

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL

SCIENCES

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION AND ACTUARIAL SCIENCE

SPECIAL RESITS DECEMBER 2022

MAIN REGULAR

COURSE CODE: WMB 9205/SMA205

COURSE TITLE: LINEAR ALGEBRA II

EXAM VENUE:

STREAM: (Bed/BSc. Actuarial)

DATE:

EXAM SESSION:

TIME: 2.00 HOURS Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE COMPULSORY (30 MARKS)

ai)Define the term linearly dependent in relation to linear spaces. (2mks)

ii) Determine if the set $L = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 3 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 2 \\ 6 & 0 \end{pmatrix} \right\}$ is linearly independent in M_{2X2} using standard coordinate mapping. (6mks)

b i)Write down the characteristic polynomial of matrix $N = \begin{pmatrix} 1 & 2 \\ 8 & 1 \end{pmatrix}$ of linear operator T.

ii)Let
$$A = \begin{pmatrix} 10 & 1 \\ 0 & 3 \end{pmatrix}, B = \begin{pmatrix} -1 & 0 \\ 20 & 1 \end{pmatrix}$$
. Show that $(AB)^t = B^t A^t$ (3mk)

c) Let $V = \mathbb{R}^2$ and $W = \{(x, y) \in \mathbb{R}^2 : 2x - y = 0\}$. Show that *W* is a subspace of *V*

(3mks)

(3mks)

d) What is a symmetric matrix
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 (2mk)

e) Diagonalize the matrix
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 (4mks)

f) Define the term linear mapping

g) Given that
$$\beta = \left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \end{pmatrix} \right\}, \ \alpha = \left\{ \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \begin{pmatrix} 4 \\ 1 \end{pmatrix} \right\}, \text{ and } N = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$
 are ordered bases for R^2 show that the transition matrix from β to α i.e. $\alpha P_{\beta} = (\alpha P_N) \left({}_N P_{\beta} \right)$ (4mks)

QUESTION TWO (20 MARKS)

a) Let
$$A = \begin{pmatrix} 10 - i & 1 \\ 4 + i & -3i \end{pmatrix}$$
, find the

i)conjugate of matrix A (3mks)

- ii) Conjugatetranspose of matrix A (3mks)
- iii) Hence evaluate $A + A^t \left[A + \overline{A}^t \right]^t$ (3mks)

b) Let
$$\beta = \{X, Y, Z\}$$
 be a basis for \mathbb{R}^3 . If $X = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, Y = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, Z = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, and given, $W = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$
find $[W]_{\beta}$. (3mks)

c) Let *A* be a square matrix. Show that *A* is orthogonal if and only if A^T is orthogonal (3mks)

d) Find the matrix of linear transformation defined by

 $T(x_1, x_2, x_3) = (x_1 + x_3, x_1 - x_2, x_3 + x_2)$ with respect to the standardbasis (3mks)

e).Let $T : P_2 \rightarrow P_2$ be a linear transformation defined by

$$T(a + bx + cx^{2}) = -2c + (a + 2b + c)x + (a + 3c)x^{2}$$

Find the matrix associated with *T* with respect to the standard basis $B = \{1, x, x^2\}$ (2mks)

QUESTION THREE (20 MARKS)

a) Define	
(i) an eigenvalue	(1mks)

(ii) an eigenvector of matrix A in \mathbb{R}^n (3mks)

b) LetA =	$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$	
i)	Obtain the characteristic equation of A	(4mks)
ii)	Find the eigenvalues of A	(4mks)
iii)	Show that <i>A</i> satisfies the Cayley-Hamilton theorem	(4mks)

iv) Find the inverse of *A* using Cayley-Hamilton theorem (4mks)

QUESTION FOUR (20 MARKS)

a) i) Define term isomorphism (1mk) ii) If *T* is an isomorphism, show that T^{-1} is also an isomorphism (2mks) b) Let $M = \begin{pmatrix} -1 & 0 \\ 10 & 1 \end{pmatrix}$ be the matrix of linear operator *T* defined on R^2 .

i) Define rule T on a general vector $\begin{pmatrix} x \\ y \end{pmatrix}$ in R^2

i) i Show that T is invertible in R^2 (3mks)

(6mks)

- iii) Define rule T^{-1} the inverse of T ,on a general vector $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ in R^2 (5mks)
- iv)Verify that T^{-1} is the true inverse. (3mks)

QUESTION FIVE (20 MARKS)

Let
$$B = \begin{pmatrix} -8 & 2 & 3 & -1 \\ -7 & 1 & 3 & -1 \\ -6 & 2 & 1 & -1 \\ -5 & 2 & 3 & -4 \end{pmatrix}$$
 be a matrix of linear operator T defined R^4 .

i) Discover if $u = [1,1,1,1]^t$, $v = [1,1,1,0]^t$, $w = [2,5,2,2]^t$; are eigenvectors of B. (10mks)ii) Suppose λ_u , λ_v , λ_w , λ_\circ are the associated eigen values of matrix B thenShow that $\lambda_u + \lambda_v + \lambda_w + \lambda_\circ = traceB$ iii) Discuss exhaustively diagonal properties of B(5mks)