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2   QUESTION ONE COMPULSORY (30 MARKS) 
  ai)Define the term linearly dependent in relation to linear spaces.                      (2mks) 

ii) Determine if the set
1 1 1 0 1 2

, ,
0 3 2 1 6 0

L
− −      

=       
      

  is linearly independent in 
2 2XM      using standard coordinate mapping.                                       

(6mks) 

b i)Write down the characteristic polynomial of matrix
1 2

8 1
N

 
=  
 

of linear operator  T. 
                                                                                                                                              (3mks) 

ii)Let 10 1 1 0
,

0 3 20 1
A B

−   
= =   
   

.Show that ( )t t tAB B A=              (3mk) 
         

c) Let   � =  ℝ�  and   � = {�	, ��  ℝ� ∶ 2	 − � = 0}. Show that � is a subspace of  � 

                     (3mks) 

d) What is a symmetric matrix
11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 
 =  
 
 

     (2mk) 

     

e) Diagonalize the matrix� =  �1 22 1�               (4mks) 

 

f) Define the term linear mapping                (3mks) g)Given that 3 3 1 4 1 0
, , , , ,

1 1 4 1 0 1
and Nβ α

                
= = =                −                

  are ordered bases for 2R show that the transition matrix from β to α  i.e. ( ) ( )NNP P Pβ βα α=                                   (4mks) 



3      
QUESTION TWO (20 MARKS)  

a) Let
10 1

,
4 3

i
A

i i

− 
=  + − 

find the        i)conjugate of matrix A          (3mks) ii) Conjugatetranspose of matrix A        (3mks) iii) Hence evaluate t
ttA A A A + +

 
       (3mks) b) Let { } 3

, ,X Y Z be a basis for Rβ = .If 1 0 1

1 , 1 , 1 ,

0 1 1

X Y Z

     
     = − = = −     
     
     

and given 1

, 2

2

W

 
 =  
 
 find[ ]W β

.           (3mks)  
c) Let   �  be a square matrix.  Show that �  is orthogonal if and only if  �� is orthogonal         
                         (3mks) 

d) Find the matrix of linear transformation defined by   ��	�, 	�, 	�� = �	� +  	�, 	� −  	�, 	� +  	��with respect to the standardbasis    (3mks) 

 

e).Let   � ∶  ��   →  ��  be a linear transformation defined by ��� + �	 +  	�� =  −2 + �� + 2� +  �	 + �� + 3 �	� 

Find the matrix associated with �  with respect to the standard basis " = {1, 	, 	� } 
              (2mks) 
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QUESTION THREE (20 MARKS) 

a) Define  
 (i) an eigenvalue                       (1mks) 
(ii) an eigenvector   of matrix  �  in  ℝ#                  (3mks) 

 

b) Let� =  $1 −1 00 1 10 0 1% 

i) Obtain the characteristic equation of  �                 (4mks)  
ii) Find the eigenvalues of     �                   (4mks) 
iii) Show that  �  satisfies the Cayley-Hamilton theorem                       (4mks) 
iv) Find the inverse of  �  using Cayley-Hamilton theorem                   (4mks) 

 

 

QUESTION FOUR (20 MARKS) 

 

             
a) i) Define term isomorphism                      (1mk) 

ii) If �  is an isomorphism, show that   �&�  is also an isomorphism            (2mks)              b) Let 1 0

10 1
M

− 
=  
 

be the matrix of linear operatorT  defined on 2R . i) Define rule T on a general vector x
y

 
 
 

in 2R      (6mks)              i)i Show that T is invertible in 2R      (3mks)              iii) Define rule 1T −  the inverse of T ,on a general vector α
β
 
 
 

in 2R       (5mks)   

iv)Verify that 1T −  is the true inverse.      (3mks)    
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QUESTION FIVE (20 MARKS) 
 

8 2 3 1

7 1 3 1
Let

6 2 1 1

5 2 3 4

B

− − 
 − − =
 − −
 − − 

be a matrix of linear operatorT defined 4R . i) Discover if [ ] [ ] [ ]1,1,1,1 , 1,1,1,0 , 2,5,2,2 ;
t t t

u v w= = =  are eigenvectors of  B . (10mks) ii) Suppose , , ,u v wλ λ λ λ° are the associated eigen values of matrixB then Show that u v w traceBλ λ λ λ°+ + + =  (5mks) iii)Discuss exhaustively diagonal properties ofB  (5mks)   
  

 


