Correlation Matrix

		Constant	X
Step 1	Constan	1.000	-.987
	t	-.987	1.000

a. Estimate of the covariance matrix, hence what are the standard errors $\left(s_{0}\right)$ and (s_{1})? (4 marks)
b. What is the correlation between $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$. (2 marks)
c. Give the $95 \% \mathrm{Cl}$ for β_{1} using the Wald's method. (2 marks)
d. What is the probability that a 40 week old will have the element?. (8 marks)
e. Test for $H_{0}: \beta_{1}=0$ with three methods (follow SPSS output). (4 marks)

4. Question four (20 marks).

2. In a random sample from the population of a rural area in a certain developing country the following variables, among others, were observed on 328 persons.

SYS systolic blood pressure (mmHg)

PULSE pulse rate (beats/min)

SES social economic status (1=lower class, 2=middle class, 3=upper class)

This problem concentrates on the differences in mean systolic blood pressure between the three social economic classes corrected for pulse frequency. Three multiple regression models were filled using SPSS. Part of the output is given below.

Model 1:

Variables Entered/Removed(b)

Model	Variables Entered	Variables Removed	Method
1	middle social		
	economic class, low social		Enter
	economic		
status(a)			

a All requested variables entered.
b Dependent Variable: systolic blood pressure (mmHg)
ANOVA(b)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regressio	4019.437	2	2009.719	6.898	$.001(\mathrm{a})$
	n	Residual	94683.840	325	291.335	
	Total	98703.277	327			

a Predictors: (Constant), middle social economic class, low social economic status
b Dependent Variable: systolic blood pressure (mmHg)
Coefficients(a)

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
		B	Std. Error			
1	(Constant)	126.381	1.002		126.175	. 000
	low social economic status middle	-2.196	1.307	-. 095	-1.681	. 094
	social economic class	-3.645	1.330	-. 155	-2.741	. 006

a Dependent Variable: systolic blood pressure (mmHg)

Model 2:

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.169(\mathrm{a})$.029	.026	17.15045
2	$.258(\mathrm{~b})$.067	.058	16.86281
3	$.259(\mathrm{c})$.067	.055	16.88669

a Predictors: (Constant), pulse frequency (beats/min)
b Predictors: (Constant), pulse frequency (beats/min), low social economic status, middle social economic class
c Predictors: (Constant), pulse frequency (beats/min), low social economic status, middle social economic class, squared pulse rate

ANOVA(d)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2814.288	1	2814.288	9.568	.002(a)
	Residual	95888.989	326	294.138		
	Total	98703.277	327			
2	Regression	6572.496	3		7.705	.000(b)
	Residual	92130.781	324	284.354		
	Total	98703.277	327			
3	Regression	6596.497	4	285.160	5.783	.000(c)
	Residual	92106.780	323			
	Total	98703.277	327			

a Predictors: (Constant), pulse frequency (beats/min)
b Predictors: (Constant), pulse frequency (beats/min), low social economic status, middle social economic class c Predictors: (Constant), pulse frequency (beats $/ \mathrm{min}$), low social economic status, middle social economic class, squared pulse rate
d Dependent Variable: systolic blood pressure (mmHg)
Coefficients(a)

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
		B	Std. Error			
1	(Constant)	104.616	6.711		15.588	. 000
	pulse frequency (beats/min)	. 250	. 081	. 169	3.093	. 002
2	(Constant)	106.752	6.625		16.113	. 000
	pulse frequency (beats/min)	. 239	. 080	. 161	2.996	. 003
	low social economic status	-2.196	1.291	-. 095	-1.701	. 090
	middle social economic class	-3.472	1.315	-. 147	-2.641	. 009
3	(Constant)	97.588	32.277		3.024	. 003
	pulse frequency (beats/min)	. 464	. 781	. 313	. 594	. 553
	low social economic status	-2.223	1.296	-. 096	-1.715	. 087
	middle social economic class	-3.432	1.324	-. 146	-2.592	. 010
	squared pulse rate	-. 001	. 005	-. 153	-. 290	. 772

a Dependent Variable: systolic blood pressure (mmHg)

Model 3:

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.258(\mathrm{a})$.067	.058	16.86281
2	$.284(\mathrm{~b})$.081	.066	16.78795

a Predictors: (Constant), middle social economic class, pulse frequency (beats/min), low social economic status b Predictors: (Constant), middle social economic class, pulse frequency (beats $/ \mathrm{min}$), low social economic status, mid_pulse, low_pulse

ANOVA(c)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regressio n Residual Total	$\begin{array}{r} 6572.496 \\ 92130.781 \\ 98703.277 \end{array}$	$\begin{array}{r} 3 \\ 324 \\ 327 \end{array}$	$\begin{array}{r} 2190.832 \\ 284.354 \end{array}$	7.705	.000(a)
2	Regressio n Residual Total	$\begin{array}{r} 7952.374 \\ 90750.903 \\ 98703.277 \end{array}$	$\begin{array}{r} 5 \\ 322 \\ 327 \end{array}$	$\begin{array}{r} 1590.475 \\ 281.835 \end{array}$	5.643	.000(b)

a Predictors: (Constant), middle social economic class, pulse frequency (beats/min), low social economic status b Predictors: (Constant), middle social economic class, pulse frequency (beats $/ \mathrm{min}$), low social economic status, mid_pulse, low_pulse
c Dependent Variable: systolic blood pressure (mmHg)
Coefficients(a)

a Dependent Variable: systolic blood pressure (mmHg)

In order to look at the crude differences in mean systolic blood pressure between the three groups, model 1 is fitted. Study the output of model 1, notice in particular how the independent variables are coded (LOW:10-1 and MID: 01-1), and answer questions (a) to (d).
a. What is the interpretation of the estimated regression coefficients of the independent variables "low social economic status" and "middle social economic status"? (1 mark)
i. Give also the interpretation of the estimated intercept. (1 mark)
ii. Compute the estimates for the mean systolic blood pressure of the three SES classes. (1 mark)
b. Are there significant differences in mean systolic blood pressures between the SES groups?
i. Formulate the null hypothesis and give the p-value. (1 mark)
c. Give the estimate of the within groups standard deviation of systolic blood pressure. (1 mark)
i. How can this be used to compute an (approximate) 95% confidence interval for the group means? (1 mark)
ii. Give this confidence interval for the low SES group. (the number of individuals in the lower SES group was 138) (1 mark)
d. Give the estimate of the percentage variability in systolic blood pressure that is explained by differences between SES classes. (1 mark)

In order to look at the differences in mean systolic blood pressure between the SES groups corrected for pulse rate, model 2 was fitted. Study the output of model 2 and answer the questions (e) and (h).
e. Are there significant differences in mean systolic blood pressures between the SES groups corrected for pulse rate? (1 mark)
i. Formulate the null hypothesis and give the p-value. (2 marks)
f. Give the estimate of the pulse rate corrected difference in mean systolic blood pressure between the low and middle SES group. (1 mark)
i. Do the same for the low and high group and for the middle and high group. (1 mark)
g. Compute the estimate, based on model 2, of the mean systolic blood pressure for middle class people with pulse rate equal to 70 (1 mark)
h. One of the assumptions underlying model 2 is that the relation between systolic blood pressure and pulse rate is linear. Is this assumption reasonable in this case? (1 mark)
i. Motivate your answer. (1 mark)

One of the assumptions of model 2 is that there is no interaction between SES classes and pulse rate. In order to investigate whether this assumption is justified, model 3 was fitted. Study the output of model 3 and answer the following questions.
i. Is there statistical evidence that there is interaction between SES class and pulse rate? (1 mark)
i. Motivate your answer. (1 mark)
j. Give the equation of the estimated regression line (based on model 3) of systolic blood pressure against pulse rate for the low SES group. (1 mark)

What is the estimated difference (based on model 3) in mean systolic blood pressure (1 mark)

5. Question five (20 marks).

The table below gives results of 6 clinical trials comparing the risk of OHSS (ovarian hyperstimulation syndrome) between recombinant FSH and urinary FSH used during an IVF (in vitro fertilization) treatment.

Trial	No. of patients Rec FSH	No. of patients Ur FSH	OHSS Rec FSH	OHSS Ur FSH
$\mathbf{1}$	585	396	19	8
$\mathbf{2}$	57	33	3	0
$\mathbf{3}$	54	35	2	1
$\mathbf{4}$	119	114	6	2
$\mathbf{5}$	60	63	8	1
$\mathbf{6}$	105	67	8	8

A meta-analysis was carried out using Mantel-Haenszel's procedure, stratified on trial. Some SPSS output is given at the following pages. Read this output and answer the following questions.

Risk Estimate

Trial		Value	95\% Confidence Interval	
			Lower	Upper
1	Odds Ratio for FSH (Recombinant / Urinary)	. 614	. 266	1.417

	For cohort OHSS = no	. 987	. 967	1.008
	For cohort OHSS = yes	1.608	. 711	3.636
	N of Valid Cases	981		
2	For cohort OHSS = no N of Valid Cases	.947 90	. 891	1.007
3	Odds Ratio for FSH (Recombinant / Urinary)	. 765	. 067	8.765
	For cohort OHSS = no	. 991	. 918	1.071
	For cohort OHSS = yes	1.296	. 122	13.763
	N of Valid Cases	89		
4	Odds Ratio for FSH (Recombinant / Urinary)	. 336	. 066	1.702
	For cohort OHSS = no	. 967	. 921	1.014
	For cohort OHSS = yes	2.874	. 592	13.947
	N of Valid Cases	233		
5	Odds Ratio for FSH (Recombinant / Urinary)	. 468	. 041	5.297
		. 982	. 928	1.039
	For cohort OHSS = yes	2.100	. 195	22.561
	N of Valid Cases	123		
6	Odds Ratio for FSH (Recombinant / Urinary)	. 568	. 145	2.223
	For cohort OHSS = no	. 967	. 897	1.043
	For cohort OHSS = yes	1.702	. 468	6.188
	N of Valid Cases	172		

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	1.507	5	.912
Tarone's	1.507	5	.912

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		.513	
\ln (Estimate)		-.668	
Std. Error of In(Estimate)		.308	
Asymp. Sig. (2-sided)		$? ? ?$	
Asymp. 95\%	Common Odds Ratio	Lower Bound	$? ? ?$
Confidence Interval		Upper Bound	$? ? ?$
	In(Common Odds	Lower Bound	$? ? ?$
	Ratio)	Upper Bound	$? ? ?$

k. Make a 2×2 table for the first trial.
i. Compute the OHSS odds ratio of recombinant FSH treatment relative to urinary FSH treatment. (1 mark)
ii. Compute also the corresponding relative risk (1 mark)
iii. How are these estimates related to the estimates given for trial 1 in the first table of the SPSS output (1 mark)
iv. What is the difference between the two relative risk estimates? (1 mark)
I. Give the OHSS odds ratios of recombinant FSH relative to urinary FSH per trial. Is the assumption that the true odds ratios are equal across trials warranted? (7 marks)
i. Motivate your answer. (1 mark)
m . Give the Mantel-Haenzel estimate of the common OHSS odds ratios of recombinant FSH relative to urinary FSH. (2 marks)
i. Is it justified to interpret it as a relative risk? (1 mark)
n. Fill in the question marks in the third table. (5 marks)

